充气展开天线形面优化分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
充气展开薄膜天线在结构技术方面与机械可展开天线相比,具有大口径、轻质量、低能耗等优点,是未来大口径甚至超大口径天线的理想选择。而天线工作状态的形面精度是天线最重要的结构指标,直接影响天线的电性能和使用情况。
     为提高天线的反射面精度,比较研究两种成型理论。对于平面-抛物面型充气展开天线反射面:利用弹性力学理论分析形面,研究天线在轨时温度变化对反射面的影响;对于拼接-抛物面型反射面:为使充气变形后反射面逼近理想抛物面,经过保形分析、裁剪设计、裁剪片拼接,经分析得充气变形前的曲面形状,并在充气气压作用下变形成最终的反射面。
     利用ANSYS对拼接-抛物面型反射面进行反射面精度的参数分析,包括内压、材料属性、厚度、内压、反射面焦距等。针对地面验证试验的三种实验姿态,分析重力对反射面形面的影响;对2米口径充气展开天线结构的工作状态,利用有限元软件ANSYS建立有限元模型,分析结构的固有频率和对应振型,分析中考虑充气气体和反射面薄膜之间的流固耦合作用,采用声音介质模拟充气气体对结构的振动。研究天线结构设计参数的选择对结构动力性能的影响。
     基于ANSYS对充气展开天线结构作优化分析,确定在一定气压作用下选择合适的材料,薄膜厚度与焦径比,使得充气成形抛物面与理想抛物面的绝对均方根误差达到最小值。
     因此研究充气展开天线形面精度的优化,对结构及其与电性能匹配设计具有非常重要的意义。
Compared to mechanics deployment antenna, the inflatable Antenna structure technology has many advantages of large caliber, light weight, low-power and is one of the best choice for large antenna. The shape precision of reflector on orbit is the most important target of the antenna, which affects the electric and work performance of the antenna.
     To enhance precision of inflatable reflector,two kinds of figuration theories were investigated and compared. The first one is titled as plan-parabolic reflector. The elastic theory analysis was utilized. Based on these works,the influence that temperature variety affects on the reflector precision on orbit was researched . The second one is titled as seaming parabolic reflector. For the deformed surface is required to be ideal parabolic, the theoretical studies, conformal analysis,cutting-pattern,membrane film seaming and then inflatable were described. The seaming parabolic reflector was chose in the following research.
     Precision analysis of inflatable reflector by ANSYS were conducted,and all important design parameters such as inflation pressure,membrane thickness, material characteristics and Pre-tension stress of cable were investigated. The gravity influence in the reflector was compared under three postures and chooses one of them as final experiment posture. Analysis model of 2m antenna in ANSYS was built to analyze natural frequencies and corresponding modes of the inflatable reflector structure. The analysis work has considered fluid-structure interaction between inflatable gas and the membrane material in reflector structure. This dissertation employed the 3D solid acoustic elements of standard FE software to simulate the inflation gas influence. The effects of all important design parameters on the modes were investigated.
     Based on ANSYS inflatable antenna structure for optimization analysis, confirmed in certain pressure under the action of choosing appropriate materials, membrane film thickness and focal diameter ratio, making the inflatable forming parabolic and ideal parabolic error of RMS absolute minimum value.
     As a result,it is significant for suited design between structure and electricity performance to research the surface accuracy optimization analysis of inflatable deployable antenna.
引文
[1]. Michael Kohl, Thomas Digel. History of telecommunications between 1960 and 1975. http://www2.fht-esslingen.de/telehistory/1960.html
    [2]. Dr. Costa Cassapakis, Dr. Mitch Thomas. Inflatable Structures Technology Devel- opment Overview. AIAA 95-3738
    [3]. S. L. Veldman, C. A. J. R. Vemeeren. Inatable Structures In Aerospace Engineering An Overview. Proceedings of the European Conference on Spacecraft Structures, Materials and Mechanical Testing, Noorwijk, The Netherlands, 29 November-1 December 2000.(ESA SP-468, March 2001)
    [4]. D. Cadogan, M. Grahne. Inflatable Space Structures: A New Paradigm For Space Structure Design. 49th International Astronautical Congress, Sept 28-Oct 2, 1998 / Mel- bourne, Australia
    [5]. K. Nakashino, M. C. Natori.Efficient Modification Scheme of Stress-Strain Tensor for Wrinkled Membranes[J]. AIAA Journal 43(1), 2005: 206-215
    [6].付丽.充气展开天线形面精度分析.哈尔滨工业大学硕士学位论文. 2006
