大尺度索杆铰接式伸展臂激光准直测量技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着太空探索、对地观测、军事侦察和海洋勘探等空间活动的迅猛发展以及未来复杂太空任务的需求,对超大尺度、超高精度、超大刚度、超轻型结构的空间伸展臂的需求越来越迫切。由于受到航天运载工具的运载空间的限制,要求空间伸展臂在发射阶段必须折叠起来收藏于整流罩内,待航天器进入轨道后,再靠自带的动力源将其展开至工作状态,这就要求空间伸展臂展开后具有更高的重复展开精度和定位精度。如何对大尺寸、高精度伸展臂展开后的精度进行测量,已成为未来伸展臂研制、测试亟待解决的问题。
     本文在分析索杆铰接式伸展臂展收原理及结构特点的基础上,提出了索杆铰接式伸展臂的直线度误差以及展开后横向框架的端部扭转角度,水平、竖直偏移量的激光准直测量方法。根据激光准直测量的工作原理,对索杆铰接式伸展臂激光准直测量系统进行了设计。运用所设计的激光准直测量系统对伸展臂横向框架相应节点的空间坐标位置进行了测试,通过计算得到伸展臂的直线度误差和各跨展开单元的扭转角度和偏移精度。
     对激光准直测量系统的光源进行分析与比较,根据激光器光源的输出特性,选取外腔式氦氖激光器作为测量系统的光源并设计了激光器固定支架。选择四象限探测器接收激光束,并对四象限探测器的工作原理及性能进行了分析。对影响四象限探测器的因素进行分析,影响因素包括光束漂移、光斑大小以及背景光等因素。根据四象限探测器输出信号特点,设计了四象限探测器输出信号运算电路、放大电路以及数据采集电路并开发了索杆铰接式伸展臂激光准直测量系统的测量软件。
     根据激光束扩束原理,提出了激光器扩束的具体方法以及光束垂直性和准直性调节的方法。设计了二维标定台对四象限探测器进行平面标定,确定标定平面内的标定点的实际位移值和相对应的电压值,通过插值计算确定了平面内非标定点的实际位移值电压值的近似关系,校正了由于四象限探测器的不均匀性带来的误差,提高了四象限探测器的测量范围。
     在实验室条件下进行了激光光源输出稳定性、光斑能量中心的一致性、四象限探测器线性度以及平面标定等实验,对伸展臂缩比样机的直线度误差和位置误差进行测量并分析了产生误差的原因。
With rapid development of space exploration, earth observation,military reconnaissance,marine explorationand requirement of future complicated space mission, there is an urgent need to space deployable masts of extra large scale, ultrahigh precision, ultrahigh stiffness and ultra-lightweight structure. Because of the space restriction of astronautics carrier, it requests the space stretchable arm must be folded in the cowling in the launching phase, and launches to an active status by power from its own power supply after it reaches planed orbit, which need a higher position precision after the extension. How to measure the position precisely has become a future key point on studying stretchable arms.
     This paper basing on the analysis of extension and folding of rope hinge stretchable arm, raised the concrete solutions for the main measuring accuracy, straight line error of rope hinge stretchable arms, and the reverse angle, horizontal and vertical displacement of crosswise frame nose after it is launched. According to the principle of laser alignment measurement, proposed the rope hinge stretchable arm laser alignment measuring plan. The straight line and position error of the stretchable arm is obtained indirectly according to the space coordinates position of the crosswise frame corresponding points, which is measured by the laser system.
     By analyzing the light source of the laser measurement system, according to the characteristics of the laser light source, the proper laser devices are chosen as the light source and the laser fixation is also designed. The right laser beam photoelectric detector is chosen, and the principle and performance of four-quadrant laser detector is analyzed. After analyzing the factors affecting the four-quadrant detector, some factors like the beam drifting, spot size and background light are found. According to the output signal characteristics of the four-quadrant detector, the output signal processing circuit, amplification and filter circuit of the four-quadrant detector are designed. Beyond these, a data acquisition and processing control box is made and the real-time measurement software is developed for the stretchable arm laser autocollimator system.
