含细粒砂土的强度特征与稳态性状研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纯净砂在自然界中并不多见,而含细粒砂土却广泛分布,尤其是水力冲积填土和海底沉积土。迄今为止,细粒含量对砂土的强度特性和应力应变关系的影响在岩土界尚未形成共识。故而,本论文以此为研究背景,以具有片状颗粒特征的南京砂为主要研究介质,围绕细粒含量对砂土工程性状的影响和规律深入探讨,主要研究内容与成果如下:
     1.对具有片状颗粒特征的南京粉细砂进行了较为系统的固结不排水剪切试验,发现在低应力水平下随着相对密实度增大,南京砂残余偏应力逐渐增大;相同密实度的砂土在低围压(<100kPa)下表现出不稳定,但随着围压的增大而进入稳定阶段,在高围压下又进入不稳定阶段。极松散南京砂在剪切过程中出现了完全静态液化现象,初始孔隙比e 0为1.075,其“亚稳定”结构是其在低围压下产生静态液化现象的主要原因。通过应力路径修正的方法,建立了南京砂峰值强度和残余强度间的关系:
     2.通过测定10种不同细粒含量的砂土的基本物理性质指标,把握不同细粒含量砂土的颗粒级配特征。细粒对含细粒砂的干密度、不均匀系数和曲率系数、孔隙比等物理状态指标均存在影响,且随细粒含量的增加,含细粒砂土级配由不良变为良好。
     3.系统开展了低围压下不同细粒含量砂土的固结不排水剪切试验,认为在峰值强度之前,细粒含量对其应力应变关系影响不大,但在峰值之后受细粒含量的影响程度明显加强;细粒含量对砂土的稳态线位置和斜率均有显著影响,且在细粒含量小于25%范围内,砂土稳态线随细粒含量增加而下移,当细粒含量超过25%时,砂土稳态线随细粒含量增加而上移,该砂土的临界粉粒含量为25%。
     4.利用粒间状态参量e s、e f和D rs论证含细粒砂土的力学性状机制,分析出其随细粒含量变化的演化规律。当砂粒占控制优势时,围压对砂土力学性状的影响不大,且粉粒含量对残余强度的影响也不大;当粉粒占控制优势时,围压对砂土的峰值强度和残余强度的影响均十分明显;在试验范围内围压的增大使砂土出现了不同程度的剪胀,土体的稳定性有所增强;当砂粒和粉粒共同承担土体颗粒间力链的传递时,砂土强度特性受控于细粒含量和围压大小,其剪切强度均随细粒含量的增加和围压增大而增大。
     5.利用标贯击数与相对密实度、平均粒径的经验公式,探讨了细粒含量对砂土流滑失稳的影响,初步确定了各含细粒砂土处于稳态线上的临界标贯击数,并验证了其他研究者关于《建筑抗震设计规范》过高估计了南京砂的抗液化能力的结论。
     6.利用优势砂模型(superior sand model)对三轴压缩条件下南京砂的力学性状进行模拟。与试验结果对比可知,该模型较好地反映了中等围压下南京砂的力学性状,但对极松散南京砂在低围压下的模拟结果却不理想,这反映了模型对砂土结构性参数的具有较高敏感性。
It was known that clean sandy isn’t in extension all the while, and a significant amount of fines exist in alluvial and hydraulic deposit silty sand. And the role of nonplastic fines content on the strength properties and steady-state behavior of sandy soils has been a topic of debate for some time. In this paper the research was done with CU tests on the Nanjing sand with sheet particle to analyze and evaluate the effects under low confining pressures. The main research of this dissertation is as follows:
     1. The undrained compression tests were performed on Nanjing sand under lower confining pressures.The residual strength is increasing with the increasing of relative density at the same confining pressure and the samples at the same relative density are from instability to stability and to instability again under the higher confining pressure. The complete static liquefaction has occurred for the looser Nanjing sand at 1.0750e =. The metastable particle structure of Nanjing sand makes for the static liquefaction. By normalizing the stress path, the relationship of peak strength and residual strength is:
     2. The basic physical properties indices of 10 kinds of silty sand are measured to know their particle distribution. The change of specific gravity is little with fine content; neither are the changes of the changes of dry density, uniformity coefficient, coefficient of curvature and void ratio. All show the particle size distribution of silty sand is from worse to better when the fine contents are increased.