    [7].关富玲,徐彦,管瑜.可展天线精度分析和形面调整.空间科学学报, 2005
    [8].韩智超. Kpton-Al-Kapton充气展开支撑管的结构参数设计与工艺研究.哈尔滨工业大学硕士论文, 2003
    [9].林国昌.铝/聚合物薄膜的层合工艺与高低温条件下的力学行为研究.哈尔滨工业大学硕士论文, 2003
    [10].胡其彪.空间可伸展结构的设计与动力学分析研究.浙江大学博士学位论文, 2001
    [11].关富玲,李刚,夏劲松,余永辉.可展空间结构.卫星结构与机构技术进展研讨会会议论文集.总装备部卫星技术专业组, 2003, 9
    [12].吴明儿,关富玲.可展结构的展开分析[J].杭州电子工业学院学报, 1993. 13(2): 13-21
    [13].徐彦,关富玲.可展开薄膜结构的折叠方式和展开过程研究[J].工程力学.2008. 25(5): 176-181
    [14].赵忻.充气天线制作及测试方法研究.浙江大学硕士论文, 2010
    [15]. Heneky. H. Uber den Spannungszustand in kreisrunden Platten. Z. Math. Phys. 1915. 63: 311-317
    [16]. Fiehter WB. Some solutions of the large deflections of uniformly loaded circularmembranes. NASA Technical paper 36-58 NASA Langley Research Center,Hampton, VA, 1997: l-23
    [17]. Ji-HuanHe. A Lagrangian for Von Karman Equations of Large Defleetion Problem of Thin Circular Plate. Applied Mathematies and Computation 143(2003):543-549
    [18]. Rabah Bouzidi, Yannick Ravaut, Christian Wieigosz. Finite elements for 2D Problems of pressurized membranes [J]. Computers and Struetures 81, 2003: 2479-2490
    [19]. S. Naboulsi. Investigation of Geometric Imperfection in Inflatable Aerospace Structures [J], Journal of Aerospace Engineering. 2004, 7: 98-105
    [20]. Tang-Tat Ng, P.E, Edge Effects in Pressurized Membranes [J], Journal of Engineering Mechanies, 2002: 1100-1104
    [21]. Christopher H.Jenkins, Awlad Hossain. Influence Functions for Mechanical Disturbances in Gossamer Antennas and Reflectors [J]. IEEE, 2(1045): l-9
    [22]. Mingwan Soh, Jun Ho Lee, Sung-Kie Youn. An Inflatable Circular Membrane Mirror for Space Telescopes [J]. Proc.of SPIE, 56(38): 262-271
    [23]. D. K. Marker, C. H. Jenkins. Surface Precision of Optical Membranes with Curvature [J]. Optics ExPress, 11(1): 324-331
    [24]. Pai P F, Young L G, LEE Seung-Yoon. Geometrically exact modeling and design of high precision membranes [J]. AIAA 2002-1762: l-9
    [25]. Charlie C L, Wang, Shana S F Smith, etc. Surface flattening based on energy model [J]. Computer-Aided Design. 2002. 34: 823-833
    [26]. J. McCartney, B. K. Hinds, K. W. Chong. Pattern flattening for orthotropic materials [J]. Computer-Aided Design. 2005. 37: 631-644
    [27]. Jae-Yeol Kim, Jang-Bog Lee. A new technique for optimum cutting pattern generation of membrane structures[J]. Engineering Structures. 2002. 745-756
    [28]. Palisoc ArthurL, Huang Yuli. Design Tool for Inflatable Space Structures[A]. AIAA AIM-974: l-9
    [29]. Palisoc Arthur, Thomas Mitchell. A Comparison of the Performance of Searned and Unseamed Inflatable Concentrators. 2005. 9(2): 23-27
    [30]. Thomas Mitchell, Veal Gordon. Sealing Characteristics of Inflatable Paraboloid Concentrators [J]. ASME No. H00630-1991: l-6
    [31]. Fang Houfei, LouMiehael, Hsia Lih-Min, etc. Catenary Systems for Membrane Structures [A]. AIAA-2001-1342: l-9
    [32].夏劲松.索膜结构的构造理论和柔性天线的结构分析[D].杭州:浙江大学. 2005: 116-138
    [33].杨耀乾.薄壳理论[M].北京:中国铁道出版社, 1981
    [34].徐彦,关富玲,马燕红.充气可展开天线的反射面设计及精度侧量[J].浙江大学学报. 2007. 41(11): 1921-1926
    [35].徐彦.充气可展开天线精度及展开过程分析.浙江大学博士论文, 2008
    [36].朱慈勉.结构力学[M].北京:高等教育出版社, 2004
    [37].朱钟淦.叶尚辉.天线结构设计[M].国防工业出版社,1980:202-203
    [38].李董辉,童小娇,万中编.数值最优化算法与理论[M].科学出版社, 2010. 2
    [39].高光藩,丁信伟.拱形金属薄膜非线性力学及其数学建模及其计算[J].计算力学报, 2004. 21(5): 626-629
    [40].向阳,沈世钊.薄膜结构的静力性能分析[J].空间结构,1998. 4(1): 18-24
    [41].高会贤,赵成泉,张晋元.充气结构非线性分析及内力计算[J].淄博学院学报. 2002, 4(1): 31-37
    [42].何志军,丁洁民.基于非线性有限元的膜结构初始形态设计[J].四川建筑科学研究. 2004, 30(3): 15-17
    [43].马小飞等.充气式空间可展开天线结构概述[J].空间电子技术, 2006. 3: 10-15
    [44].段浩,胡宗武等.受压橡胶圆薄膜非线性变形特性分析[J].上海交通大学学报, 2003. 37 (1): 90-92
    [45].王援朝.充气天线结构技术概述[J].电讯技术, 2003. 2: 6-10
    [46].刘忠祥.星载可展开天线结构特性分析.西安电子科技大学硕士学位论文. 2008
    [47].管瑜.充气展开自硬化支撑管的设计与分析.浙江大学硕士学位论文. 2006
    [48].龚曙光. ANSYS基础应用及范例解析[M].机械工业出版社, 2002
    [49].叶先磊,史亚杰. ANSYS工程分析软件应用实例[M].清华大学出版社, 2003
    [50].孙靖民,梁迎春,陈时锦编著.机械结构优化设计[M].哈尔滨工业大学出版社, 2004