原发性胆汁性肝硬化患者的临床特点及Th17细胞在发病中作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分原发性胆汁性肝硬化患者进展到肝功能失代偿阶段的危险因素
     目的:分析我国未发生肝功能失代偿的原发性胆汁性肝硬化(primary biliary cirrhosis, PBC)患者的临床特点,并探索患者进展为肝功能失代偿的危险因素。
     对象与方法:通过对本课题组患者资料数据库的检索,该研究纳入了就诊于我院符合入选标准的PBC患者共262人。采集患者确诊/入组时的人口学信息和临床资料,分析他们的临床特点,并探索患者进展为肝功能失代偿的危险因素。
     结果:本研究共纳入262例PBC患者(女:男≈14:1,平均年龄=51.5±10.2岁),平均随访73.5月(21-201月)。245例(93.5%)患者血清抗线粒体抗体(anti-mitochondrial antibodies, AMAs)阳性。入组时,170例(64.9%)患者存在肝病相关症状,96例(36.7%)患者合并肝外自身免疫性疾病。在随访中,62例(23.7%)患者进展到肝功能失代偿阶段,其中4例患者接受了肝脏移植治疗,随访结束时,17例(6.5%)患者死于肝脏相关疾病,1例(0.4%)患者死于间质性肺病(interstitial lung disease, ILD),1例(0.4%)患者死于淋巴瘤所致的多器官功能衰竭。患者5年和10年生存率分别为96.4%和83.9%。两组间均数比较显示,在基线时失代偿组患者年龄、症状出现率、抗核抗体(antinuclear antibodies, ANA)阳性率、血清抗着丝点抗体(anticentromere antibody, ACA)阳性率、门冬氨酸氨基转移酶(aspartate aminotransferase, AST)、碱性磷酸酶(alkaline phosphatase ALP)、AST与丙氨酸氨基转移酶(alanine aminotransferase, ALT)比值(alanine aminotransferase ratio, AAR)、谷氨酰转肽酶(y-glutamyl transpeptidase, GGT)、总胆红素(total bilirubin, TBil)、间接胆红素(direct bilirubin, DBil)和IgA水平高于对照组;但熊去氧胆酸(ursodeoxycholic acid, UDCA)应答率、早期及极早期患者比例、白蛋白(albumin, ALB)水平低于对照组。Cox回归分析表明,不规律服用UDCA或对其应答不良(P<0.001;HR95%CI=2.423-7.541)、血清ACA阳性(P<0.001;HR95%CI=2.516-7.137)、AAR水平(JP<0.001;HR95%CI=1.357-2.678)、TBil水平(P=0.004;HR95%CI=1.002-1.009)和ALP水平升高(P=0.008;HR95%CI=1.000-1.002)是患者发展为肝功能失代偿的危险因素。对病理分期单独进行Cox回归分析显示,其也是患者预后不良的危险因素(P=0.006;HR95%CI=1.481-10.847)。
     结论:
     1.我国PBC患者的临床特点和国外患者基本相同,但有症状的患者较多。
     2.初诊时,失代偿组患者年龄、症状出现率、ANA和ACA阳性率、AST、AAR、ALP、GGT、TBil、DBil和IgA水平高于未发生失代偿患者;但UDCA应答率、早期及极早期患者比例、ALB水平低。
     3.不规律服用UDCA或对其应答不良、血清ACA阳性、AAR水平、TBil水平、ALP水平及病理分期都是患者发展为肝功能失代偿的独立危险因素。
     第二部分Th17细胞、IL-17在原发性胆汁性肝硬化发展中的作用
     目的:
     研究PBC患者外周血单个核细胞(peripheral blood mononuclear cell, PBMC)、肝脏中Th17细胞的水平。分析Th17细胞水平变化的原因,探索Th17细胞/白介素-17(Interleukin-17, IL-17)介导PBC肝纤维化发生的机制。
     对象与方法:
     1.提取PBC患者(35例)、健康对照(35例)和慢性乙型肝炎患者(15例)的PBMC,用流式细胞术分析Th17细胞占CD4+T细胞的水平;免疫组织化学染色比较PBC患者(16例)和健康对照者(4例)肝脏IL-17阳性细胞的水平。
     2.标记CD4、叉头样转录因子3(forkhead box3, Foxp3)、IL-17和干扰素-γ(Interferon-y, IFN-y)荧光标记抗体,分析PBC患者Th17细胞是否存在表型改变;流式细胞术分析调节性T细胞(regulatory T cells, Treg细胞)水平,并用磁珠分选患者(5例)和健康对照者(5例)的Treg细胞,体外培养鉴定其分类转化能力。
     3.流式细胞术分析PBC患者(20例)和健康对照者(20例)CD4+CD161+细胞占CD4+T细胞水平,并用流式细胞仪分选患者(5例)和健康对照组(5例)的CD4+CD161+细胞进行体外培养,CCK8法检测细胞增殖水平,酶联免疫吸附实验(enzyme linked immunosorbent assay, ELISA)检测培养上清IL-17水平;ELISA检测血清IL-23水平。
     4.流式细胞术分析PBC患者(20例)和健康对照者(20例)CD4+CCR6+细胞占CD4+T细胞水平;ELISA检测血清CCL20水平;免疫组化分析肝脏CCL20水平。
     5.培养肝星状细胞(hepatic stellate cell, HSC),以0ng/mL、1ng/mL、5ng/mL、10ng/mL的重组人IL-17和10ng/mL重组人IL-17+1μg/mL兔抗人IL-17进行干预,分别在24、72、144小时用CCK8法测定HSC增殖能力;利用实时荧光定量聚合酶链反应(real-time polymerase chain reaction, real-time PCR)检测α-平滑肌肌动蛋白(smooth muscle actin, SMA)在144小时的表达水平;利用ELISA检测培养上清IL-8在24、72、144小时的分泌水平。
     结果:
     1.PBC患者PBMC中Th17细胞水平高于慢性乙肝患者(1.03±0.22%比0.67±0.20%,P<0.0001),高于健康对照者(1.03±0.22%比0.55±0.20%,P<0.0001);免疫组化染色表明,PBC患者肝脏IL-17阳性细胞多于健康对照者。
     2.PBC患者外周血CD4+IL-17+Foxp3+细胞(0.21±0.13%比0.06±0.04%,P<0.0001)和CD4+IL-17+IFN-γ+细胞(0.39±0.16%和0.14±0.07%,P<0.0001)占CD4+T细胞比例均高于健康对照者;CD4+IL-17+Foxp3+细胞和Th17细胞正相关(r2=0.441,P<0.0001),与Treg细胞无明显相关性;而CD4+IL-17+IFN-γ+细胞与Th17细胞、Th1细胞均无显著相关性;在IL-2、IL-6和TGF-β作用下,PBC患者减少的Treg细胞(2.37±1.24%比3.57±1.57%,P=0.0068)表达IL-17显著增加(4.46±0.60%至6.6±0.5%,P=0.0003),能力高于健康对照者(3.32±0.85%至4.18±1.29%,P=0.2491)。
     3.PBC患者CD4+CD161+细胞占CD4+T细胞比例较正常对照组高(22.24±5.33%比13.89±3.92%,P<0.0001),但CD4+CD161+细胞和Th17细胞比例相关性无统计学意义(P=0.279);在IL-1β和IL-23的刺激下,患者和健康对照者CD4+CD161+细胞增殖率无统计学差异(1.079±0.093%比1.074±0.034%,P=0.9089),但ELISA测定显示PBC患者培养上清IL-17浓度高于健康对照者(45.28±35.73pg/mL比17.03±16.78pg/mL,P=0.0556)。ELISA检测证实患者血清IL-23高于健康对照者(35.8±8.34pg/mL比23.5±5.35pg/mL,P=0.023)。
     4.晚期PBC患者外周血Yh17细胞水平回落(0.93±0.16%比1.09±0.23%,P=0.0351),但仍然高于健康对照者(0.93±0.16%比0.55±0.20%,P<0.0001);相反,与早期患者相比,晚期患者肝脏浸润的IL-17阳性细胞增多。PBC患者CD4+CCR6+细胞占CD4+T细胞与对照组相似(17.69±7.11%比17.62±6.71%,P=0.975),且不受疾病分期影响(17.41±8.03%比18.11±5.98%,P=0.835),但患者血清趋化因子CCL20水平高于正常对照(53.23±38.58pg/mL比23.54±21.95pg/mL,P=0.001),且晚期高于早期(85.88±32.11pg/mL比28.98±13.57pg/mL;P=0.001);免疫组化染色表明,患者肝细胞表达CCL20,健康者肝细胞几乎不表达CCL20,患者汇管区CCL20显著增加。
     5.随重组人IL-17浓度增加,HSC增殖率增加(P<0.001);IL-17可以通过浓度和时间依赖性促进HSC表达IL-8(P<0.001),但α-SMA表达量无明显改变(P=0.0847)。
     结论:
     1.与健康对照者和慢性乙型肝炎患者相比,PBC患者外周血Th17细胞升高,浸润在肝脏的IL-17阳性细胞增多。
     2.在IL-6、IL-2和TGF-β的刺激下,PBC患者Treg细胞发生分类转化,表达IL-17升高。上述机制可能是PBC患者外周血Treg细胞下降、CD4+IL-17+Foxp3+T细胞升高的原因。患者外周血CD4+IL-17+IFN-γ+T细胞也升高,但具体机制不详。
     3.PBC患者外周血Thl7细胞前体细胞(CD4+CD161+T细胞)增多,在升高的炎症因子IL-1β和IL-23的活化下,表达大量IL-17。
     4.PBC患者升高的CCL20趋化外周血升高的Thl7细胞向肝脏浸润,导致晚期患者外周血Th17细胞回落,肝脏IL-17阳性细胞升高。
     5.随IL-17浓度增加,HSC的增殖能力增强。IL-17还可以通过浓度、时间依赖性促进HSC分泌IL-8;IL-17拮抗剂可以抑制上述效应,有望延缓PBC患者肝纤维化的发生。
Part1Clinical profiles and risk factors for hepatic decompensation in patients with primary biliary cirrhosis in China
     Aims:The clinical profiles and prognosis of primary biliary cirrhosis (PBC) have not been well-studied prospectively in China. In the current study, we will examine the clinical features and analyze prognostic factors in a prospective study of a large cohort of PBC patients.
     Methods:From database of our research group, PBC patients without hepatic decompensation were enrolled. The risk factors for hepatic decompensation and survival were assessed by Cox regression and Kaplan-Meier analysis, respectively.
     Results:Two hundred and sixty-two PBC patients were enrolled with a median follow-up of73.5months (range,21-201). Two hundred forty patients (91.6%) were female with an age of51.5±10.2yr at diagnosis. Two hundred and forty-five (93.5%) were seropositive for anti-mitochondrial antibodies (AMA). At presentation,170patients (64.9%) were symptomatic, while96patients had extra-hepatic autoimmune disease. During the follow-up period,62(23.7%) patients developed hepatic decompensation of whom4underwent liver transplantation and17(6.5%) died. One (0.4%) patient died of interstitial lung disease (ILD), while one (0.4%) died of multiple organ failure on account of lymphoma. The cumulative survival rates were96.4%and83.9%at5-year and10-year, respectively. Compared to patients with hepatic free-decompensation, the age, antinuclear antibodies (ANAs) positivity, prevalence of clinical manifestations, anticentromere antibody (ACA) positivity, the levels of aspartate aminotransferase (AST), alanine aminotransferase ratio (AAR), alkaline phosphatase (ALP), y-glutamyl transpeptidase (GGT), total bilirubin (TBil), direct bilirubin (DBil) and IgA were higher at the baseline, while the incidence of good response to ursodeoxycholic acid (UDCA) treatment and early patients, and the levels of albumin (ALB) were lower. Cox regression analysis revealed that incomplete UDCA response or inconsistent treatment (P<0.001; HR95%CI=2.423-7.541), ACA positivity (P<0.001; HR95%CI=2.516-7.137), AAR elevations (P<0.001; HR95%CI=1.357-2.678), level of TBil (P=0.004; HR95%CI=1.002-1.009), and level of ALP (P=0.008; HR95%CI=1.000-1.002) were predictors. Histological advanced liver disease was also a risk factor for hepatic decompensation(P=0.006, HR95%CI=1.481-10.847) as determined by Cox regression analysis.