     3. The CU tests on 10 kinds of silty sand are performed under lower confining pressures. The fine contents have small effect on the deviatoric stress which arrives at the peak stress, but after the peak stress, the effect on the stress becomes obvious very much. And it shows there is different not only the position of the steady state lines but also the slope of theirs when the fines are changed. The steady state line of clean sand is on top of that of silty sands and the steady state lines move down as the fines increasing up to 25%, then move upwards up to 60%. So the limit fine content of silty sands is 25%.
     4. Contribution from the coarser and the finer grains in silty sand to stress-strain ralationship is affected by the intergranular matrix structure. New intergranular state parameters, such as intergranular relative density ( D rs), intergranular and interfine void ratio( e sand e f), are induced to characterize the behavior of silty sands. As e s < emax,HSthe soil behavior of silty sand at an intergranular void ratio e s is similar to that of the host sand at a void ratio e equal to e sand the fine content and confining pressure have little effects on the stress-strain-strength relations. When the fine content exceeds 25%, the peak strength and residual strength are affected by the confining pressure. And the residual strength is more sensitive to the confining pressure than the peak strength. Even more, at e s in the vicinity of emax, HS, the fines and confining pressure have obvious effect on the stress-strain behavior of silty sand. The stability of specimen is better with the increasing fines and confining pressure.
     5.The effect of fines on the stability was discussed by the empirical correlation between SPT N-value and relative density, average grain diameter for sandy soils. The critical SPT N-values in steady state line of silty sands with different fines were calculated. It is validated that the flow potential of Nanjing sand is overestimated in Code for Seismic Design of Building.
     6. The results are analyzed for triaxial compression tests by superior sand model. Compared with the test results, the superior sand model can reflect the stress-strain behavior of Nanjing sand with medium confining pressures. But the result of the looser Nanjing sand under lower confining pressure can’t be simulated when the test was terminate at a shortfall axial strain of 20%.
引文
[1] Seed H B and Idriss I M. Simplified procedure for evaluating soil liquefaction potential[J]. Journal of the Soil Mechanics and Foundation Engineering Division, ASCE, 1971,97(9):1249-1273.
    [2] Seed H B. Soil liquefaction and cyclic mobility evaluation for level ground during earthquakes[J]. Journal of the Geotechnical Engineering Division, ASCE, 1979.105(GT2):201-255.
    [3] Seed H B. Design problems in soil liquefaction[J]. Journal of Geotechnical Engineering Division, ASCE, 1987, 113(GT8):827-845.
    [4] 朱建群,栾茂田,冷艺,刘金龙.振动三轴试验误差的分析及校正[J].岩土力学,2006,27(12):2261-2264.
    [5] Casagrande A. Liquefaction and cyclic deformation of sands: a critical review[A]. Proc of the Fifth Pan American Conf. on Soil Mechanics and Foundations Engineering, Buens Aires, Argentina. 1975, Vol.5:79-133.
    [6] Castro G. Liquefaction and cyclic mobility of saturated sand[J]. Journal of the Geotechnical Engineering Division, ASCE, 1975, 101(GT6):551-569.
    [7] 汪闻韶.土体液化与极限平衡和破坏的区别和关系[J].岩土工程学报,2005,27(1):1-10.
    [8] 汪闻韶.土的动力强度和液化特征[M].北京:中国电力出版社,1997.
    [9] Gu W. H., Morgenstern N. R. and Robertson P. K.. Post-earthquake deformation analysis of Wildlife site[J]. J. Geotech Engrg., ASCE, 1994,120(2):274-289.
    [10] Gu W. H., Morgenstern N. R. and Robertson P. K.. Progressive failure of lower San Fernando dam[J]. J. Geotech Engrg., ASCE, 1993,119(2):333-348.
    [11] Castro G, Seed R B, Keller T O and Seed H B. Steady-state strength analysis of lower San Fernando dam slide[J]. J. Geotech Engrg., ASCE, 1992,118(3):406-427.
    [12] Ishihara K, Yasuda S and Yoshida Y. Liquefaction-induced flow failure of embankments and residual strength of silty sand[J]. Soil and Foundations, 1990,30(3):69-80.
    [13] 余湘娟,房震,严蕴等.震后饱和砂土的液化及边坡稳定问题评述[J].河海大学学报(自然科学版),2003,31(1):72-75.
    [14] 周云东. 地震液化引起的地面大变形试验研究[Ph.D].南京:河海大学,2003.
    [15] Poulos S J, Castro G and France J W. Liquefaction evaluation procedure[J]. J. Geotech. Engrg. Div., ASCE, 1985, 111(6)::772-791.