     According to the principle of the laser beam expanding, the specific methods for laser beam expanding and adjustment to verticality and alignment of the laser beam. Because of the limitation of one-dimensional calibration, a two-dimensional calibration set is designed to make plane calibration for the four-quadrant detector. The set can determine the actual displacement and corresponding voltage value of the standard fixed-point in the calibration plane. The approximate relationship of the actual voltage value is determined by the interpolation of non-calibration points in the plane, and the error which comes from the uneven character of the four-quadrant detector is also corrected.
     Several experiments are taken out under the laboratory condition, including the stability of laser light output, the consistency of the spot energy center, linearity of the four-quadrant detector and plane calibration experiments. The straightness and position error of the minified model machine is measured and the cause is analyzed.
引文
1 Johanne C. Heald, Lee D. Peterson. Sensitivity of the Deployment Repeatability of a Precision Telescope Mechanism. AIAA 2002-1502
    2 Peter A. Warren, Foster-Miller and Jason D. Hinkle. Recent Developments in High Efficiency Elastically Deployed Boom Structures. AIAA 2003-1823
    3 John M. Hedgepeth. Critical Requirements for the Design of Large Space Structure. NASA Contractor Report 3484, 1981
    4 M. S. Lake. Launching a 25-meter Space Telescope: Are Astronauts a Key to the Next Technically Logical Step after NGST? In 2001 IEEE Aerospace Conference. IEEE Paper No.2001-460
    5郭继峰,王平,崔乃刚,大型空间结构在轨装配技术的发展.导弹与天运载技术. 2006,3:28~34
    6 M.R. Hachkowski, L.D. Peterson. A Comparative History of the Precision of Deployable Spacecraft Structures. CAS Report No. CU-CAS-95-22,December, 1995.
    7 Jifeng GUO, Ping WANG, Naigang CUI. Ant Colony Algorithm for Assembly Sequence Planning of Large Space Truss Structures. IEEE International Conference on Control and Automation. 2007, FrA5-4:2027~2030
    8魏钟铨等.合成孔径雷达卫星.科学出版社. 2001
    9 Edward E. Montgomery IV, Glenn W. Zeiders. Ultralightweight Space Deployable Primary Mirror Demonstrator. AIAA 2002-1704
    10 Deutschen Zentrum F&u&r Luft-und Raumfahrt. http://www.dlr.de.
    11 Michael E. McEachen, Thomas A. Trautt and David M. Murphy. SALT: Second-order Augmentation of Lattice Trusses. AIAA 2004-1729
    12 Thomas W. Murphey. A Material Structural Performance Index for Strain Based Deployable Trusses. AIAA-2004-1656
    13 Thomas W. Murphey,Jason D. Hinkle, Some Performance Trends in Hierarchical Truss Structures, AIAA-2003-1903
    14 Mark S. Lake, Lee D. Peterson, Martin M. Mikulas, Space Structures on the Back of an Envelope: John Hedgepeth's Approach to Design. AIAA-2003-1448
    15 A. J. Daton-Lovett. An extendible member. Patent Cooperation Treaty Application PCT/GB97/00839, Publication Number WO 97/35706, 1997
    16 J.Winter,G. Spanjers, D.Cohen.Deployable structures mission in medium earth orbit. Proceedings of 2005 IEEE Aerospace Conference. 2005: 564~574
    17 AEC-ABLE Engineering Company, Inc. The CoilABLE Boom Systems.Http://www.Aec-able.com