     Conclusions:
     1. The clinical features and survival of PBC in China were consistent with those described in Western countries. However, the symptomatic patients were more.
     2. Compared to patients with hepatic free-decompensation, the age, ANA and ACA positivity, prevalence of clinical manifestations, the levels of AST, AAR, ALP, GGT, TBil, DBil and IgA were higher at the baseline, while the incidence of good response to UDCA treatment and early patients, and the levels of ALB were lower.
     3. Incomplete UDCA response or inconsistent treatment, ACA positivity, AAR elevations, ALP elevations, TBil elevations, and advanced histological stage were independent predictors of hepatic decompensation.
     Part2The role of T help17cells and interleukin-17in PBC
     Aims:To investigate the levels, subsets, and distrubition of Th17cells in peripheral blood mononuclear cells (PBMCs), and interleukin-17(IL-17)-positive cells in liver in patients with PBC and healthy controls (HC). We will explore the reasons why Th17cells elevated, and the role of IL-17in PBC fibrosis.
     Methods:
     1. We used flow cytometry to compare the percentage of circulating CD4+IL-17+cells between patients and HC. IL-17-positive cells that infiltrated the liver were examined by immunohistochemistry.
     2. We used flow cytometry to compare the percentage of circulating CD4+IL-17+Foxp3+cells, CD4+IL-17+IFN-γ+cells, and Treg cells between patients and HC. Treg cells were cultured with IL-2, IL-6, and TGF-β for seven days, and the expressions of IL-17in these cells were measured by flow cytometry.
     3. We used flow cytometry to compare the percentage of circulating CD4+CD161+cells between PBC patients and HC. IL-17expressions from stimulated CD4+CD161+cells were determined by enzyme linked immunosorbent assay (ELISA). The capcitity of proliferation of CD4+CD161+cells was indenified by cell counting kit8(CCK8). And serum IL-23levels were measured by ELISA.
     4. We used flow cytometry to compare the percentage of circulating CD4+CCR6+cells between PBC patients and HC. Serum CCL20levels were measured by ELISA, and CCL20levels in liver were examined by immunohistochemistry.
     5. Hepatic stellate cells (HSCs) were cultured with0ng/mL,1ng/mL,5ng/mL and10ng/mL IL-17. The capcitity of proliferation of HSCs was indenified by CCK8at24,72h and144h, respectively. The expressions of a-smooth muscle actin (SMA) were determined by real-time polymerase chain reaction (PCR) at144h. The levels of IL-8in culture supernatant were measured by ELISA at24,72h and144h, respectively.1μg/mL anti-IL-17were added to culture medium to neutralize above reactions.
     Results:
     1. Circulating Th17cells were elevated in PBC patients compared to HCs (1.03± 0.22%and0.55±0.20%, P<0.0001), and higher than those in chronic hepatic B (1.03±0.22%and0.67±0.20%, P<0.0001). IL-17-positive cells that infiltrated the liver were higher in PBC patients compared to HCs.
     2. Circulating CD4+IL-17+IFN-y+cells (0.39±0.16%and0.14±0.07%, P<0.0001), and CD4+IL-17+Foxp3+cells (0.21±0.13%and0.06±0.04%, P<0.0001) were all increased in PBC patients. The percentage of CD4+IL-17+Foxp3+cells were positively related with Th17cells (r2=0.441, P<0.0001); however, the relationship between CD4+IL-17+Foxp3+cells and Treg cells was not statistically significant. Treg cells can produced more IL-17after stimulation with IL-2, IL-6and TGF-β in PBC patients compared to HCs (4.46±0.60%to6.6±0.5%, P=0.0003in PBC;3.32±0.85%to4.18±1.29%, P=0.2491in HCs). What's more, we found the percentage of circulating Treg cells were decreased in patients (2.37±1.24%and3.57±1.57%, P=0.0068). The relationship between CD4+IL-17+IFN-γ+cells and Thl or Th17cells was not statistically significant.
     3. After stimulation with IL-23and IL-1β, the increased progenitor of Th17cells, CD4+CD161+cells from PBC patients (22.24±5.33%and13.89±3.92%, P<0.0001) expressed more IL-17(45.28±35.73pg/mL and17.03±16.78pg/mL, P=0.0556). The relationship between CD4+CD161+cells and Th17cells was not statistically significant (P=0.279). The capcitities of proliferation of CD4+CD161+cells were similar in PBC and HCs (1.079±0.093%and1.074±0.034%, P=0.9089) after stimulation with IL-23and IL-1β. Accordingly, the levels of serum IL-1β and IL-23(35.8±8.34pg/mL and23.5±5.35pg/mL, P=0.023) were increased in PBC patients.
     4. Early PBC presented with more Th17cells in periphery blood (1.09±0.23%and0.93±0.16%, P=0.0351) than advanced patients. In contrast, IL-17was higher in the liver in advanced PBC patients. Accordingly, the levels of serum CCL20were higher in PBC patients (53.23±38.58pg/mL and23.54±21.95pg/mL, P=0.001), especially in advanced disease (85.88±32.11pg/mL and28.98±13.57pg/mL, P=0.001). More importantly, the levels of CCL20were more obvious in liver in PBC, especially around portal area. Whereas, the percentages of CD4+CCR6+cells were not statistically significant different between PBC patients and HCs (17.69±7.11%and17.62±6.71%, P=0.975).
     5. IL-17can promote capcitity of proliferation of HSCs in a dose dependent way (P <0.001). And IL-17can also increase the IL-8expression of HSCs in both a dose and a time dependent way (P<0.001). However, the production of a-SMA may not be influenced by IL-17(P=0.0847). Anti-IL-17neutralizes above reactions.
     Conclusions:
     1. Compared to HCs and chronic hepatic B, the levels of circulating Th17cells and IL-17-positive cells infiltrated liver are higher in PBC patients.
     2. Proimflammatory cytokines-stimulated Treg cells can secrete more IL-17in PBC patients, resulting in decreased Treg cells and increased CD4+IL-17+Foxp3+cells.
     3. Increased CD4+CD161+cells produce more IL-17after stimulation with IL-1β and IL-23in PBC patients. Therefore, CD4+CD161+cells are a source of increased Th17cells in PBC.
     4. The increased Th17population is greater in circulation and less in liver in early PBC patients. With disease progression, enhanced serum and hepatic CCL20induce IL-17-expressing cells to migrate to liver. Therefore, Th17cells are lower in circulation and enhance in liver in advanced patients.
     5. IL-17can promote capcitity of proliferation of HSCs in a dose dependent way, and increase the IL-8expression of HSCs in both a dose and a time dependent way. Therefore, anti-IL-17is a promosing therapy for PBC fibrosis.
引文
[1]. Kaplan, M.M. and M.E. Gershwin, Primary biliary cirrhosis. N Engl J Med, 2005.353(12):p.1261-73.
    [2]. Lazaridis, K.N. and J.A. Talwalkar, Clinical epidemiology of primary biliary cirrhosis:incidence, prevalence, and impact of therapy. J Clin Gastroenterol,2007.41(5): p.494-500.
    [3]. Prince, M.I. and O.F. James, The epidemiology of primary biliary cirrhosis. Clin Liver Dis,2003.7(4):p.795-819.
    [4]. Ishibashi, H., et al., Risk factors and prediction of long-term outcome in primary biliary cirrhosis. Intern Med,2011.50(1):p.1-10.
    [5]. Mitchison, H.C., et al., Positive antimitochondrial antibody but normal alkaline phosphatase:is this primary biliary cirrhosis? Hepatology,1986.6(6):p.1279-84.
    [6]. Metcalf, J.V., et al., Natural history of early primary biliary cirrhosis. Lancet, 1996.348(9039):p.1399-402.
    [7]. Takeshita, E., et al., Esophagogastric varices as a prognostic factor for the determination of clinical stage in patients with primary biliary cirrhosis. J Gastroenterol, 2003.38(11):p.1060-5.
    [8]. Prince, M., et al., Survival and symptom progression in a geographically based cohort of patients with primary biliary cirrhosis:follow-up for up to 28 years. Gastroenterology,2002.123(4):p.1044-51.
    [9]. Springer, J., et al., Asymptomatic primary biliary cirrhosis:a study of its natural history and prognosis. Am J Gastroenterol,1999.94(1):p.47-53.
    [10]. Kuiper, E.M., et al., Improved prognosis of patients with primary biliary cirrhosis that have a biochemical response to ursodeoxycholic acid. Gastroenterology, 2009.136(4):p.1281-7.
    [11]. Corpechot, C., et al., Biochemical response to ursodeoxycholic acid and long-term prognosis in primary biliary cirrhosis. Hepatology,2008.48(3):p.871-7.
    [12]. Jorgensen, R., et al., Results of long-term ursodiol treatment for patients with primary biliary cirrhosis. Am J Gastroenterol,2002.97(10):p.2647-50.
    [13]. Corpechot, C., et al., The effect of ursodeoxycholic acid therapy on the natural course of primary biliary cirrhosis. Gastroenterology,2005.128(2):p.297-303.
    [14]. ter Borg, P.C., et al., Prognosis of ursodeoxycholic Acid-treated patients with primary biliary cirrhosis. Results of a 10-yr cohort study involving 297 patients. Am J Gastroenterol,2006.101(9):p.2044-50.
    [15]. Pares, A., L. Caballeria and J. Rodes, Excellent long-term survival in patients with primary biliary cirrhosis and biochemical response to ursodeoxycholic Acid. Gastroenterology,2006.130(3):p.715-20.
    [16]. Grambsch, P.M., et al., Application of the Mayo primary biliary cirrhosis survival model to Mayo liver transplant patients. Mayo Clin Proc,1989.64(6):p. 699-704.
    [17]. Dickson, E.R., et al., Prognosis in primary biliary cirrhosis:model for decision making. Hepatology,1989.10(1):p.1-7.
    [18]. Mayo, M.J., et al., Prediction of clinical outcomes in primary biliary cirrhosis by serum enhanced liver fibrosis assay. Hepatology,2008.48(5):p.1549-57.
    [19]. Nakamura, M., et al., Increased expression of nuclear envelope gp210 antigen in small bile ducts in primary biliary cirrhosis. J Autoimmun,2006.26(2):p.138-45.
    [20]. Muratori, P., et al.. Characterization and clinical impact of antinuclear antibodies in primary biliary cirrhosis. Am J Gastroenterol,2003.98(2):p.431-7.
    [21]. Nakamura, M., et al., Anti-gp210 and anti-centromere antibodies are different risk factors for the progression of primary biliary cirrhosis. Hepatology,2007.45(1):p. 118-27.
    [22]. Corpechot, C., et al., Primary biliary cirrhosis:incidence and predictive factors of cirrhosis development in ursodiol-treated patients. Gastroenterology,2002.122(3):p. 652-8.
    [23]. Miyachi, K., et al., Profile and clinical significance of anti-nuclear envelope antibodies found in patients with primary biliary cirrhosis:a multicenter study. J Autoimmun,2003.20(3):p.247-54.
    [24]. Wesierska-Gadek, J., et al., Correlation of initial autoantibody profile and clinical outcome in primary biliary cirrhosis. Hepatology,2006.43(5):p.1135-44.
    [25]. Itoh, S., et al., Autoantibodies against a 210 kDa glycoprotein of the nuclear pore complex as a prognostic marker in patients with primary biliary cirrhosis. J Gastroenterol Hepatol,1998.13(3):p.257-65.
    [26]. Poupon, R., et al., Genetic factors of susceptibility and of severity in primary biliary cirrhosis. J Hepatol,2008.49(6):p.1038-45.
    [27]. Banales, J.M., et al., Bicarbonate-rich choleresis induced by secretin in normal rat is taurocholate-dependent and involves AE2 anion exchanger. Hepatology,2006. 43(2):p.266-75.
    [28]. Nakamura, M., et al., Analysis of HLA-DRB1 polymorphisms in Japanese patients with primary biliary cirrhosis (PBC):The HLA-DRB1 polymorphism determines the relative risk of antinuclear antibodies for disease progression in PBC. Hepatol Res, 2010.40(5):p.494-504.
