滑坡转化成泥石流的流态化机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在总结热带坡残积土地区暴雨滑坡转化成泥石流的研究现状和进展的基础上,对云南东川市蒋家沟地区坡残积土的工程特性、暴雨条件下斜坡土体的破坏机理、暴雨滑坡转化成泥石流的形成机理和形成过程进行了较为系统的研究。
     在室内对土样进行了颗粒分析、渗透、直接剪切、振动三轴等试验;通过直剪试验成果,分析了斜坡土体的抗剪强度指标在不同含水量情况下的变化规律。试验成果表明,不同颗粒级配的试样其抗剪强度指标随含水量的变化幅度不同,但总体上均呈现出下降趋。通过振动三轴试验分析了动强度随振动次数的变化规律、孔隙水压力在动荷作用下的发展规律、动弹模(动剪切模量)及阻尼在动荷作用下的变化规律,同时应用瞬态波动理论建立了饱和土体的动强度的计算模型和孔隙水压力发展的计算模型,并对建立的模型进行了定性的验证。
     在总结前人工作的基础上,结合本次试验成果,分析了饱和土体的液化机理及其影响因素,主要讨论了土性条件(包括试样密度、颗粒特性、固结时间、超固结及其结构性)和初始有效固结压力的影响。
     在野外调查的基础上,结合试验成果分析,初步得出自然斜坡破坏的模式,包括旋转型滑动、平移型滑动及土流等;并对暴雨滑坡转化成泥石流的影响因素和碎屑物质的运动距离作了定性分析;初步分析了滑坡转化成泥石流的流态化机理。
     试验结果表明,土体力学性质在不排水剪切试验中应力应变关系达到峰值强度后基本为理想塑性。根据斜坡土体状态在临界状态线的相对位置将土体分为剪胀和剪缩两种类型,并对这两种土体在暴雨条件下的破坏机理和破坏过程进行了分析。蒋家沟地区坡残积土斜坡在暴雨条件下的破坏是由于降雨入渗导致土体发生剪缩破坏,破坏后土体的孔隙水压力升高形成超孔隙水压力、土体强度降低、破坏迅速扩展所致,因而大多数斜坡呈流滑型破坏并具有突然性破坏特点。土体的应力应变特性表明土体破坏不是静力液化机制所致。
In this thesis, a general review is given on rainfall-induced flow slides occurring in tropical areas. A systematic study is conducted on engineering behaviors of residual soil, failure mechanism of residual soil slope and mechanism of natural flow slides triggered by rainstorm in Jiang Jia drainage area.
    To investigate engineering properties of disturbed soils, a series of tests, including grain-size analyses, permeability tests, direct shear tests and dynamic iriaxial lest is performed on specimens. The direct shear tests indicate that the strength of the soils is affected obviously by the quantity of the water in the specimens. The dynamic triaxial tests show that the strength reduces and the pore water pressure increase with the rising of vibration times. Based on the results of these tests, strength model and pore water pressure model have been advanced and validated. In addition, not only have the liquefaction mechanism of the soils been analysed, but also the influence of the factors on the extent of liquefaction of the saturated soils have been discussed.
    The fieldworks and the test results show that there appears three failure models on the natural slope, that is, rotational slide, translational slide and earth flows.
    Triaxal tests, including the isotropical consolidation drained and undrained compression and anistropically drained tests, are performed on loosely compacted specimens. The critical state line (CSL) is obtained in the e-lgp' plot based on the results of the above tests. The initial state of the consolidated specimens can be classified into dilative and contractive in the light of the soil state relative to the critical state line. The failure mechanisms of both dilative and contractive soils under the penetration of rainfall are analyzed. The soil is of perfect plastic behavior after peak strength in the stress-strain relationship in istropical consolidation undrained compression. The reason for the failure of loosely residual soil slopes triggered by rainfall is that the contractive failure caused by the penetration of rainfall, giving rise to a high excess pore pressure which reduces shear strength of the soil. The soil is prone to flow slide after failure under the action of gravity due to its high moistu
    re content. The stress-strain behavior of the remolding sample indicated that the failure of residual soil slopes is not caused by static liquefaction.