    18 M.Eiden, O.Brunner and Stavrinidis. Deployment Analysis of Olympus Astromast and Comparison with Test Measurements, J. of Spacecraft and Rocket, 1987,24(1):63-68
    19 John F. Shaker. Static Stability of a Three-dimensional Space Truss. Proceedings of the XIII Space Photovoltaic Research and Technology Conference. NASA CP-3278, 1994
    20 Marie B. Levine. The Interferometry Program Flight Experiments: IPEX I&II. Proceedings of SPIE Astronomical Telescopes and Instrumentation Conference. 1998, Paper 3350-14:776~784
    21 Lisa M. R. Hardaway, Lee D. Peterson. Nanometer Scale Spontaneous Vibrations in a Deployable Truss under Mechanical Loading. AIAA-2001-1315
    22 Mark J. Silver, Lee D. Peterson. IPEX Boom Thermal Microdynamics Ground Test Report. CU-CAS-00-17
    23 M. Levine, R. Bruno, H. Gutierrez. Interferometry Program Flight Experiment #1: Objectives and Results. Proceedings of 16th International Modal Analysis Conference. 1998:1184~1190
    24 Jeffrey W. Umland, Howard Eisen. SRTM On-orbit Structural Dynamics. AIAA 2001-1588
    25 Dalia A. McWatters, George Lutes, Edward R. Caro. Optical Calibration Phase Locked Loop for the Shuttle Radar Topography Mission. IEEE Transactions on Instrumentation and Measurment, 2001,50(1):40~46
    26 Brown, Jr., Charles G, Sarabandi Kamal, et al. Validation of the Shuttle Radar Topography Mission Height Data. IEEE Transactions on Geoscience and Remote Sensing, 2005,43(8):1707~1715
    27 E. Rodńguez, C.S. Morris, J.E. Belz, et al. An Assessment of the SRTM Topographic Products. Jet Propulsion Laboratory, Pasadena, California. Technical Report JPL D-31639,2005
    28 SRTM Hardware - the Mast. http://www.shuttlepresskit.com/STS-99/payload 57.htm
    29 http://www2.jpl.nasa.gov/srtm/mast.html
    30张淑杰,李瑞祥,丁同才.盘绕式杆状展开机构的设计与力学分析.力学季刊, 2006.6,27(2):341~347
    31张淑杰.空间可展桁架结构的设计及热分析.杭州:浙江大学博士学位论文,2001
    32张淑杰.空间试验室半刚性太阳电池阵展开机构设计及热-结构藕合分析.上海:上海航天技术研究院,2004
    33刘义良,王春洁,孟晋辉.基于ANSYS的盘压杆机构大变形有限元分析.研发与制造.2005,(1):73~75
    34苏斌关富玲杨大彬等.索杆式伸展臂的展开驱动设计与动力学分析,空间科学学报, 2004.7,24(4):312~320
    35杨治,关富玲,杨大彬.索杆式伸展臂分析与设计.机械. 2005, (1):9~11.
    36陈务军,张淑杰.空间可展结构体系与分析导论.中国宇航出版社.2006
    37谢铁华,关富玲,苏斌等.空间索杆式展开结构的动力学研究与分析.空间结构. 2004,10(3):48~54
    38 Jeffrey A. Whetzal, Brett J. deBlonk. Dynamics of Meter-Class Deployable Composite Structures for Optical Systems. AIAA 2008-2280
    39赵武,张涛,周肇飞.测量大型机件的精密测距仪.四川大学学报(工程科学版).2006,38(5)
    40吴晓峰,张国雄.现代大尺度空间测量方法.航空制造技术.2006,10
    41李宗春,李广云,吴晓平.天线反射面精度测量技术述评.测绘通报.2006(6)
    42徐彦,关富玲,马燕红.充气可展开天线的反射面设计及精度测量.浙江大学学报(工学版).2007,41(11)
    43王保丰,李广云,李宗春等.高精度数字摄影测量技术在50 m大型天线中的应用.测绘工程.2007,16(1)
    44胡仲勋,王伏林,周海萍.空间直线度误差评定的新算法.机械科学与技术.2008,7
    45李鹏.激光直线度测量仪设计.渝西学院学报.2005,3
    46张礅,张斌,冯其波.激光光线漂移抑制与补偿方法综述.光学仪器.2001.12
    47刘荣强,邓宗全,郭宏伟.空间铰接式伸展臂一般设计方法研究.宇航学报.2009
    48宗殿瑞,宋文臣,刘鹏振.最小二乘法应用探讨.青岛化工学院学报.1998.9
    49侯宇.空间直线度的评定.计量技术.1994
    50吕生强.四象限探测器的激光探测与定位研究.南京理工大学学报.2009
    51孙长库,何明霞,王鹏.激光测量技术.天津大学出版社.2008
    52党丽萍,刘军华,唐树刚.象限探测器非均匀性的影响分析及校正算法.光子学报.2006
    53黄水平,胡德敬.激光准直仪的设计性物理实验.物理实验.2004.5
    54曹学东,范天泉,魏全忠.激光准直仪的研制.2001年全国测绘仪器综合学术年会文集.2001
    55曹学东,范天泉,魏全忠.基于四象限光电池的激光准直仪.测绘信息与工程.2002
    56汪晓东,叶美英.二维光电位置敏感器件的非线性修正.光学技术.2002