    [29]. Su, C.W., et al., Natural history and prognostic factors of primary biliary cirrhosis in Taiwan:a follow-up study up to 18 years. Liver Int,2008.28(9):p. 1305-13.
    [30]. Zhao, D.T., et al., Prognostic factors and survival analysis of antimitochondrial antibody-positive primary biliary cirrhosis in Chinese patients. Dig Dis Sci,2011.56(9): p.2750-7.
    [31]. Gao, L., et al., The value of antinuclear antibodies in primary biliary cirrhosis. Clin Exp Med,2008.8(1):p.9-15.
    [32].潘盈等,原发性胆汁性肝硬化自身抗体特征及其对药物治疗的反应.中华临床免疫和变态反应杂志,2009.3(03).
    [33]. 徐东与张奉春,原发性胆汁性肝硬化与抗gp210抗sp100抗体相关性的研究.中华风湿病学杂志,2008.12(8):第540-542页.
    [34]. Lindor, K.D., et al., Primary biliary cirrhosis. Hepatology,2009.50(1):p. 291-308.
    [35]. Czaja, A.J. and D.K. Freese, Diagnosis and treatment of autoimmune hepatitis. Hepatology,2002.36(2):p.479-97.
    [36]. Silveira, M.G. and K.D. Lindor, Primary sclerosing cholangitis. Can J Gastroenterol,2008.22(8):p.689-98.
    [37]. Joshi, S., et al., Primary biliary cirrhosis with additional features of autoimmune hepatitis:response to therapy with ursodeoxycholic acid. Hepatology,2002.35(2):p. 409-13.
    [38]. Murray-Lyon, I.M., et al., Treatment of bleeding oesophageal varices by infusion of vasopressin into the superior mesenteric artery. Gut,1973.14(1):p.59-63.
    [39]. Ludwig, J., E.R. Dickson and G.S. McDonald, Staging of chronic nonsuppurative destructive cholangitis (syndrome of primary biliary cirrhosis). Virchows Arch A Pathol Anat Histol,1978.379(2):p.103-12.
    [40]. Farrell, G.C., Primary biliary cirrhosis in Asians:less common than in Europeans, but just as depressing. J Gastroenterol Hepatol,2008.23(4):p.508-11.
    [41]. Liu, H., et al., Prevalence of primary biliary cirrhosis in adults referring hospital for annual health check-up in Southern China. BMC Gastroenterol,2010.10:p.100.
    [42]. Poupon, R., Primary biliary cirrhosis:a 2010 update. J Hepatol,2010.52(5):p. 745-58.
    [43]. Vleggaar, F.P., et al., Jaundice in non-cirrhotic primary biliary cirrhosis:the premature ductopenic variant. Gut,2001.49(2):p.276-81.
    [44]. Hohenester, S., R.P. Oude-Elferink and U. Beuers, Primary biliary cirrhosis. Semin Immunopathol,2009.31(3):p.283-307.
    [45]. Liu, B., et al., Interstitial lung disease and Sjogren's syndrome in primary biliary cirrhosis:a causal or casual association? Clin Rheumatol,2008.27(10):p.1299-306.
    [46]. Shen, M., F. Zhang and X. Zhang, Primary biliary cirrhosis complicated with interstitial lung disease:a prospective study in 178 patients. J Clin Gastroenterol,2009. 43(7):p.676-9.
    [47].王立,高丽霞与张奉春,多发性肌炎合并原发性胆汁性肝硬化十例临床分析.中华风湿病学杂志,2011.15(03).
    [48]. Silveira, M.G., et al., Thyroid dysfunction in primary biliary cirrhosis, primary sclerosing cholangitis and non-alcoholic fatty liver disease. Liver Int,2009.29(7):p. 1094-100.
    [49]. Prince, M., et al., Survival and symptom progression in a geographically based cohort of patients with primary biliary cirrhosis:follow-up for up to 28 years. Gastroenterology,2002.123(4):p.1044-51.
    [50]. Selmi, C., et al., Primary biliary cirrhosis. Lancet,2011.377(9777):p.1600-9.
    [51]. Milkiewicz, P. and E.J. Heathcote, Fatigue in chronic cholestasis. Gut,2004. 53(4):p.475-7.
    [52]. Al-Harthy, N., et al., The specificity of fatigue in primary biliary cirrhosis: evaluation of a large clinic practice. Hepatology,2010.52(2):p.562-70.
    [53]. Zein, C.O. and A.J. McCullough, Association between fatigue and decreased survival in primary biliary cirrhosis. Gut,2007.56(8):p.1165-6; author reply 1166.
    [54]. Poupon, R., Primary biliary cirrhosis:a 2010 update. J Hepatol,2010.52(5):p. 745-58.
    [55]. Mahl, T.C., W. Shockcor and J.L. Boyer, Primary biliary cirrhosis:survival of a large cohort of symptomatic and asymptomatic patients followed for 24 years. J Hepatol, 1994.20(6):p.707-13.
    [56]. Springer, J., et al., Asymptomatic primary biliary cirrhosis:a study of its natural history and prognosis. Am J Gastroenterol,1999.94(1):p.47-53.
    [57]. Floreani, A., et al., A 35-year follow-up of a large cohort of patients with primary biliary cirrhosis seen at a single centre. Liver Int,2011.31(3):p.361-8.
    [58]. Baldursdottir, T.R., et al., The epidemiology and natural history of primary biliary cirrhosis:a nationwide population-based study. Eur J Gastroenterol Hepatol,2012. 24(7):p.824-30.
    [59]. Ngu, J.H., et al., Mortality and the risk of malignancy in autoimmune liver diseases:a population-based study in Canterbury, New Zealand. Hepatology,2012.55(2): p.522-9.
    [60]. Myers, R.P., et al., Epidemiology and natural history of primary biliary cirrhosis in a Canadian health region:a population-based study. Hepatology,2009.50(6):p. 1884-92.
    [61]. Liang, Y., Z. Yang and R. Zhong, Primary biliary cirrhosis and cancer risk:a systematic review and meta-analysis. Hepatology,2012.56(4):p.1409-17.
    [62]. Angulo, P., et al., Long-term ursodeoxycholic acid delays histological progression in primary biliary cirrhosis. Hepatology,1999.29(3):p.644-7.
    [63]. Poupon, R.E., et al., Combined analysis of the effect of treatment with ursodeoxycholic acid on histologic progression in primary biliary cirrhosis. J Hepatol, 2003.39(1):p.12-6.
    [64]. Zhu, J., et al., Observation on therapeutic efficacy of ursodeoxycholic acid in Chinese patients with primary biliary cirrhosis:a 2-year follow-up study. Front Med, 2012.
    [65]. 李洁,高丽霞与张奉春,原发性胆汁性肝硬化停用熊去氧胆酸治疗的前瞻性研究.中华风湿病学杂志,2009.13(08).
    [66]. Miyawaki, S., et al., Clinical and serological heterogeneity in patients with anticentromere antibodies. J Rheumatol,2005.32(8):p.1488-94.
    [67]. Salliot, C., et al., Anticentromere antibodies identify patients with Sjogren's syndrome and autoimmune overlap syndrome. J Rheumatol,2007.34(11):p.2253-8.
    [68]. Hossny, E., H.A. Hady and R. Mabrouk, Anti-centromere antibodies as a marker of Raynaud's phenomenon in pediatric rheumatologic diseases. Pediatr Allergy Immunol, 2000.11(4):p.250-5.
    [69]. Takada, K., et al., Clinical characteristics of patients with both anti-U1RNP and anti-centromere antibodies. Scand J Rheumatol,2008.37(5):p.360-4.
    [70]. Agmon-Levin, N., et al., A comprehensive evaluation of serum autoantibodies in primary biliary cirrhosis. J Autoimmun,2010.34(1):p.55-8.
    [71]. Muratori, P., et al., Characterization and clinical impact of antinuclear antibodies in primary biliary cirrhosis. Am J Gastroenterol,2003.98(2):p.431-7.
    [72]. Granito, A., et al., Antibodies to SS-A/Ro-52kD and centromere in autoimmune liver disease:a clue to diagnosis and prognosis of primary biliary cirrhosis. Aliment Pharmacol Ther,2007.26(6):p.831-8.
    [73]. Yang, W.H., et al., Do antinuclear antibodies in primary biliary cirrhosis patients identify increased risk for liver failure? Clin Gastroenterol Hepatol,2004.2(12): p.1116-22.
    [74]. Rigamonti, C., et al., Clinical features and prognosis of primary biliary cirrhosis associated with systemic sclerosis. Gut,2006.55(3):p.388-94.
    [75]. Rigamonti, C., et al., Clinical features and prognosis of primary biliary cirrhosis associated with systemic sclerosis. Gut,2006.55(3):p.388-94.
    [76]. Parveen, S., S.A. Morshed and M. Nishioka, High prevalence of antibodies to recombinant CENP-B in primary biliary cirrhosis:nuclear immunofluorescence patterns and ELISA reactivities. J Gastroenterol Hepatol,1995.10(4):p.438-45.
    [77]. Okuda, M., et al., Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein. Gastroenterology,2002.122(2): p.366-75.
    [78]. Corpechot, C., et al., Biochemical markers of liver fibrosis and lymphocytic piecemeal necrosis in UDCA-treated patients with primary biliary cirrhosis. Liver Int, 2004.24(3):p.187-93.
    [79]. Su, C.W., et al., Predictive value of aspartate aminotransferase to alanine aminotransferase ratio for hepatic fibrosis and clinical adverse outcomes in patients with primary biliary cirrhosis. J Clin Gastroenterol,2009.43(9):p.876-83.
    [80]. Dickson, E.R., et al., Prognosis in primary biliary cirrhosis:model for decision making. Hepatology,1989.10(1):p.1-7.
    [81]. Momah, N., et al., Optimizing biochemical markers as endpoints for clinical trials in primary biliary cirrhosis. Liver Int,2012.32(5):p.790-5.
    [82]. Kumagi, T., et al., Baseline ductopenia and treatment response predict long-term histological progression in primary biliary cirrhosis. Am J Gastroenterol,2010.105(10): p.2186-94.
    [83]. 张欣等,原发性胆汁性肝硬化的临床与肝脏病理相关性研究.中华风湿病学杂志,2011.15(02).
    [84]. 王立等,影响难治型原发性胆汁性肝硬化疗效的因素分析.中华医学杂志,2012.92(41).
    [85]. Drebber, U., et al., Liver biopsy in primary biliary cirrhosis:clinicopathological data and stage. Pathol Int,2009.59(8):p.546-54.
    [86]. 史旭华,原发性胆汁性肝硬化的临床与基础研究及对治疗的反应.2006.
    [87]. Roll, J., et al., The prognostic importance of clinical and histologic features in asymptomatic and symptomatic primary biliary cirrhosis. N Engl J Med,1983.308(1):p. 1-7.
    [88]. Garrido, M.C. and S.G. Hubscher, Accuracy of staging in primary biliary cirrhosis. J Clin Pathol,1996.49(7):p.556-9.
    [89]. Gershwin, M.E. and I.R. Mackay, The causes of primary biliary cirrhosis: Convenient and inconvenient truths. Hepatology,2008.47(2):p.737-45.
    [90]. Doniach, D., et al., Tissue antibodies in primary biliary cirrhosis, active chronic (lupoid) hepatitis, cryptogenic cirrhosis and other liver diseases and their clinical implications. Clin Exp Immunol,1966.1(3):p.237-62.
    [91]. Bizzaro, N., et al., Overcoming a "probable" diagnosis in antimitochondrial antibody negative primary biliary cirrhosis:study of 100 sera and review of the literature. Clin Rev Allergy Immunol,2012.42(3):p.288-97.
    [92]. Oertelt, S., et al., A sensitive bead assay for antimitochondrial antibodies: Chipping away at AMA-negative primary biliary cirrhosis. Hepatology,2007.45(3):p. 659-65.
    [93]. Selmi, C., et al., Infectious agents and xenobiotics in the etiology of primary biliary cirrhosis. Dis Markers,2010.29(6):p.287-99.
    [94]. Dubel, L., et al., Kinetics of anti-M2 antibodies after liver transplantation for primary biliary cirrhosis. J Hepatol,1995.23(6):p.674-80.