    [16] Seed R B and Harder L F Jr. SPT-based analysis of cyclic pore pressure generation and undrained residual strength[A]. Proc. Seed Memorial Symp., 1990,2:351-376.
    [17] Stark T D and Mesri G. Undrained shear strength of liquefied sands for stability analysis[J]. J. Geotech. Engrg. Div., ASCE, 1992, 118(11):1727-1747.
    [18] Baziar M H and Dobry R. Residual strength and large-deformation potential of loose silty sands[J]. J. Geotech. Engrg. Div., ASCE, 1995, 121(12):896-906.
    [19] Ishihara K. Liquefaction and flow failure during earthquakes[J]. Geotechnique, 1993, 43(3):351-415.
    [20] Thevanayagam S. Effect of fines and confining stress on undrained shear strength of silty sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(6):479-491.
    [21] Seed H B and Lee K L. Liquefaction of saturated sands during cyclic loading[J]. J. Soil Mech. and Found. Div., ASCE,92(6):105-134.
    [22] Youd T L and Bennett M J. Liquefaction sites, Imperial Valley, California[J]. J. Geotech. Engrg., ASCE,109(3):440-457.
    [23] Baziar M H & Dobry R. Liquefaction ground deformation predicted from laboratory tests[A]. Proc. 2nd Int. Conf. on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, St Louis, 1:451-458.
    [24] Chang N Y, Yeh S T and Kaufman L P. Liquefaction potential of clean and silty sands[A]. Proc. 3rd Int. Earthquake Microzonation Conf., 1982,Vol.2:1017-1032.
    [25] Dezfulian H. Effects of silt content on dynamic properties of sandy soils[A]. Proc. 8th World Conf. on Earthquake Engrg.,1982,63-70.
    [26] Amini F and Qi G Z. Liquefaction testing of stratified silty sands[J]. J. Geotech. and Geoenvir. Engrg., ASCE, 2000,126(3):208-217.
    [27] Shen C K, Vrymoed J L and Uyeno C K. The effects of fines on liquefaction of sands[A]. Proc. 9th Int. Conf. on Soil Mech. and Found. Engrg.,1977,Vol.2:381-385.
    [28] Troncoso J H and Verdugo R. Silt content and dynamic behavior of tailing sands[A]. Proc. 12th Int. Conf. on Soil Mech. and Found. Engrg.,1985:1311-1314.
    [29] Finn W D L, Ledbetter R H and Wu G. Liquefaction on silty soils: Design and analysis[A]. Ground failures under seismic conditions, Geotech. Spec. Publ. No44, ASCE, New York,1994,51-76.
    [30] Vaid V P. Liquefaction of silty soils[A]. Ground failures under seismic conditions, Geotech. Spec.Publ. No44, ASCE, New York,1994,1-16.
    [31] Zlatovic S and Ishihara K. Normalized behavior of very loose nonplastic soil: Effects of fabric[J]. Soil and Foundation, 1997,37(4):47-56.
    [32] Law K T and Ling Y H. Liquefaction of granular soils with noncohesive and cohensive fines[A]. Proc. 10th World Conf. on Earthquake Engrg., 1992,1491-1496.
    [33] Koester J P. The influence of fines type and content on cyclic resistance[A]. Ground failures under seismic conditions, Geotech. Spec. Publ. No44, ASCE, New York,1994,17-33.
    [34] Kuerbis R, Negussey D and Vaid V P. Effect of gradation and fines content on the undrained response of sand[J]. Proc. Hydr. Fill Struct.,1988,330-345.
    [35] Polito C P, Martin II J R. Effects of nonplastic fines on the liquefaction resistance of sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(5):408-415.
    [36] Polito C P. The effects of non-plastic and plastic fines on the liquefaction of sandy soils[Ph.D]. Blacksburg: Virginia Polytechnic Institute and State University,1999.
    [37] Georgiannou V N, Burland J B & Hight D W. The undrained behaviour of clayey sands in triaxial compression and extension[J]. Geotechnique, 1990, 40(3):431-449.
    [38] 刘雪珠,陈国兴.粘粒含量对南京粉细砂液化影响的试验研究[J].地震工程与工程振动,2003,23(6):150-155.
    [39] 衡朝阳,何满潮,裘以惠.含粘粒砂土抗液化性能的试验研究 [J].工程地质学报,2001,9(4):339-344.
    [40] 吴建平,吴世明.动荷载作用下含粘粒砂土的特性[J].全国土工建筑物及地基抗震学术讨论会论文汇编,1986,265-268.