引文
[1]李树德 滑坡型泥石流形成机理 北京大学学报(自然科学版)1998,34(4):519~522
    [2]李永益 滑坡、泥石流转化机理及其运动特征的研究 滑坡论文集 四川科学出版社 1987
    [3]李德基 泥石流减灾理论与实践 北京科学技术出版社 1997.7
    [4]乔建平 滑坡减灾理论与实践 北京科学技术出版社 1997.8
    [5]陈自生 陆上滑坡流态化类型的初步划分 首届全国泥石流滑坡防治学术会议论文集 1993,195~199
    [6]陈自生、孔纪名 试论沟谷型滑坡流态化问题 华蓥山会议论文集:85~91
    [7]陈文化 地震液化流滑震害 自然灾害学报 2001,10(4):88~93
    [8]黄文熙 砂基和砂坡的液化研究 《水工建设中的结构力学与岩土力学问题》——黄文熙论文集,1982,252~256
    [9]胡广韬等著 滑坡动力学 北京:地质出版社 1995.2
    [10]杜榕桓 康志成 陈循谦 朱平一等,云南小江泥石流综合考察与防治规划 科学技术出版社重庆分社 1987.9
    [11]吴积善 康志成 田连权 章书成 云南蒋家沟泥石流观测研究 北京:科学技术出版社 1990.2
    [12] Campbell,R.M., Soil slips,debris flows and rainstorms in the Santa Monica Mountains,and Vicinity, southern California, U.S.Geological Survey Professional, 1975. Paper851,51PP.
    [13] Pierson,T.C., Piezometric response to rainstorms in the forested hillslope drainage depressions. Journal of Hydrology(New Zealand), 1980.Vol 19,P1-10.
    [14] Reid,M.E.,Nielsen,H.R.,Dreiss,S.J., Hydrologic factors triggering a shollow hillslope failure. Bull.Assoc. Eng. Geol. 1988.Vol.25,No.3,P349-361
    [15] Johnson,K.A.Sitar,N., Hydrologic conditions leading to debris flowinition. Canadian Geotechinical Jounral, 1990.27,789-801
    [16] Hayes,H.,Sassa, K., Estimation of the landslide drainage effect in use of tank model.In Takei A.ed. Proc.Int. Symp. on Erosion Debris and Disaster Prevention, 1990.P355-360.
    [17] Wilson,C.F.,Doetrich,W.E., The contribution of bedrock groundwater flow to storm runoff and high pore pressure development in hollows. Erosion and Sedimentation in tile Pacific Rim,IAHS Publ. 1987.No. 165,P49-59.
    [18] Ellen,S.D.,Fleming, R.W., Mobilization of debris flows from soil slips,San Francisco Bay region,California. Debris Flows/Avalanches:Process, Recognition,and Mitigation. J.E.Coasta & G.F. Wieczorek, Reviews in Engineering Geology, 1987.Vol.7,P31-40.
    [19] Fleming,R.W.,Johnson,A.m., Landslide in Colluvium. U.S.Geological Survey Bulletin 1994. 2059-B,24PP.
    [20] Turner, A.K., Colluvium and talus. Landslide:Investigation and Mitigation,
    
    Transportation Research Board,National Rearch Council 1996. P525-554.
    [21] Sassa, K., The mechanism starting liquefied landslide and debris flows. Proc.4th Int. Symp. on Landslides. 1984..P349-354.
    [22] Ellen,S.D., Description and mechanics of soil slip/debris floes in the storm. In Landslides,Floods and Marine Effects of the January 3-5,1982.in the San Francisco Bay Region,California(S.D.Ellen & G.F. Wieczorek eds.) 1998.P63-112.
    [23] Howard,T.R.,Baldwin,J.E.,Donley, H.F., Landslides in Pacifica, California, caused by the storm.In Landslides,Flood, and Marine Effects of the January 3-5,1982,in the San Francisco Bay Region,California(S.D.Ellen & G.F. Wieczorek eds.), 1988.P 163-184.
    [24] Nieto,A.S.,Barany ,I., Catastrophic rain-induced landslides in Rio de Janier, Brazil: Mechanisms and contributing factors.GeoI.Soc., 1988.Vol.20,No.7,PA144.
    [25] lverson,R.M.,Major, J.J., Groundwater seepage vectors and the potential for hillslope failure and debris flow mobilization. Water Resources, 1986.Vol.22,No. 11 ,P1543-1548.
    [26] Brand ,E.W., Some thoughts on rain-induced slope failures. Proc. 10th ICSMFE, 1981 .Vol.3,373-376.
    [27] Brand,E.W., Analysis and design in residual soils. Proc. ASCE Specialty Conf. Engineering and construction in Tropical and Residual Soils, 1982.P89-143.
    [28] Mshana,N.S.,Suzuki,A.,Kitazono,Y., Effects of weathering on stability of natural slopes in north-central Kumamoto. Soils and Foundations, 1993.Vol.33,No.4,P74-87.