    [95]. Benson, G.D., et al., Serial analysis of antimitochondrial antibody in patients with primary biliary cirrhosis. Clin Dev Immunol,2004.11(2):p.129-33.
    [96]. Zhang, W., et al., Beta-glucosylceramide ameliorates liver inflammation in murine autoimmune cholangitis. Clin Exp Immunol,2009.157(3):p.359-64.
    [97]. Vleggaar, F.P. and H.R. van Buuren, No prognostic significance of antimitochondrial antibody profile testing in primary biliary cirrhosis. Hepatogastroenterology,2004.51(58):p.937-40.
    [98]. Liu, B., et al., Antimitochondrial antibody-negative primary biliary cirrhosis:a subset of primary biliary cirrhosis. Liver Int,2008.28(2):p.233-9.
    [99]. Hirschfield, G.M. and E.J. Heathcote, Antimitochondrial antibody-negative primary biliary cirrhosis. Clin Liver Dis,2008.12(2):p.323-31; viii-ix.
    [100]. Lleo, A., et al., Apotopes and the biliary specificity of primary biliary cirrhosis. Hepatology,2009.49(3):p.871-9.
    [101]. Lleo, A., et al., Biliary apotopes and anti-mitochondrial antibodies activate innate immune responses in primary biliary cirrhosis. Hepatology,2010.52(3):p. 987-98.
    [102]. Kikuchi, K., et al., Ursodeoxycholic acid reduces CpG-induced IgM production in patients with primary biliary cirrhosis. Hepatol Res,2009.39(5):p.448-54.
    [103]. Migita, K., et al., Serum BAFF and APRIL levels in patients with PBC. Clin Immunol,2010.134(2):p.217-25.
    [104]. Jin, Q., et al., Comparative analysis of portal cell infiltrates in antimitochondrial autoantibody-positive versus antimitochondrial autoantibody-negative primary biliary cirrhosis. Hepatology,2012.55(5):p.1495-506.
    [105]. Tsuda, M., et al., Biochemical and immunologic effects of rituximab in patients with primary biliary cirrhosis and an incomplete response to ursodeoxycholic acid. Hepatology,2012.55(2):p.512-21.
    [106]. Moritoki, Y., et al., B cells promote hepatic inflammation, biliary cyst formation, and salivary gland inflammation in the NOD.c3c4 model of autoimmune cholangitis. Cell Immunol,2011.268(1):p.16-23.
    [107]. Moritoki, Y., et al., B-cell depletion with anti-CD20 ameliorates autoimmune cholangitis but exacerbates colitis in transforming growth factor-beta receptor II dominant negative mice. Hepatology,2009.50(6):p.1893-903.
    [108]. Dhirapong, A., et al., B cell depletion therapy exacerbates murine primary biliary cirrhosis. Hepatology,2011.53(2):p.527-35.
    [109]. Moritoki, Y., et al., B cells suppress the inflammatory response in a mouse model of primary biliary cirrhosis. Gastroenterology,2009.136(3):p.1037-47.
    [110]. Shimoda, S., et al., CD4 T-cell autoreactivity to the mitochondrial autoantigen PDC-E2 in AMA-negative primary biliary cirrhosis. J Autoimmun,2008.31(2):p. 110-5.
    [111]. Harada, K. and Y. Nakanuma, Molecular mechanisms of cholangiopathy in primary biliary cirrhosis. Med Mol Morphol,2006.39(2):p.55-61.
    [112]. Harada, K., et al., Type1 and type2 memory T cells imbalance shown by expression of intrahepatic chemokine receptors relates to pathogenesis of primary biliary cirrhosis. Hepatol Res,2002.24(3):p.290.
    [113]. Tang, M., X.H. Shi and F.C. Zhang, [The characteristics of peripheral lymphocytic subsets and cytokines in primary biliary and their changes to drug treatment.]. Zhonghua Nei Ke Za Zhi,2010.49(2):p.129-33.
    [114]. Irie, J., et al., NOD.c3c4 congenic mice develop autoimmune biliary disease that serologically and pathogenetically models human primary biliary cirrhosis. J Exp Med, 2006.203(5):p.1209-19.
    [115]. Lan, R.Y., et al., Liver-targeted and peripheral blood alterations of regulatory T cells in primary biliary cirrhosis. Hepatology,2006.43(4):p.729-37.
    [116]. Wang, D., et al., CD4+ CD25+ but not CD4+ Foxp3+ T cells as a regulatory subset in primary biliary cirrhosis. Cell Mol Immunol,2010.7(6):p.485-90.
    [117]. Bochtler, P., et al., Local accumulation and activation of regulatory Foxp3+ CD4 T(R) cells accompanies the appearance of activated CD8 T cells in the liver. Hepatology,2008.48(6):p.1954-63.
    [118]. 刘斌,原发性胆汁性肝硬化发病机制研究及药物治疗探索.2008.
    [119]. Zhang, W., et al., Deficiency in regulatory T cells results in development of antimitochondrial antibodies and autoimmune cholangitis. Hepatology,2009.49(2):p. 545-52.
    [120]. Wakabayashi, K., et al., IL-2 receptor alpha(-/-) mice and the development of primary biliary cirrhosis. Hepatology,2006.44(5):p.1240-9.
    [121]. Oertelt, S., et al., Anti-mitochondrial antibodies and primary biliary cirrhosis in TGF-beta receptor II dominant-negative mice. J Immunol,2006.177(3):p.1655-60.
    [122]. Bernuzzi, F., et al., Phenotypical and functional alterations of CD8 regulatory T cells in primary biliary cirrhosis. J Autoimmun,2010.35(3):p.176-80.
    [123]. Tsuda, M., et al., Fine phenotypic and functional characterization of effector cluster of differentiation 8 positive T cells in human patients with primary biliary cirrhosis. Hepatology,2011.54(4):p.1293-302.
    [124]. Yang, G.X., et al., CD8 T cells mediate direct biliary ductule damage in nonobese diabetic autoimmune biliary disease. J Immunol,2011.186(2):p.1259-67.
    [125]. Yang, G.X., et al., Adoptive transfer of CD8(+) T cells from transforming growth factor beta receptor type Ⅱ(dominant negative form) induces autoimmune cholangitis in mice. Hepatology,2008.47(6):p.1974-82.
    [126]. Hsu, W., et al., Differential mechanisms in the pathogenesis of autoimmune cholangitis versus inflammatory bowel disease in interleukin-2Ralpha(-/-) mice. Hepatology,2009.49(1):p.133-40.
    [127]. Mao, T.K., et al., Altered monocyte responses to defined TLR ligands in patients with primary biliary cirrhosis. Hepatology,2005.42(4):p.802-8.
    [128]. Nakamura, M., et al., Increased expression of Toll-like receptor 3 in intrahepatic biliary epithelial cells at sites of ductular reaction in diseased livers. Hepatol Int,2008. 2(2):p.222-30.
    [129]. Zhao, J., et al., Altered biliary epithelial cell and monocyte responses to lipopolysaccharide as a TLR ligand in patients with primary biliary cirrhosis. Scand J Gastroenterol,2011.46(4):p.485-94.
    [130]. Wang, A.P., et al., Hepatic expression of toll-like receptor 4 in primary biliary cirrhosis. J Autoimmun,2005.25(1):p.85-91.
    [131]. Honda, Y., et al., Altered expression of TLR homolog RP105 on monocytes hypersensitive to LPS in patients with primary biliary cirrhosis. J Hepatol,2007.47(3):p. 404-11.
    [132]. Moritoki, Y., et al., AMA production in primary biliary cirrhosis is promoted by the TLR9 ligand CpG and suppressed by potassium channel blockers. Hepatology,2007. 45(2):p.314-22.
    [133]. Aoyama, T., Y.H. Paik and E. Seki, Toll-like receptor signaling and liver fibrosis. Gastroenterol Res Pract,2010.2010.
    [134]. Kita, H., et al., Quantitation and phenotypic analysis of natural killer T cells in primary biliary cirrhosis using a human CD Id tetramer. Gastroenterology,2002.123(4): p.1031-43.
    [135]. Chuang, Y.H., et al., Natural killer T cells exacerbate liver injury in a transforming growth factor beta receptor II dominant-negative mouse model of primary biliary cirrhosis. Hepatology,2008.47(2):p.571-80.
    [136]. Eberl, G. and H.R. MacDonald, Selective induction of NK cell proliferation and cytotoxicity by activated NKT cells. Eur J Immunol,2000.30(4):p.985-92.
    [137]. Wu, S.J., et al., Innate immunity and primary biliary cirrhosis:activated invariant natural killer T cells exacerbate murine autoimmune cholangitis and fibrosis. Hepatology,2011.53(3):p.915-25.
    [138]. Chuang, Y.H., et al., Increased killing activity and decreased cytokine production in NK cells in patients with primary biliary cirrhosis. J Autoimmun,2006. 26(4):p.232-40.
    [139]. Shimoda, S., et al., Interaction between Toll-like receptors and natural killer cells in the destruction of bile ducts in primary biliary cirrhosis. Hepatology,2011.53(4): p.1270-81.
    [140]. Shimoda, S., et al., The role of natural killer (NK) and NK T cells in the loss of tolerance in murine primary biliary cirrhosis. Clin Exp Immunol,2012.168(3):p. 279-84.
    [141]. Harrington, L.E., et al., Interleukin 17-producing CD4+effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol,2005.6(11): p.1123-32.
    [142]. Miossec, P., T. Korn and V.K. Kuchroo, Interleukin-17 and type 17 helper T cells. N Engl J Med,2009.361(9):p.888-98.
    [143]. Aujla, S.J., et al., IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. Nat Med,2008.14(3):p.275-81.
    [144]. Yang, J., et al., Th17 and natural Treg cell population dynamics in systemic lupus erythematosus. Arthritis Rheum,2009.60(5):p.1472-83.
    [145]. Gaffen, S.L., The role of interleukin-17 in the pathogenesis of rheumatoid arthritis. Curr Rheumatol Rep,2009.11(5):p.365-70.
    [146]. Fenoglio, D., et al., Alteration of Th17 and Treg cell subpopulations co-exist in patients affected with systemic sclerosis. Clin Immunol,2011.139(3):p.249-57.
    [147]. Zhao, L., et al., Interleukin-17 contributes to the pathogenesis of autoimmune hepatitis through inducing hepatic interleukin-6 expression. PLoS One,2011.6(4):p. e18909.
    [148]. Rong, G., et al., Imbalance between T helper type 17 and T regulatory cells in patients with primary biliary cirrhosis:the serum cytokine profile and peripheral cell population. Clin Exp Immunol,2009.156(2):p.217-25.
    [149]. Harada, K., et al., Periductal interleukin-17 production in association with biliary innate immunity contributes to the pathogenesis of cholangiopathy in primary biliary cirrhosis. Clin Exp Immunol,2009.157(2):p.261-70.
    [150]. Lan, R.Y., et al., Hepatic IL-17 responses in human and murine primary biliary cirrhosis. J Autoimmun,2009.32(1):p.43-51.
    [151]. Annunziato, F., et al., Phenotypic and functional features of human Th17 cells. J Exp Med,2007.204(8):p.1849-61.
    [152]. Cosmi, L., et al., Identification of a novel subset of human circulating memory CD4(+) T cells that produce both IL-17A and IL-4. J Allergy Clin Immunol,2010. 125(1):p.222-30.e1-4.
    [153]. Wang, Y.H., et al., A novel subset of CD4(+) T(H)2 memory/effector cells that produce inflammatory IL-17 cytokine and promote the exacerbation of chronic allergic asthma. J Exp Med,2010.207(11):p.2479-91.
    [154]. Hirota, K., et al., Fate mapping of IL-17-producing T cells in inflammatory responses. Nat Immunol,2011.12(3):p.255-63.
    [155]. Lexberg, M.H., et al., IFN-gamma and IL-12 synergize to convert in vivo generated Th17 into Thl/Th17 cells. Eur J Immunol,2010.40(11):p.3017-27.
    [156]. Deknuydt, F., et al., IL-1beta and IL-2 convert human Treg into T(H)17 cells. Clin Immunol,2009.131(2):p.298-307.
    [157]. Koenen, H.J., et al., Human CD25highFoxp3pos regulatory T cells differentiate into IL-17-producing cells. Blood,2008.112(6):p.2340-52.