    [41] 牛琪瑛,裘以惠,史美筠.粉土抗液化特性的试验研究[J].太原工业大学学报,1996,27(3):5-8.
    [42] Castro G. Liquefaction of sands[Ph.D]. U.S.A.: Harvard University, 1969.
    [43] Polous S J. The steady state of deformation[J]. Journal of Geotechnical Engineering, ASCE,1981,107(5):553-562.
    [44] 赵成刚, 尤昌龙. 饱和砂土液化与稳态强度[J].土木工程学报,2001,34(3):90-96.
    [45] Casagrande A. Characteristics of cohesionless soils affecting the stability of slopes and earth fills[A]. Journal of Boston Society of Civil Engineerings, Jan. 1936. contributions to soil mechanics[M] 1926-1940, BSCE. 1940,257-276.
    [46] Zhang Huiming, Vinod K Garga, Zeng Qiaoling. Steady state strength of sand: concept andexperiment[J].岩土工程学报,1999,21(2):230-235.
    [47] 张惠明,曾巧玲.对“砂土的稳态强度:概念与试验”讨论的答复[J].岩土工程学报,1999,21(5):645.
    [48] 赵成刚,于子忠.关于“砂土的稳态强度:概念与试验”的讨论[J].岩土工程学报,1999,21(5):644.
    [49] Been K, Jefferies M G and Hachey J. The critical state of sands[J]. Geotechnique, 1991, 41(3):365-381.
    [50] Konrad J M. Undrained respect of loosely compacted sands during monotonic and cyclic compression tests[J]. Geotechnique,1993,43(1):69-90.
    [51] Alarcon-Guzman A, Leonrad G and Chasmean J L. Undrained monotonic and cyclic strength of sands[J]. Journal of Geotechnical Engineering, 1988,114(10):1089-1109.
    [52] Vaid V P and Thomas J. Liquefaction and postliquefaction behavior of sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1995,121(2):163-173.
    [53] Negussey D and Islam M S. Uniqueness of steady state and liquefaction potential[J]. Canadian Geotechnique Journal, 1994,31(1):132-139.
    [54] Yamamuro J A and Lade P V. Steady-state concepts and static liquefaction of silty sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998,124(9):868-877.
    [55] Been K, Jefferies M G and Hachey J E. The critical state of sands, Relay to discussion[J]. Geotechnique, 1992,42(4):655-663.
    [56] Lade P V & Yamamuro J A. Effects of nonplastic fines on static liquefaction of sands[J]. Canadian Geotechnical Journal, 1997,34:918-928.
    [57] Lade P V. Creep effects on static and cyclic instability of granular soils[J]. Journal of Geotechnical Engineering, ASCE, 1994, 120(2):404-419.
    [58] Been K. The critical state line and its application to soil liquefaction[A]. Lade & Yamamuro eds. Physics and Mechanics of soil liquefaction[M], Balkema, Rotterdam, 1999,195-204.
    [59] Verdugo R. The critical state of sands: Discussion[J]. Geotechnique, 1992, 42(4):655-663.
    [60] Vaid Y P, Chung E K F & Keurbis R H. Stress path and steady state[J]. Canadian Geotechnical Journal, 1990, 27(1):1-7.
    [61] Castro G. On the behaviour of soils during earthquakes–Liquefaction[J]. Soil dynamics and liquefaction, 169-204. Amsterdam:Elsevier.
    [62] Marcuson Ⅲ W F, Hynes M E & Franklin A G. Evaluation and use of residual strength inseismic safety analysis of embankments[J]. Earthquake Spectra 6(3):529-572.
    [63] De Alba P A, Seed H B, Retamal E & Seed R B. Analysis of dam failures in 1985 Chilean earthquake[J]. Journal Geotechnical Engineering Division, ASCE, 114(GT12):1414-1434.
    [64] Mroz Z, Boukpeti N, Drescher A. Constitutive model for static liquefaction[J]. International Journal of Geomechanics, ASCE, 2003,3(2):133-144.
    [65] Kramer S L, Seed H B. Initiation of soil liquefaction under static loading conditions[J]. J Geotech Engrg, ASCE, 1988, 114(4):412-430.
    [66] Terzaghi K & Peck R B. Soil mechanics in engineering practice (2nd edition)[M]. New York: John Wiley & Sons, Inc., 1948.
    [67] Yamamuro J A and Lade P V. Experiments and modeling of silty sands susceptible to static liquefaction[J]. Mechanics of cohesive-frictional materials,1999,4:545-564.