    [29] Vaughan,P.R., Oral contributions and discussion.Tropical' 85, 1985.Vol.3,P370-374.
    [30] Anderson,S.A.,Sitar, N., Analysis of rainfall-induced debris flows. Journal of Geotechnical Engineering,ASCE, 121 (7), 1995.P544-552.
    [31] Anderson,S.A.,Reimer, M.E, Collapse of saturated soil due to reduction in confinement. Journal of Geotechnical Engineering,ASCE, 1995.121 (2).
    [32] Krahn,J.,Fredlund,D.g.,Klassen,M.J., Effect of soil on slope stability at North Hill.Can.Geotech.J. 1989.Vol.26:269-278.
    [33] Z.Y. Lu and D.M.Cruden, Two debris flow modes on Mount Cayley, British Columbia. Can. Geotech.J. 1996.Vol. 33:123-139.
    [34] Richard M. lverson and J.Major, Groundwater seepage vectors and the potential for hillslope failure and debris flow mobilization. Water Resources Research. 1986.Vol.22, NO.11,P1543-1548
    [35] H.J.Lee S.D.Ellen R.E.Kayen,Predicting transformation of shallow landslides into high-speed debris flows,713-718
    [36] Richard M.lverson etl, Debris-flow mobilization from lideslides. Annu. Rev. Earth Planet. Sci. 1997.Vol.25:85-138.
    [37] Chen and Lee., Numerical simulation of debris flows. Can. Geotech. 2000.J.37:146-160
    [38] 胡卸文 蒋家沟流域松散物源类型及其与泥石流的转化机理,成都理工学院学报,2001,Vol.28
    
    
    [39] Harp,E.L.etal, Pore pressure response during failure in soils. Geological Society of America Bulletin, 1990.Vol 102,P428-438.
    [40] K.J.Spence and I.Guymer., Small-scale laboratory flowslide Geotechnique, 1997.Vol.47(5),915-932
    [41]王昆耀 常亚屏 陈宁 饱和砂砾料液化特性的试验研究 水利学报 2000,第2期
    [42]刘小生 汪闻韶 赵宁 饱和原状砂土的静、动力强度特性水利学报 1991 第11期
    [43] Shen Zhujiang, A granular medium model for liquefaction analysis of sands .Chinese Journal Geotechnical Engineering, 1999. Vol21(6):742-748
    [44] M.J.Bovis and B.R.Dagg, Debris flow triggering by impulsive loading:mechanical modeling and case studies. Can. Geotech,.J. 1992. Vol.29 ,P345-352
    [45] S.Straub, Predictability of long runout landslide motion: Implications from granular flow mechanics, Geo Rundsch, 1997.Vol.86:415-425.
    [46] R.O.Davis and B.Berrill, Pore Pressure and Dissipated Energy in Earthquakes-Field Jounal of Geotechnical and Geoenvironmental Engineering/March, 2001.269-274
    [47] R.J.Fannin AND T.P. Rollekson, Debris flows:some physical characteries and behavior Can.Geotech. 1993.J.30,71-81,
    [48] D.Erten and M.H.Maher, Cyclic undrained behavior of silty sand, Soil Dynamics Earthquake Engeering 1995.Vol. 14,115-123
    [49]沈珠江,理论土力学 北京:中国水利水电出版社 2000.5
    [50]谢定义 张建民,饱和砂土瞬态动力学特性与机理分析 陕西科学出版社,1995.10
    [51]张建明 谢定义 砂土振动孔隙水压力理论及应用研究进展(上)
    [52]张建明 谢定义 砂土振动孔隙水压力理论及应用研究进展(下)
    [53]张建明 谢定义 饱和砂土振动孔隙水压力理论与应用研究进展 力学进展 1993,23(2):165~177
    [54]谢定义 张建明 周期荷载下饱和砂土瞬态孔隙水压力的变化机理与计算模型 土木工程学报 1990,第2期:51~60
    [55]谢定义 饱和砂土体液化的若干问题 岩土工程学报 1992,14(3):90~97
    [56]邓荣贵 张倬元 刘宏 饱和砂土动力液化到渗流液化过程探讨 山地学报 2001,19(5):430~435
    [57]中华人民共和国水利电力部,土工试验规程(SDS01-79),水利出版社,1984。
    [58]石兆吉 王兰民,土壤动力特性·液化势及危害性评价 北京:地震出版社 1999.11
    [59]谢定义,土动力学 西安:西安交通大学出版社 1988.9
    [60]谢定义 巫志辉 郭耀堂 极限平衡理论在饱和砂土动力失稳过程分析中的应用 土木工程学报 1981,14(4):17~27
    [61]娄炎 往返荷载下饱和砂土有效应力强度指标 水利学报 1984 Vol(2):13~19
    [62] Matsuoka, H.,On the significanoe of the spatial mobilized plane,Soils and Foundations, 1976.,Vol. 16,No. 1,
    [63] Matsuoka, H and Nakai,T.,Stress-deformation and strength characteristics of soil under
    
    three different principal sress,Proc. JSCE,No.232,1974.