    [158]. Ayyoub, M., et al., Human memory FOXP3+ Tregs secrete IL-17 ex vivo and constitutively express the T(H)17 lineage-specific transcription factor RORgamma t. Proc Natl Acad Sci U S A,2009.106(21):p.8635-40.
    [159]. Radhakrishnan, S., et al., Reprogrammed FoxP3+ T regulatory cells become IL-17+ antigen-specific autoimmune effectors in vitro and in vivo. J Immunol,2008. 181(5):p.3137-47.
    [160]. Xu, L., et al., Cutting edge:regulatory T cells induce CD4+CD25-Foxp3-T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-beta. J Immunol,2007.178(11):p.6725-9.
    [161]. Hoechst, B., et al., Plasticity of human Th17 cells and iTregs is orchestrated by different subsets of myeloid cells. Blood,2011.117(24):p.6532-41.
    [162]. Cortez, D.M., et al., IL-17 stimulates MMP-1 expression in primary human cardiac fibroblasts via p38 MAPK-and ERK1/2-dependent C/EBP-beta, NF-kappaB, and AP-1 activation. Am J Physiol Heart Circ Physiol,2007.293(6):p. H3356-65.
    [163]. Feng, W., et al., IL-17 induces myocardial fibrosis and enhances RANKL/OPG and MMP/TIMP signaling in isoproterenol-induced heart failure. Exp Mol Pathol,2009. 87(3):p.212-8.
    [164]. Gasse, P., et al., IL-1 and IL-23 mediate early IL-17A production in pulmonary inflammation leading to late fibrosis. PLoS One,2011.6(8):p. e23185.
    [165]. Wilson, M.S., et al., Bleomycin and IL-1 beta-mediated pulmonary fibrosis is IL-17A dependent. J Exp Med,2010.207(3):p.535-52.
    [166]. Lemmers, A., et al., The interleukin-17 pathway is involved in human alcoholic liver disease. Hepatology,2009.49(2):p.646-57.
    [167]. Yan, S., et al., Critical role of interleukin-17/interleukin-17 receptor axis in mediating Con A-induced hepatitis. Immunol Cell Biol,2012.90(4):p.421-8.
    [168]. Friedman, S.L., Evolving challenges in hepatic fibrosis. Nat Rev Gastroenterol Hepatol,2010.7(8):p.425-36.
    [169]. Kisseleva, T. and D.A. Brenner, Hepatic stellate cells and the reversal of fibrosis. J Gastroenterol Hepatol,2006.21 Suppl 3:p. S84-7.
    [170]. 王立,异基因骨髓间充质干细胞移植治疗难治型原发性胆汁性肝硬化的研究.2011.
    [171]. 张婷,Th17细胞及TGF-β1与原发性胆汁性肝硬化分期的相关性研究.2010.
    [172]. Ferber,I.A., et al., Mice with a disrupted IFN-gamma gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE). J Immunol,1996. 156(1):p.5-7.
    [173]. Becher, B., B.G. Durell and R.J. Noelle, Experimental autoimmune encephalitis and inflammation in the absence of interleukin-12. J Clin Invest,2002.110(4):p.493-7.
    [174]. Willenborg, D.O., et al., IFN-gamma plays a critical down-regulatory role in the induction and effector phase of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. J Immunol,1996.157(8):p.3223-7.
    [175]. Veldhoen, M., et al., Signals mediated by transforming growth factor-beta initiate autoimmune encephalomyelitis, but chronic inflammation is needed to sustain disease. Nat Immunol,2006.7(11):p.1151-6.
    [176]. van Hamburg, J.P., et al., Th17 cells, but not Thl cells, from patients with early rheumatoid arthritis are potent inducers of matrix metalloproteinases and proinflammatory cytokines upon synovial fibroblast interaction, including autocrine interleukin-17A production. Arthritis Rheum,2011.63(1):p.73-83.
    [177]. Nakae, S., et al., Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J Immunol,2003.171(11):p.6173-7.
    [178]. Monteleone, I., F. Pallone and G. Monteleone, Th17-related cytokines:new players in the control of chronic intestinal inflammation. BMC Med,2011.9:p.122.
    [179]. Hommes, D.W., et al., Fontolizumab, a humanised anti-interferon gamma antibody, demonstrates safety and clinical activity in patients with moderate to severe Crohn's disease. Gut,2006.55(8):p.1131-7.
    [180]. Kwok, S.K., et al., TLR2 ligation induces the production of IL-23/IL-17 via IL-6, STAT3 and NF-kB pathway in patients with primary Sjogren's syndrome. Arthritis Res Ther,2012.14(2):p. R64.
    [181]. Shen, H., J.C. Goodall and G.J. Hill, Frequency and phenotype of peripheral blood Th17 cells in ankylosing spondylitis and rheumatoid arthritis. Arthritis Rheum, 2009.60(6):p.1647-56.
    [182]. Killeen, M.E., et al., Signaling through Purinergic Receptors for ATP Induces Human Cutaneous Innate and Adaptive Th17 Responses:Implications in the Pathogenesis of Psoriasis. J Immunol,2013.
    [183]. Yan, S., et al., Critical role of interleukin-17/interleukin-17 receptor axis in mediating Con A-induced hepatitis. Immunol Cell Biol,2012.90(4):p.421-8.
    [184]. Dong, C, TH17 cells in development:an updated view of their molecular identity and genetic programming. Nat Rev Immunol,2008.8(5):p.337-48.
    [185]. Weaver, C.T. and R.D. Hatton, Interplay between the TH17 and TReg cell lineages:a (co-)evolutionary perspective. Nat Rev Immunol,2009.9(12):p.883-9.
    [186]. Takeda, A., et al., Cutting edge:role of IL-27/WSX-1 signaling for induction of T-bet through activation of STAT1 during initial Thl commitment. J Immunol,2003. 170(10):p.4886-90.
    [187]. Lucas, S., et al., IL-27 regulates IL-12 responsiveness of naive CD4+ T cells through Stat1-dependent and -independent mechanisms. Proc Natl Acad Sci U S A,2003. 100(25):p.15047-52.
    [188]. Batten, M., et al., Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17-producing T cells. Nat Immunol,2006. 7(9):p.929-36.
    [189]. Yang, Y., et al., T-bet and eomesodermin play critical roles in directing T cell differentiation to Thl versus Thl7. J Immunol,2008.181(12):p.8700-10.
    [190]. Zhu, J., et al., Down-regulation of Gfi-1 expression by TGF-beta is important for differentiation of Th17 and CD103+inducible regulatory T cells. J Exp Med,2009. 206(2):p.329-41.
    [191]. Li, M.O., S. Sanjabi and R.A. Flavell, Transforming growth factor-beta controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and-independent mechanisms. Immunity,2006.25(3):p.455-71.
    [192]. Sakaguchi, S., et al., FOXP3+regulatory T cells in the human immune system. Nat Rev Immunol,2010.10(7):p.490-500.
    [193]. Ono, M., et al., Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature,2007.446(7136):p.685-9.
    [194]. Zhou, L., et al., TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature,2008.453(7192):p.236-40.
    [195]. Gavin, M.A., et al., Foxp3-dependent programme of regulatory T-cell differentiation. Nature,2007.445(7129):p.771-5.
    [196]. Chen, Z., et al., FOXP3 and RORgammat:transcriptional regulation of Treg and Th17. Int Immunopharmacol,2011.11(5):p.536-42.
    [197]. Zhou, L., M.M. Chong and D.R. Littman, Plasticity of CD4+T cell lineage differentiation. Immunity,2009.30(5):p.646-55.
    [198]. Murphy, K.M. and B. Stockinger, Effector T cell plasticity:flexibility in the face of changing circumstances. Nat Immunol,2010.11(8):p.674-80.
    [199]. Voo, K.S., et al., Identification of IL-17-producing FOXP3+ regulatory T cells in humans. Proc Natl Acad Sci U S A,2009.106(12):p.4793-8.
    [200]. Yang, X.O., et al., Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity,2008.29(1):p.44-56.
    [201]. Beriou, G., et al., IL-17-producing human peripheral regulatory T cells retain suppressive function. Blood,2009.113(18):p.4240-9.
    [202]. Longhi, M.S., et al., Inhibition of interleukin-17 promotes differentiation of CD25(-) cells into stable T regulatory cells in patients with autoimmune hepatitis. Gastroenterology,2012.142(7):p.1526-35.e6.
    [203]. Osorio, F., et al., DC activated via dectin-1 convert Treg into IL-17 producers. Eur J Immunol,2008.38(12):p.3274-81.
    [204]. Duarte, J.H., et al., Natural Treg cells spontaneously differentiate into pathogenic helper cells in lymphopenic conditions. Eur J Immunol,2009.39(4):p. 948-55.
    [205]. Yurchenko, E., et al., Inflammation-driven reprogramming of CD4+Foxp3+ regulatory T cells into pathogenic Thl/Th17 T effectors is abrogated by mTOR inhibition in vivo. PLoS One,2012.7(4):p. e35572.
    [206]. Kryczek, I., et al., IL-17+regulatory T cells in the microenvironments of chronic inflammation and cancer. J Immunol,2011.186(7):p.4388-95.
    [207]. Bovenschen, H.J., et al., Foxp3+regulatory T cells of psoriasis patients easily differentiate into IL-17A-producing cells and are found in lesional skin. J Invest Dermatol,2011.131(9):p.1853-60.
    [208]. Santini, S.M., et al., Interferon-alpha-conditioned human monocytes combine a Thl-orienting attitude with the induction of autologous Th17 responses:role of IL-23 and IL-12. PLoS One,2011.6(2):p. e17364.
    [209]. Lexberg, M.H., et al., Th memory for interleukin-17 expression is stable in vivo. Eur J Immunol,2008.38(10):p.2654-64.
    [210]. Boniface, K., et al., Human Th17 cells comprise heterogeneous subsets including IFN-gamma-producing cells with distinct properties from the Th1 lineage. J Immunol,2010.185(1):p.679-87.
    [211]. Lee, Y.K., et al., Late developmental plasticity in the T helper 17 lineage. Immunity,2009.30(1):p.92-107.
    [212]. Gao, Y., et al., Molecular mechanisms underlying the regulation and functional plasticity of FOXP3(+) regulatory T cells. Genes Immun,2012.13(1):p.1-13.
    [213]. Maggi, L., et al., CD161 is a marker of all human IL-17-producing T-cell subsets and is induced by RORC. Eur J Immunol,2010.40(8):p.2174-81.
    [214]. Cosmi, L., et al., Human interleukin 17-producing cells originate from a CD161+CD4+T cell precursor. J Exp Med,2008.205(8):p.1903-16.
    [215]. Kleinschek, M.A., et al., Circulating and gut-resident human Th17 cells express CD161 and promote intestinal inflammation. J Exp Med,2009.206(3):p.525-34.
    [216]. Cosmi, L., et al., Evidence of the transient nature of the Th17 phenotype of CD4+CD161+ T cells in the synovial fluid of patients with juvenile idiopathic arthritis. Arthritis Rheum,2011.63(8):p.2504-15.
    [217]. Samson, M., et al., Thl and Th17 lymphocytes expressing CD161 are implicated in giant cell arteritis and polymyalgia rheumatica pathogenesis. Arthritis Rheum,2012. 64(11):p.3788-98.
    [218]. Truchetet, M.E., et al., Increased frequency of circulating Th22 in addition to Th17 and Th2 lymphocytes in systemic sclerosis:association with interstitial lung disease. Arthritis Res Ther,2011.13(5):p. R166.
    [219]. Szpakowska, M., et al., Function, diversity and therapeutic potential of the N-terminal domain of human chemokine receptors. Biochem Pharmacol,2012.84(10):p. 1366-80.
    [220]. Balistreri, C.R., et al., CCR5 receptor:biologic and genetic implications in age-related diseases. Ann N Y Acad Sci,2007.1100:p.162-72.
    [221]. Panina-Bordignon, P., et al., The C-C chemokine receptors CCR4 and CCR8 identify airway T cells of allergen-challenged atopic asthmatics. J Clin Invest,2001. 107(11):p.1357-64.
    [222]. Acosta-Rodriguez, E.V., et al., Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat Immunol,2007.8(6):p. 639-46.