    [68] 李广信.高等土力学[M].北京:清华大学出版社,2004.
    [69] Lade P V. Initiation of static instability in the submarine nerlerk berm[J]. Can Geotech J, 1993,30:895-904.
    [70] Lade P V. Static instability and liquefaction of loose fine sandy slopes[J]. J. Geotech. Engrg., ASCE, 1992,118(1):51-71.
    [71] Yamamuro J A and Lade P V. Static liquefaction of very loose sands[J]. Can Geotech J, 1997, 34(6):905-917.
    [72] Lade P V and Yamamuro J A. Effects of nonplastic fines on static liquefaction of sands[J]. Canadian Geotechnical Journal, 1997,34(6):918-928.
    [73] Prisco Claudio di, Imposimato Silvia. Static liquefaction of a saturated loose sand stratum[J]. Int. J. Solids and Structure, 2002,39:3523-3541.
    [74] Fourie A B & Tshabalala L. Initiation of static liquefaction and the role of K 0consolidation[J]. Canadian Geotechnical Journal, 2005,42:892-906.
    [75] Doanh T, Ibraim E, Ph Dubujet, et al. Static liquefaction of very loose Hostun RF sand: experiments and modeling[A]. Lade & Yamamuro, eds. Physics and Mechanics of Soil Liquefaction[M]. Balkema, Rotterdam, 1999.17-28.
    [76] Sladen J A, Dhollander R D, Krahn J. The liquefaction of sand, a collapse surface approach[J]. Canadian Geotechnical Journal, 1985,22(4):546-578.
    [77] Matiotti R, Ibrain E, Doanh T. Undrained behavior of very loose RF sand in compression and extension[A]. In: Pande Pietruszczak ed. Numog (Int Symp Numer Models in Geomech[M]) V.Swansea, Balkema, Rotterdam, 1995:119-124.
    [78] Darve F. Stability and uniqueness in geomaterials constitutive modeling[A]. In: Chambon R, ed. Localization and Bifurcation Theory for Soils and Rock[M],1994:43-55.
    [79] 鲁晓兵,谈庆明,王淑云,张金来.饱和砂土液化研究新进展[J].力学进展,2004,34(1):87-96.
    [80] 余湘娟,姜朴,魏松.砂土的稳态强度试验研究[J].河海大学学报,2001,29(1):50-54.
    [81] 魏松,朱俊高,王俊杰,余湘娟.砂土的稳态强度固结不排水三轴试验研究[J].岩石力学与工程学报,2005,24(22):4151-4157.
    [82] 高军伟,王洪瑾,周克骥,等.用稳态理论研究尾矿坝的抗震稳定性[A].第四届全国土动力学学术会议论文集[C],杭州,1994:43-46.
    [83] 王媛,姜朴,朱俊高,孔彩粉.松粉砂地基地震后堤坝稳定性分析[J].水利学报,2000,11:60-64.
    [84] 王余庆,辛鸿博.中国尾矿坝地震安全度(12)-用稳态理论评价大石河尾矿坝的液化与稳定[J].工业建筑,1995(5):49-52.
    [85] 沈珠江.关于土力学发展前景的设想[J].岩土工程学报,1994,16(1):110-111.
    [86] 周镜.岩土工程中的几个问题[J].岩土工程学报,1999,21(1):2-8.
    [87] 黄永林.南京砂的液化与判别[J].世界地震工程,2001,17(1):69-74.
    [88] 黄文熙.土的工程性质[M].北京:水利电力出版社,1983.
    [89] 陈文化,孙谋,刘明丽,等.南京砂的结构特性与地铁地基液化判别[J].岩土力学,2003,24(5):755-758.
    [90] 陈国兴,刘雪珠,庄海洋.南京粉质粘土与粉砂互层土及粉细砂的抗液化性能试验研究[J].防灾减灾工程学报,2003,23(2):28-34.
    [91] Sheahan T C, Ladd C C and Germaine J T. Rate-dependent undrained shear behavior of saturated clay[J]. J. Geotech. Engrg., ASCE, 1996,122(2):99-108.
    [92] 中华人们共和国水利部.土工试验规程(SL237-1999)[S].北京:中国水利水电出版社,1999.
    [93] Yamamuro J A and Covert K M. Monotonic and cyclic liquefaction of very loose sands with high silt content[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001,127(4):314-324.
    [94] 谢定义.饱和砂土体液化的若干问题[J].岩土工程学报,1992,14(3):90-98.