    [64]张建民、魏刚文,振动频率对饱和砂土动有效抗剪强度指标的影响,陕西机械学院学报,1989,Vol.4
    [65]张建明 王稳祥 震动频率对饱和砂土动力特性的影响 岩土工程学报1990,12(1):89~97
    [66]邵生俊 谢定义 饱和砂土的动强度及破坏准则 岩土工程学报 1991,13(1):24-33
    [67]谢定义 张建明 往返荷载下饱和砂土强度变形瞬态变化的机理 土木工程学报1987,20(3):57~70
    [68]郑颍人 龚晓南,岩土塑性理论基础,中国建筑工业出版社,1989
    [69]周健 白冰 徐建平,土动力学理论与计算 北京:中国建筑工业出版社,2001.10
    [70]张建明 谢定义 饱和砂土振动孔隙水压力增长的实用算法 水利学报,1993,第13期:45~51
    [71]张建明 谢定义 刘家沛 饱和砂层震动孔隙水压力长消的解析算法 水利学报 1992,第12期:70~80
    [72]史宏彦 谢定义 汪闻韶 平面应变条件下无粘性土的破坏准则 土木工程学报 2001,34(1):79~83
    [73]张建明 谢定义 砂层震动孔压长消的一维解析算法研究 陕西水力发电 1991,第1期40~43
    [74]张建红 何昌荣 往返荷载作用下非饱和砂性土的液化强度和孔压规律 成都科技大学学报1994,75(1):1~8
    [75]Dobry, R.,and Swiger, W.F, The threshold strain and cyclic behavior of cohesionless soil,Procedings,The third ASCE speciality conference,Austin,Texas,Sept. 1979., 17-19.
    [76]Drnevich. Long-tor resonant colum apparatus operating manual.Soil Dynamic instrument Inc. USA. 1984
    [77]祝龙根,吴晓雄.低应变幅条件下砂土动力特性研究.全国土工建筑物及地基地震学术讨论会论文汇编,1986,11
    [78]周健等,砂土门槛应变值的新认识,大坝观测与土工测试,1995,2
    [79]韩玉明,关于饱和砂土液化问题探讨,岩土工程学报,1980,3
    [80]龚晓南 土塑性力学 浙江大学出版社 1997.7
    [81]张学言 岩土塑性力学 北京:人民交通出版社 1993.9
    [82]沈珠江 应变软化材料的广泛孔隙压力模型 岩土工程学报 1997,19(3):14~21
    [83]何广讷 土工的若干新理论研究与应用 北京:水利水电出版社 1994.12
    [84]汪闻韶 土的动力强度和液化特性 北京:中国电力出版社 1997.3
    [85]汪闻韶 土工抗震研究进展。岩土工程学报,1993 15(6)
    [86]Seed H Band KL.Liquefaction of saturated sands during cyclic loading. ASCE,Jr.of SMFD, 1966.92(6)
    [87]K.A.Johnson and N.Sitar Hydrologic conditions leading to debris-flow inition, Can. Geotech. J. 1990.,Vol.27,789-801,
    
    
    [88] Buchanan. K.W. Savigny and J.DE Vries, A method for modeling water tables at debris avalanche headscarps. Jounal of Hydrology, 1990,.Vol. 113.89-102
    [89]谢定义,饱和砂体液化研究问题,岩土工程学报,1992,3
    [90]甘善杰 轻亚粘土液化特性室内研究,硕士学位论文,1989
    [91]张倬元 王士天 王兰生 工程地质分析原理 地质出版社 1994
    [92]余湘娟 姜朴 魏松 砂土稳态强度试验研究 河海大学学报 2001,29(1)
    [93]陈飞熊 李宁 谢定义 黑河土石坝的地震响应和液化分析 水利学报 2000,第2期:22~26
    [94]何昌荣 动模量和阻尼的动三轴试验研究 岩土工程学报 1997,19(5):39~48
    [95] Radoslaw L.Michalowski, The Rule of Equivalent States in Limit-State Analysis of soils Jounal of Geotechnical and Geoenvironmental Engineering/January,2001,76-83
    [96] James A.Sladen, Undrained shear strength of clean sands to trigger flow liquefaction:Discussion Can,Geotech,J, 2001 .,38,:652-653
    [97] Masanobu, Kawamoto, Kiichi Duzuki, Hiroyuki Fujimori, and Masayuki Sato., Microstructural Interpretation on Reliquefaction of Sturated Soils ender Cuclic Loading, Jounal of Geotechnical and Geoenvironmental Engineering,.May,2001,418-423
    [98] R.F. Dawson,N.R.Morgenstern,and A.W. Stokes, Liquefaction flowslides in Rocky Mountain coal mine waste dumps, Can. Geotech, 1998 Vo1.,35:328-343,
    [99] C.hsein Juang, Caroline J.Chen,and Tao Jiang, Probabilistic Framework for Liquefaction Potential by Shear Wave Velocity, Jounal of Geotechnical and Geoenvironmental Engineering /Augst,2001,670-678