    [223]. Ruth, J.H., et al., Role of macrophage inflammatory protein-3alpha and its ligand CCR6 in rheumatoid arthritis. Lab Invest,2003.83(4):p.579-88.
    [224]. Hirota, K., et al., Preferential recruitment of CCR6-expressing Th17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its animal model. J Exp Med,2007. 204(12):p.2803-12.
    [225]. Reboldi, A., et al., C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat Immunol,2009.10(5):p.514-23.
    [226]. Kwon, J.H., et al., Colonic epithelial cells are a major site of macrophage inflammatory protein 3 alpha (MIP-3 alpha) production in normal colon and inflammatory bowel disease. Gut,2002.51(6):p.818-26.
    [227]. Kaser, A., et al., Increased expression of CCL20 in human inflammatory bowel disease. J Clin Immunol,2004.24(1):p.74-85.
    [228]. Teramoto, K., et al., Increased lymphocyte trafficking to colonic microvessels is dependent on MAdCAM-1 and C-C chemokine mLARC/CCL20 in DSS-induced mice colitis. Clin Exp Immunol,2005.139(3):p.421-8.
    [229]. Varona, R., et al., CCR6 has a non-redundant role in the development of inflammatory bowel disease. Eur J Immunol,2003.33(10):p.2937-46.
    [230]. Iwamoto, S., et al., TNF-alpha is essential in the induction of fatal autoimmune hepatitis in mice through upregulation of hepatic CCL20 expression. Clin Immunol,2013. 146(1):p.15-25.
    [231]. Aoki, N., et al., Dysregulated generation of follicular helper T cells in the spleen triggers fatal autoimmune hepatitis in mice. Gastroenterology,2011.140(4):p. 1322-1333.e1-5.
    [232]. Chuang, Y.H., et al., Increased levels of chemokine receptor CXCR3 and chemokines IP-10 and MIG in patients with primary biliary cirrhosis and their first degree relatives. J Autoimmun,2005.25(2):p.126-32.
    [233]. Zhang, W., et al., The role of CXCR3 in the induction of primary biliary cirrhosis. Clin Dev Immunol,2011.2011:p.564062.
    [234]. Ivanov, S. and A. Linden, Interleukin-17 as a drug target in human disease. Trends Pharmacol Sci,2009.30(2):p.95-103.
    [235]. Yoshizaki, A., et al., Cell adhesion molecules regulate fibrotic process via Thl/Th2/Th17 cell balance in a bleomycin-induced scleroderma model. J Immunol,2010. 185(4):p.2502-15.
    [236]. Gasse, P., et al., IL-1 and IL-23 mediate early IL-17A production in pulmonary inflammation leading to late fibrosis. PLoS One,2011.6(8):p. e23185.
    [237]. Mi, S., et al., Blocking IL-17A promotes the resolution of pulmonary inflammation and fibrosis via TGF-betal-dependent and-independent mechanisms. J Immunol,2011.187(6):p.3003-14.
    [238]. Baldeviano, G.C., et al., Interleukin-17A is dispensable for myocarditis but essential for the progression to dilated cardiomyopathy. Circ Res,2010.106(10):p. 1646-55.
    [239]. Feng, W., et al., IL-17 induces myocardial fibrosis and enhances RANKL/OPG and MMP/TIMP signaling in isoproterenol-induced heart failure. Exp Mol Pathol,2009. 87(3):p.212-8.
    [240]. Okamoto, Y., et al., Potential roles of interleukin-17A in the development of skin fibrosis in mice. Arthritis Rheum,2012.64(11):p.3726-35.
    [241]. Smith, E., et al., Blockade of interleukin-17A results in reduced atherosclerosis in apolipoprotein E-deficient mice. Circulation,2010.121(15):p.1746-55.
    [242]. Hernandez-Gea, V. and S.L. Friedman, Pathogenesis of liver fibrosis. Annu Rev Pathol,2011.6:p.425-56.
    [243]. Huang, Y.S., et al., Serum levels of interleukin-8 in alcoholic liver disease: relationship with disease stage, biochemical parameters and survival. J Hepatol,1996. 24(4):p.377-84.
    [244]. Polyak, S.J., et al., Elevated levels of interleukin-8 in serum are associated with hepatitis C virus infection and resistance to interferon therapy. J Virol,2001.75(13):p. 6209-11.
    [245]. Clement, S., et al., The hepatitis C virus core protein indirectly induces alpha-smooth muscle actin expression in hepatic stellate cells via interleukin-8. J Hepatol, 2010.52(5):p.635-43.
    [246]. Zimmermann, H.W., et al., Interleukin-8 is activated in patients with chronic liver diseases and associated with hepatic macrophage accumulation in human liver fibrosis. PLoS One,2011.6(6):p. e21381.
    1. HARRINGTON L E, HATTON R D, MANGAN P R, TURNER H, MURPHY T L, MURPHY K M, et al. Interleukin 17-producing CD4+effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 2005; 6(11): 1123-32.
    2. VELDHOEN M, HOCKING R J, ATKINS C J, LOCKSLEY R M, STOCKINGER B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 2006; 24(2):179-89.
    3. MANGAN P R, HARRINGTON L E, O'QUINN D B, HELMS W S, BULLARD D C, ELSON C O, et al. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 2006; 441(7090):231-4.
    4. BETTELLI E, CARRIER Y, GAO W, KORN T, STROM T B, OUKKA M, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006; 441(7090):235-8.
    5. GUTCHER I, DONKOR M K, MA Q, RUDENSKY A Y, FLAVELL R A, LI M O. Autocrine transforming growth factor-betal promotes in vivo Th17 cell differentiation. Immunity; 34(3):396-408.
    6. SAKAGUCHI S, MIYARA M, COSTANTINO C M, HAFLER D A. FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol; 10(7):490-500.
    7. KORN T, BETTELLI E, GAO W, AWASTHI A, JAGER A, STROM T B, et al. IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature 2007; 448(7152):484-7.
    8. NURIEVA R, YANG X O, MARTINEZ G, ZHANG Y, PANOPOULOS A D, MA L, et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 2007; 448(7152):480-3.
    9. ZHOU L, IVANOV, Ⅱ, SPOLSKI R, MIN R, SHENDEROV K, EGAWA T, et al. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol 2007; 8(9):967-74.
    10. LANGRISH C L, CHEN Y, BLUMENSCHEIN W M, MATTSON J, BASHAM B, SEDGWICK J D, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 2005; 201(2):233-40.
    11. CHEN Z, LAURENCE A, KANNO Y, PACHER-ZAVISIN M, ZHU B M, TATO C, et al. Selective regulatory function of Socs3 in the formation of IL-17-secreting T cells. Proc Natl Acad Sci U S A 2006; 103(21):8137-42.
    12. ACOSTA-RODRIGUEZ E V, NAPOLITANI G, LANZAVECCHIA A, SALLUSTO F. Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol 2007; 8(9):942-9.
    13. WILSON N J, BONIFACE K, CHAN J R, MCKENZIE B S, BLUMENSCHEIN W M, MATTSON J D, et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol 2007; 8(9):950-7.
    14. MANEL N, UNUTMAZ D, LITTMAN D R. The differentiation of human T(H)-17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORgammat. Nat Immunol 2008; 9(6):641-9.
    15. YANG L, ANDERSON D E, BAECHER-ALLAN C, HASTINGS W D, BETTELLI E, OUKKA M, et al. IL-21 and TGF-beta are required for differentiation of human T(H)17 cells. Nature 2008; 454(7202):350-2.
    16. MATHUR A N, CHANG H C, ZISOULIS D G, STRITESKY G L, YU Q, O'MALLEY J T, et al. Stat3 and Stat4 direct development of IL-17-secreting Th cells. J Immunol 2007; 178(8):4901-7.
    17. YANG X O, PANOPOULOS A D, NURIEVA R, CHANG S H, WANG D, WATOWICH S S, et al. STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J Biol Chem 2007; 282(13):9358-63.
    18. QIN H, WANG L, FENG T, ELSON C O, NIYONGERE S A, LEE S J, et al. TGF-beta promotes Th17 cell development through inhibition of SOCS3. J Immunol 2009; 183(1):97-105.
    19. BRUSTLE A, HEINK S, HUBER M, ROSENPLANTER C, STADELMANN C, YU P, et al. The development of inflammatory T(H)-17 cells requires interferon-regulatory factor 4. Nat Immunol 2007; 8(9):958-66.
    20. CHUNG Y, CHANG S H, MARTINEZ G J, YANG X O, NURIEVA R, KANG H S, et al. Critical regulation of early Thl7 cell differentiation by interleukin-1 signaling. Immunity 2009; 30(4):576-87.
    21. MARTINEZ G J, ZHANG Z, REYNOLDS J M, TANAKA S, CHUNG Y, LIUT, et al. Smad2 positively regulates the generation of Th17 cells. J Biol Chem; 285(38): 29039-43.
    22. ICHIYAMA K, SEKIYA T, INOUE N, TAMIYA T, KASHIWAGI I, KIMURA A, et al. Transcription factor Smad-independent T helper 17 cell induction by transforming-growth factor-beta is mediated by suppression of eomesodermin. Immunity; 34(5):741-54.
    23. WEI L, LAURENCE A, ELIAS K M, O'SHEA J J. IL-21 is produced by Th17 cells and drives IL-17 production in a STAT3-dependent manner. J Biol Chem 2007; 282(48): 34605-10.
    24. MADDUR M S, MIOSSEC P, KAVERI S V, BAYRY J. Th17 cells:biology, pathogenesis of autoimmune and inflammatory diseases, and therapeutic strategies. Am J Pathol; 181(1):8-18.
    25. SCHRAML B U, HILDNER K, ISE W, LEE W L, SMITH W A, SOLOMON B, et al. The AP-1 transcription factor Batf controls T(H)17 differentiation. Nature 2009; 460(7253):405-9.
    26. ZHANG F, MENG G, STROBER W. Interactions among the transcription factors Runxl, RORgammat and Foxp3 regulate the differentiation of interleukin 17-producing T cells. Nat Immunol 2008; 9(11):1297-306.
    27. COOMBES J L, SIDDIQUI K R, ARANCIBIA-CARCAMO C V, HALL J, SUN C M, BELKAID Y, et al. A functionally specialized population of mucosal CD103+DCs induces Foxp3+regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med 2007; 204(8):1757-64.
    28. ZHOU L, LOPES J E, CHONG M M, IVANOV, II, MIN R, VICTORA G D, et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature 2008; 453(7192):236-40.
    29. LAURENCE A, TATO C M, DAVIDSON T S, KANNO Y, CHEN Z, YAO Z, et al. Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity 2007; 26(3):371-81.
    30. LIAO W, LIN J X, WANG L, LI P, LEONARD W J. Modulation of cytokine receptors by IL-2 broadly regulates differentiation into helper T cell lineages. Nat Immunol; 12(6):551-9.
    31. ELIAS K M, LAURENCE A, DAVIDSON T S, STEPHENS G, KANNO Y, SHEVACH E M, et al. Retinoic acid inhibits Th17 polarization and enhances FoxP3 expression through a Stat-3/Stat-5 independent signaling pathway. Blood 2008; 111(3): 1013-20.
    32. MUCIDA D, PARK Y, KIM G, TUROVSKAYA O, SCOTT I, KRONENBERG M, et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 2007; 317(5835):256-60.
    33. QUINTANA F J, BASSO A S, IGLESIAS A H, KORN T, FAREZ M F, BETTELLI E, et al. Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature 2008; 453(7191):65-71.
    34. VELDHOEN M, HIROTA K, WESTENDORF A M, BUER J, DUMOUTIER L, RENAULD J C, et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 2008; 453(7191):106-9.
    35. QUINTANA F J, MURUGAIYAN G, FAREZ M F, MITSDOERFFER M, TUKPAH A M, BURNS E J, et al. An endogenous aryl hydrocarbon receptor ligand acts on dendritic cells and T cells to suppress experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A; 107(48):20768-73.
    36. GANDHI R, KUMAR D, BURNS E J, NADEAU M, DAKE B, LARONI A, et al. Activation of the aryl hydrocarbon receptor induces human type 1 regulatory T cell-like and Foxp3(+) regulatory T cells. Nat Immunol; 11(9):846-53.
    37. CHEN Y, HAINES C J, GUTCHER I, HOCHWELLER K, BLUMENSCHEIN W M, MCCLANAHAN T, et al. Foxp3(+) regulatory T cells promote T helper 17 cell development in vivo through regulation of interleukin-2. Immunity; 34(3):409-21.
    38. PANDIYAN P, CONTI H R, ZHENG L, PETERSON A C, MATHERN D R, HERNANDEZ-SANTOS N, et al. CD4(+)CD25(+)Foxp3(+) regulatory T cells promote Thl7 cells in vitro and enhance host resistance in mouse Candida albicans Th17 cell infection model. Immunity; 34(3):422-34.
    39. LAZAREVIC V, CHEN X, SHIM J H, HWANG E S, JANG E, BOLM A N, et al. T-bet represses T(H)17 differentiation by preventing Runxl-mediated activation of the gene encoding RORgammat. Nat Immunol; 12(1):96-104.
    40. BATTEN M, LI J, YI S, KLJAVIN N M, DANILENKO D M, LUCAS S, et al. Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17-producing T cells. Nat Immunol 2006; 7(9):929-36.
    41. STUMHOFER J S, SILVER J S, LAURENCE A, PORRETT P M, HARRIS T H, TURKA L A, et al. Interleukins 27 and 6 induce STAT3-mediated T cell production of interleukin 10. Nat Immunol 2007; 8(12):1363-71.
    42. FITZGERALD D C, ZHANG G X, EL-BEHI M, FONSECA-KELLY Z, LI H, YU S, et al. Suppression of autoimmune inflammation of the central nervous system by interleukin 10 secreted by interleukin 27-stimulated T cells. Nat Immunol 2007; 8(12): 1372-9.
    43. SANTINI S M, LAPENTA C, DONATI S, SPADARO F, BELARDELLI F, FERRANTINI M. Interferon-alpha-conditioned human monocytes combine a Thl-orienting attitude with the induction of autologous Thl7 responses:role of IL-23 and IL-12. PLoS One; 6(2):e17364.
    44. VAN HAMBURG J P, DE BRUIJN M J, RIBEIRO DE ALMEIDA C, VAN ZWAM M, VAN MEURS M, DE HAAS E, et al. Enforced expression of GATA3 allows differentiation of IL-17-producing cells, but constrains Th17-mediated pathology. Eur J Immunol 2008; 38(9):2573-86.
    45. ZHU J, DAVIDSON T S, WEI G, JANKOVIC D, CUI K, SCHONES D E, et al. Down-regulation of Gfi-1 expression by TGF-beta is important for differentiation of Th17 and CD103+ inducible regulatory T cells. J Exp Med 2009; 206(2):329-41.
    46. ANNUNZIATO F, COSMI L, SANTARLASCI V, MAGGI L, LIOTTA F, MAZZINGHI B, et al. Phenotypic and functional features of human Th17 cells. J Exp Med 2007; 204(8):1849-61.
    47. LEXBERG M H, TAUBNER A, ALBRECHT I, LEPENIES I, RICHTER A, KAMRADT T, et al. IFN-gamma and IL-12 synergize to convert in vivo generated Th17 into Th1/Th17 cells. Eur J Immunol; 40(11):3017-27.
    48. ZIELINSKI C E, MELE F, ASCHENBRENNER D, JARROSSAY D, RONCHI F, GATTORNO M, et al. Pathogen-induced human TH17 cells produce IFN-gamma or IL-10 and are regulated by IL-1beta. Nature; 484(7395):514-8.
    49. HIROTA K, DUARTE J H, VELDHOEN M, HORNSBY E, LI Y, CUA D J, et al. Fate mapping of IL-17-producing T cells in inflammatory responses. Nat Immunol; 12(3): 255-63.
    50. LEE Y K, TURNER H, MAYNARD C L, OLIVER J R, CHEN D, ELSON C O, et al. Late developmental plasticity in the T helper 17 lineage. Immunity 2009; 30(1): 92-107.
    51. COSMI L, MAGGI L, SANTARLASCI V, CAPONE M, CARDILICCHIA E, FROSALI F, et al. Identification of a novel subset of human circulating memory CD4(+) T cells that produce both IL-17A and IL-4. J Allergy Clin Immunol; 125(1):222-30 e1-4.
    52. WANG Y H, VOO K S, LIU B, CHEN C Y, UYGUNGIL B, SPOEDE W, et al. A novel subset of CD4(+) T(H)2 memory/effector cells that produce inflammatory IL-17 cytokine and promote the exacerbation of chronic allergic asthma. J Exp Med; 207(11): 2479-91.
    53. DEKNUYDT F, BIOLEY G, VALMORI D, AYYOUB M. IL-lbeta and IL-2 convert human Treg into T(H)17 cells. Clin Immunol 2009; 131(2):298-307.
    54. KOENEN H J, SMEETS R L, VINK P M, VAN RIJSSEN E, BOOTS A M, JOOSTEN I. Human CD25highFoxp3pos regulatory T cells differentiate into IL-17-producing cells. Blood 2008; 112(6):2340-52.
    55. RADHAKRISHNAN S, CABRERA R, SCHENK E L, NAVA-PARADA P, BELL M P, VAN KEULEN V P, et al. Reprogrammed FoxP3+T regulatory cells become IL-17+ antigen-specific autoimmune effectors in vitro and in vivo. J Immunol 2008; 181(5): 3137-47.
    56. AYYOUB M, DEKNUYDT F, RAIMBAUD I, DOUSSET C, LEVEQUE L, BIOLEY G, et al. Human memory FOXP3+Tregs secrete IL-17 ex vivo and constitutively express the T(H)17 lineage-specific transcription factor RORgamma t. Proc Natl Acad Sci U S A 2009; 106(21):8635-40.
    57. XU L, KITANI A, FUSS I, STROBER W. Cutting edge:regulatory T cells induce CD4+CD25-Foxp3-T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-beta. J Immunol 2007; 178(11):6725-9.
    58. OSORIO F, LEIBUNDGUT-LANDMANN S, LOCHNER M, LAHL K, SPARWASSER T, EBERL G, et al. DC activated via dectin-1 convert Treg into IL-17 producers. Eur J Immunol 2008; 38(12):3274-81.
    59. DUARTE J H, ZELENAY S, BERGMAN M L, MARTINS A C, DEMENGEOT J. Natural Treg cells spontaneously differentiate into pathogenic helper cells in lymphopenic conditions. Eur J Immunol 2009; 39(4):948-55.
    60. BOVENSCHEN H J, VAN DE KERKHOF P C, VAN ERP P E, WOESTENENK R, JOOSTEN I, KOENEN H J. Foxp3+regulatory T cells of psoriasis patients easily differentiate into IL-17A-producing cells and are found in lesional skin. J Invest Dermatol; 131(9):1853-60.
    61. KRYCZEK I, WU K, ZHAO E, WEI S, VATAN L, SZELIGA W, et al. IL-17+ regulatory T cells in the microenvironments of chronic inflammation and cancer. J Immunol; 186(7):4388-95.
    62. VOO K S, WANG Y H, SANTORI F R, BOGGIANO C, ARIMA K, BOVER L, et al. Identification of IL-17-producing FOXP3+regulatory T cells in humans. Proc Natl Acad Sci U S A 2009; 106(12):4793-8.
    63. BERIOU G, COSTANTINO C M, ASHLEY C W, YANG L, KUCHROO V K, BAECHER-ALLAN C, et al. IL-17-producing human peripheral regulatory T cells retain suppressive function. Blood 2009; 113(18):4240-9.
    64. YURCHENKO E, SHIO M T, HUANG T C, DA SILVA MARTINS M, SZYF M, LEVINGS M K, et al. Inflammation-driven reprogramming of CD4+Foxp3+regulatory T cells into pathogenic Thl/Thl7 T effectors is abrogated by mTOR inhibition in vivo. PLoS One; 7(4):e35572.
    65. HOECHST B, GAMREKELASHVILI J, MANNS M P, GRETEN T F, KORANGY F. Plasticity of human Th17 cells and iTregs is orchestrated by different subsets of myeloid cells. Blood; 117(24):6532-41.
    66. KORN T, BETTELLIE, OUKKA M, KUCHROO V K. IL-17 and Th17 Cells. Annu Rev Immunol 2009; 27:485-517.
    67. PARK H, LI Z, YANG X O, CHANG S H, NURIEVA R, WANG Y H, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 2005; 6(11):1133-41.
    68. LEONARD W J, ZENG R, SPOLSKI R. Interleukin 21:a cytokine/cytokine receptor system that has come of age. J Leukoc Biol 2008; 84(2):348-56.
    69. ACOSTA-RODRIGUEZ E V, RIVINO L, GEGINAT J, JARROSSAY D, GATTORNO M, LANZAVECCHIA A, et al. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat Immunol 2007; 8(6): 639-46.
    70. MURPHY C A, LANGRISH C L, CHEN Y, BLUMENSCHEIN W, MCCLANAHAN T, KASTELEIN R A, et al. Divergent pro-and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med 2003; 198(12): 1951-7.
    71. LUBBERTS E, JOOSTEN L A, VAN DE LOO F A, SCHWARZENBERGER P, KOLLS J, VAN DEN BERG W B. Overexpression of IL-17 in the knee joint of collagen type Ⅱ immunized mice promotes collagen arthritis and aggravates joint destruction. Inflamm Res 2002; 51(2):102-4.
    72. NAKAE S, NAMBU A, SUDO K, IWAKURA Y. Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J Immunol 2003; 171(11):6173-7.
    73. LUBBERTS E, KOENDERS M I, OPPERS-WALGREEN B, VAN DEN BERSSELAAR L, COENEN-DE ROO C J, JOOSTEN L A, et al. Treatment with a neutralizing anti-murine interleukin-17 antibody after the onset of collagen-induced arthritis reduces joint inflammation, cartilage destruction, and bone erosion. Arthritis Rheum 2004; 50(2):650-9.
    74. YOUNG D A, HEGEN M, MA H L, WHITTERS M J, ALBERT L M, LOWE L, et al. Blockade of the interleukin-21/interleukin-21 receptor pathway ameliorates disease in animal models of rheumatoid arthritis. Arthritis Rheum 2007; 56(4):1152-63.
    75. SHEN H, GOOD ALL J C, HILL GASTON J S. Frequency and phenotype of peripheral blood Th17 cells in ankylosing spondylitis and rheumatoid arthritis. Arthritis Rheum 2009; 60(6):1647-56.
    76. SHAHRARA S, PICKENS S R, DORFLEUTNER A, POPE R M. IL-17 induces monocyte migration in rheumatoid arthritis. J Immunol 2009; 182(6):3884-91.
    77. KIRKHAM B W, LASSERE M N, EDMONDS J P, JUHASZ K M, BIRD P A, LEE C S, et al. Synovial membrane cytokine expression is predictive of joint damage progression in rheumatoid arthritis:a two-year prospective study (the DAMAGE study cohort). Arthritis Rheum 2006; 54(4):1122-31.
    78. GAFFEN S L. The role of interleukin-17 in the pathogenesis of rheumatoid arthritis. Curr Rheumatol Rep 2009; 11(5):365-70.
    79. LEIPE J, SCHRAMM M A, GRUNKE M, BAEUERLE M, DECHANT C, NIGG A P, et al. Interleukin 22 serum levels are associated with radiographic progression in rheumatoid arthritis. Ann Rheum Dis; 70(8):1453-7.
    80. ZHANG Z, KYTTARIS V C, TSOKOS G C. The role of IL-23/IL-17 axis in lupus nephritis. J Immunol 2009; 183(5):3160-9.
    81. KYTTARIS V C, ZHANG Z, KUCHROO V K, OUKKA M, TSOKOS G C. Cutting edge:IL-23 receptor deficiency prevents the development of lupus nephritis in C57BL/6-lpr/lpr mice. J Immunol; 184(9):4605-9.
    82. WONG C K, LIT L C, TAM L S, LI E K, WONG P T, LAM C W. Hyperproduction of IL-23 and IL-17 in patients with systemic lupus erythematosus:implications for Th17-mediated inflammation in auto-immunity. Clin Immunol 2008; 127(3):385-93.