    [100] Christian, Woeller et al., Site investigation to evaluate flow liquefaction slides at Sand Heads,Fraser River delta. Can. Geotech.J. 1997.Vol.34:384-397
    [101] Y.P. Vaid and Sivathayalan, Fundamental factors affecting liquefaction susceptibility of sands Can.Geotech.J.37,592-606,2000
    [102]刘颖、谢君斐等编著,砂土地震液化,地震出版社,1984
    [103]王建华 要明伦 饱和软粘土振动弱化特性的研究 水利学报 1993,第12期:37-43
    [104]王洪谨 沈瑞福 马奇国 双向振动下土的动强度 清华大学学报(自然科学版) 1996,36(4):93~98
    [105]薛守义 王思敬 小浪底工程中原状泥化夹层的动三轴试验 岩土工程学报 1997,19(2)
    [106] Kenji Ishihara.etal.,Effects of overconsolidation on liquefaction characteristics of sands containing fines,Dynamic Geotechnica Testing, ASTM STP, 1978,P246-264.
    [107] Jordi Corominas, Evidence of basal erosion and shearing as mechanisms contributing the development of lateral ridges in mudslides,flow-slides,and other floe-like gravitational movements Engineering geology1995.Vol. 39,45-70
    [108] J.N.Hutchinson and R.K.Bhandari, Undrained loading, a fundamental mechanism of mudflows and other mass movents.Geotech. 21,No,4,353~358
    
    
    [109] Oldrich Hungr, A model for the runout analysis of ranpid flow slides,debris flows, and avalanches. Can. Geotech. J. 1995,32:610-623,
    [110] DAI Fuchu.,Engineering behaviors of volcanics-derived soil and rainfall-indiced slide-debris flows.,D.Thesis, 1997
    [111] Slide,R.C., A thertical model of the effects of timber harvesting on slope stability, Water resources research, 1992.Vol.28,No.7,P1897-1910
    [112] Turner, A.K., Colluvium and talus,in Landslide:Investigation and Mitigation,Special report, 1996., 247,P525-554.
    [113] 中国科学院—水利部成都山地灾害与环境研究所著,中国泥石流,商务印书馆出版,2000.
    [114] 高桥保,土石流的发生流动机理,1978,土工基础,26(6):45-50
    [115] Lumb,P., Effects of rainstorms on slope stability. Proc. of the Hongkong Soils, 1975.,P73-87
    [116] Bouwer. H., Groundwater hydrology:New York,McGraw-hill,480p. 1978.
    [117] Gan,J.K.,Fredlund,D.G., Direct shear testing of a Hongkong soil under various applied matric suctions,Geo report, 1995 .No. 11,214p.
    [118] Jackson,. A model of transient topographically driven,saturated subsurface flow. Water resource research, 1992b.Vol.28 No.5,P 1417-1427.
    [119] Mathewson,C.C.,Keaton,J.R.,Santi,J.R.,et al. 1990.Role of bedrock ground water in the initiation of debris flows and sustained post-flow stream dischange. Bull.Assoc.of Engrg..Geologists ⅩⅩⅧ(1),73-84
    [120] Montgomery, D.et al., 1990.Hydrologic experiments in a steep unchannaled valley:(1) Exprimental design and piezometric response. Geophysical Union,abstract,71(43), 1342
    [121] McDonnell,J.J., The influnce of marcropes on debris initiations. Q.J.Eng.Geol. 1990,.Vol.23,P325-331
    [122] 陈守义,1996.试论土的应力应变模式与滑坡发育过程的关系,岩土力学,Vol.1,No.3,21-26.