    83. YANG J, CHU Y, YANG X, GAO D, ZHU L, WAN L, et al. Th17 and natural Treg cell population dynamics in systemic lupus erythematosus. Arthritis Rheum 2009; 60(5): 1472-83.
    84. DOREAU A, BELOT A, BASTID J, RICHE B, TRESCOL-BIEMONT M C, RANCHIN B, et al. Interleukin 17 acts in synergy with B cell-activating factor to influence B cell biology and the pathophysiology of systemic lupus erythematosus. Nat Immunol 2009; 10(7):778-85.
    85. GROOM J, MACKAY F. B cells flying solo. Immunol Cell Biol 2008; 86(1):40-6.
    86. DONG G, YE R, SHI W, LIU S, WANG T, YANG X, et al. IL-17 induces autoantibody overproduction and peripheral blood mononuclear cell overexpression of IL-6 in lupus nephritis patients. Chin Med J (Engl) 2003; 116(4):543-8.
    87. YANG X O, CHANG S H, PARK H, NURIEVA R, SHAH B, ACERO L, et al. Regulation of inflammatory responses by IL-17F. J Exp Med 2008; 205(5):1063-75.
    88. HU Y, OTA N, PENG I, REFINO C J, DANILENKO D M, CAPLAZI P, et al. IL-17RC is required for IL-17 A-and IL-17F-dependent signaling and the pathogenesis of experimental autoimmune encephalomyelitis. J Immunol; 184(8):4307-16.
    89. TZARTOS J S, FRIESE M A, CRANER M J, PALACE J, NEWCOMBE J, ESIRIM M, et al. Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am J Pathol 2008; 172(1): 146-55.
    90. LOCK C, HERMANS G, PEDOTTI R, BRENDOLAN A, SCHADT E, GARREN H, et al. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med 2002; 8(5):500-8.
    91. KOMIYAMA Y, NAKAE S, MATSUKI T, NAMBU A, ISHIGAME H, KAKUTA S, et al. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J Immunol 2006; 177(1):566-73.
    92. SIFFRIN V, RADBRUCH H, GLUMM R, NIESNER R, PATERKA M, HERZ J, et al. In vivo imaging of partially reversible th17 cell-induced neuronal dysfunction in the course of encephalomyelitis. Immunity; 33(3):424-36.
    93. CARLSON T, KROENKE M, RAO P, LANE T E, SEGAL B. The Th17-ELR+CXC chemokine pathway is essential for the development of central nervous system autoimmune disease. J Exp Med 2008; 205(4):811-23.
    94. KANG Z, ALTUNTAS C Z, GULEN M F, LIU C, GILTIAY N, QIN H, et al. Astrocyte-restricted ablation of interleukin-17-induced Act1-mediated signaling ameliorates autoimmune encephalomyelitis. Immunity; 32(3):414-25.
    95. HUPPERT J, CLOSHEN D, CROXFORD A, WHITE R, KULIG P, PIETROWSKI E, et al. Cellular mechanisms of IL-17-induced blood-brain barrier disruption. FASEB J; 24(4):1023-34.
    96. CHAN J R, BLUMENSCHEIN W, MURPHY E, DIVEU C, WIEKOWSKI M, ABBONDANZO S, et al. IL-23 stimulates epidermal hyperplasia via TNF and IL-20R2-dependent mechanisms with implications for psoriasis pathogenesis. J Exp Med 2006; 203(12):2577-87.
    97. RIZZO H L, KAGAMI S, PHILLIPS K G, KURTZ S E, JACQUES S L, BLAUVELT A. IL-23-mediated psoriasis-like epidermal hyperplasia is dependent on IL-17A. J Immunol; 186(3):1495-502.
    98. MA H L, LIANG S, LI J, NAPIERATA L, BROWN T, BENOIT S, et al. IL-22 is required for Th17 cell-mediated pathology in a mouse model of psoriasis-like skin inflammation. J Clin Invest 2008; 118(2):597-607.
    99. CARGILL M, SCHRODI S J, CHANG M, GARCIA V E, BRANDON R, CALLIS K P, et al. A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am J Hum Genet 2007; 80(2):273-90.
    100. ELLINGHAUS E, ELLINGHAUS D, STUART P E, NAIR R P, DEBRUS S, RAELSON J V, et al. Genome-wide association study identifies a psoriasis susceptibility locus at TRAF3IP2. Nat Genet; 42(11):991-5.
    101. LOWES M A, KIKUCHI T, FUENTES-DUCULAN J, CARDINALE I, ZABA L C, HAIDER A S, et al. Psoriasis vulgaris lesions contain discrete populations of Thl and Th17 T cells. J Invest Dermatol 2008; 128(5):1207-11.
    102. PARRONCHI P, ROMAGNANI P, ANNUNZIATO F, SAMPOGNARO S, BECCHIO A, GIANNARINI L, et al. Type 1 T-helper cell predominance and interleukin-12 expression in the gut of patients with Crohn's disease. Am J Pathol 1997; 150(3):823-32.
    103. HELLER F, FLORIAN P, BOJARSKI C, RICHTER J, CHRIST M, HILLENBRAND B, et al. Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology 2005; 129(2):550-64.
    104. WANG K, ZHANG H, KUGATHASAN S, ANNESE V, BRADFIELD J P, RUSSELL R K, et al. Diverse genome-wide association studies associate the IL12/IL23 pathway with Crohn Disease. Am J Hum Genet 2009; 84(3):399-405.
    105. BARRETT J C, HANSOUL S, NICOLAE D L, CHO J H, DUERR R H, RIOUX J D, et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nat Genet 2008; 40(8):955-62.
    106. DUERR R H, TAYLOR K D, BRANT S R, RIOUX J D, SILVERBERG M S, DALY M J, et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 2006; 314(5804):1461-3.
    107. ITO R, KITA M, SHIN-YA M, KISHIDA T, URANO A, TAKADA R, et al. Involvement of IL-17A in the pathogenesis of DSS-induced colitis in mice. Biochem Biophys Res Commun 2008; 377(1):12-6.
    108. BAYRY J, LACROIX-DESMAZES S, KAZATCHKINE M D, KAVERI S V. Monoclonal antibody and intravenous immunoglobulin therapy for rheumatic diseases: rationale and mechanisms of action. Nat Clin Pract Rheumatol 2007; 3(5):262-72.
    109. ZENEWICZ L A, ANTOV A, FLAVELL R A. CD4 T-cell differentiation and inflammatory bowel disease. Trends Mol Med 2009; 15(5):199-207.
    110.ZENEWICZ L A, YANCOPOULOS G D, VALENZUELA D M, MURPHY A J, STEVENS S, FLAVELL R A. Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease. Immunity 2008; 29(6):947-57.
    111. SAMSON M, AUDI A S, FRASZCZAK J, TRAD M, ORNETTI P, LAKOMY D, et al. Thl and Th17 lymphocytes expressing CD161 are implicated in giant cell arteritis and polymyalgia rheumatica pathogenesis. Arthritis Rheum; 64(11):3788-98.
    112.MORIYAMA M, HAYASHIDA J N, TOYOSHIMA T, OHYAMA Y, SHINOZAKI S, TANAKA A, et al. Cytokine/chemokine profiles contribute to understanding the pathogenesis and diagnosis of primary Sjogren's syndrome. Clin Exp Immunol; 169(1): 17-26.
    113.BID AD K, SALEHI E, JAMSHIDI A, SABOOR-YARAGHI A A, ORAEI M, MEYSAMIE A, et al. Effect of All-transretinoic Acid on Th17 and T Regulatory Cell Subsets in Patients with Ankylosing Spondylitis. J Rheumatol.
    114.BAYRY J, THIRION M, DELIGNAT S, MISRA N, LACROIX-DESMAZES S, KAZATCHKINE M D, et al. Dendritic cells and autoimmunity. Autoimmun Rev 2004; 3(3):183-7.
    115.ANDRE S, TOUGH D F, LACROIX-DESMAZES S, KAVERI S V, BAYRY J. Surveillance of antigen-presenting cells by CD4+CD25+regulatory T cells in autoimmunity:immunopathogenesis and therapeutic implications. Am J Pathol 2009; 174(5):1575-87.
    116.BAYRY J, SIBERIL S, TRIEBEL F, TOUGH D F, KAVERI S V. Rescuing CD4+CD25+regulatory T-cell functions in rheumatoid arthritis by cytokine-targeted monoclonal antibody therapy. Drug Discov Today 2007; 12(13-14):548-52.
    117.JOSHI S, PANTALENA L C, LIU X K, GAFFEN S L, LIU H, ROHOWSKY-KOCHAN C, et al.1,25-dihydroxyvitamin D(3) ameliorates Th17 autoimmunity via transcriptional modulation of interleukin-17A. Mol Cell Biol; 31(17): 3653-69.
    118.GRIGORIAN A, ARAUJO L, NAIDU N N, PLACE D J, CHOUDHURY B, DEMETRIOU M. N-acetylglucosamine inhibits T-helper 1 (Thl)/T-helper 17 (Thl7) cell responses and treats experimental autoimmune encephalomyelitis. J Biol Chem; 286(46): 40133-41.
    119.HUEBER W, PATEL D D, DRYJA T, WRIGHT A M, KOROLEVA I, BRUIN G, et al. Effects of AIN457, a fully human antibody to interleukin-17A, on psoriasis, rheumatoid arthritis, and uveitis. Sci Transl Med; 2(52):52ra72.
    120. GENOVESE M C, VAN DEN BOSCH F, ROBERSON S A, BOJIN S, BIAGINII M, RYAN P, et al. LY2439821, a humanized anti-interleukin-17 monoclonal antibody, in the treatment of patients with rheumatoid arthritis:A phase I randomized, double-blind, placebo-controlled, proof-of-concept study. Arthritis Rheum; 62(4): 929-39.
    121. KLOTZ L, BURGDORF S, DANI I, SAIJO K, FLOSSDORF J, HUCKE S, et al. The nuclear receptor PPAR gamma selectively inhibits Th17 differentiation in a T cell-intrinsic fashion and suppresses CNS autoimmunity. J Exp Med 2009; 206(10): 2079-89.
    122. ZHANG X, JIN J, PENG X, RAMGOLAM V S, MARKOVIC-PLESE S. Simvastatin inhibits IL-17 secretion by targeting multiple IL-17-regulatory cytokines and by inhibiting the expression of IL-17 transcription factor RORC in CD4+lymphocytes. J Immunol 2008; 180(10):6988-96.
    123. HUH J R, LEUNG M W, HUANG P, RYAN D A, KROUT M R, MALAPAKA R R, et al. Digoxin and its derivatives suppress TH17 cell differentiation by antagonizing RORgammat activity. Nature; 472(7344):486-90.
    124. KITABAYASHI C, FUKADA T, KANAMOTO M, OHASHI W, HOJYO S, ATSUMI T, et al. Zinc suppresses Th17 development via inhibition of STAT3 activation. Int Immunol; 22(5):375-86.
    125. SINGH T P, HUETTNER B, KOEFELER H, MAYER G, BAMBACH I, WALLBRECHT K, et al. Platelet-activating factor blockade inhibits the T-helper type 17 cell pathway and suppresses psoriasis-like skin disease in K5.hTGF-betal transgenic mice. Am J Pathol; 178(2):699-708.
    126. MADDUR M S, VANI J, HEGDE P, LACROIX-DESMAZES S, KAVERI S V, BAYRY J. Inhibition of differentiation, amplification, and function of human TH17 cells by intravenous immunoglobulin. J Allergy Clin Immunol; 127(3):823-30 e1-7.
    127. MADDUR M S, KAVERI S V, BAYRY J. Comparison of different IVIg preparations on IL-17 production by human Th17 cells. Autoimmun Rev; 10(12):809-10.
    128. PASHOV A, DELIGNAT S, BAYRY J, KAVERI S V. Enhancement of the affinity of glucocorticoid receptors as a mechanism underlying the steroid-sparing effect of intravenous immunoglobulin. J Rheumatol; 38(10):2275.
    129. KOPF H, DE LA ROSA G M, HOWARD O M, CHEN X. Rapamycin inhibits differentiation of Th17 cells and promotes generation of FoxP3+T regulatory cells. Int Immunopharmacol 2007; 7(13):1819-24.