    [95] Olson S M, Stark T D, Walton W H and Castro G. 1907 Static liquefaction flow failure of the North Dike of Wachusett Dam[J]. J. Geotech. Geoenviron. Eng., 2000, Vol.126(12):1184-1193.
    [96] Bopp P A. The effect of initial relative density on instability and behavior of granular materials athigh pressure[Ph.D.thesis]. University of California, Los Angeles, California, 1994.
    [97] Yamamuro J A and Lade P V. Instability of granular materials at high pressures[J]. Soils and Foundations, 1997,37(1):41-52.
    [98] Bishop A W. Progressive failure—with special reference to mechanism causing it[C]. In Proceedings of the Geotechnical Conference, Oslo, Narway, Vol. 2:142-150.
    [99] Pitman T D, Robertson P K and Sego D C. Influence of fines on the collapse of loose sands[J]. Canadian Geotechnical Journal, 1994, 31:728-739.
    [100] Dobry R and Alvarez L. Seismic failures of Chilean tailings dams[J]. J. Soil Mech and Found Div., ASCE, 1967, 93(6):237-260.
    [101] Seed H B, Idriss I M and Arango I. Evaluation of liquefaction potential using field performance data[J]. J. Geotech Engrg. , ASCE, 1983, 109(3):458-482.
    [102] Cubrinovski M and Ishihara K. Flow potential of sandy soils with different grain compositions[J]. Soils and Foundations,2000,40(4).
    [103] 李国强.集料的分形级配研究[J].重庆交通学院学报,1995,14(2):38-42.
    [104] 杨群,郭忠印,陈立平,毛菊良.级配碎石分形特征分析及其在路面工程中的应用[J].建筑材料学报,2006,9(4):418-422.
    [105] 刘志祥,李夕兵.尾砂分形级配与胶结强度的知识库研究[J].岩石力学与工程学报,2005,24(10):1789-1793.
    [106] 刘松玉,方磊,陈浩东.论我国特殊土粒度分布的分形结构[J].岩土工程学报,1993,15(1).
    [107] 徐永福,刘斯宏,董平.粒状土体的结构模型[J].岩土力学,2001,22(4):366-372.
    [108] 王清,王剑平.土孔隙的分形几何研究.[J].岩土工程学报,2000,22(4):496-498.
    [109] 陈仲颐,周景星,王洪瑾.土力学[J].北京:清华大学出版社,1994.
    [110] Shaoli Yang, Suzanne Lacasse and Rolf Sandven. Determination of the transition fines content of mixtures of sand and non-plastic fines[J]. Geotechnical Testing Journal, 2006,29(2):1-6.
    [111] Lade P V, Liggio C D and Yamamuro J A. Effects of non-plastic fines on minimum and maximum void ratio ratios of sands[J]. Geotechnical Testing Journal, 1998,21(4):336-347.
    [112] Mitchell J K. Fundamentals of soil behavior(2nd edn)[J]. New York::John Wiley Interscience, 1993.
    [113] Kuerbis R, Nagussey D and Vaid Y P. Effect of gradation and fines content on the undrained response of sand[J]. ASCE Geotechnical Special Publication, 1989(21):330-345.
    [114] Xenaki V C & Athanasopoulous G A. Liquefaction resistance of sand-silt mixtures: anexperimental investigation of the effect of fines[J]. Soil Dynamics and Earthquake Engineering, 2003, 23:183-194.
    [115] Thevanayagam S and Mohan S. Intergranular state variables and stress-strain behavior of silty sands[J]. Geotechnique, 2000(50):1-23.
    [116] Cubrinovski M and Ishihara K. Empirical correlation between SPT N-value and relative density for sandy soils[J]. Soils and Foundations, 1999,39(5):61-71.
    [117] Skempton, A. W. Standard penetration test procedures and the effects in sands of overburden pressure, relative density, particle size, aging and overconsolidation[J]. Geotechnique, 1986,36(3):425-447.
    [118] Yoshimine M and Ishihara K. Flow potential of sand during liquefaction[J].Soils and Foundations, 1998,38(3):189-198.
    [119] 李茂英,曾庆军.强夯法处理公路软弱地基的加固效果研究[J]. 公路交通科技,2004,21(10):44-47.
    [120] Boukpeti N and Drescher A. Triaxial behavior of refined Superior sand model [J]. Computers and Geotechnics, 2000, 26:65-81.
    [121] Boukpeti N, Mroz Z and Drescher A. A model for static liquefaction in triaxial compression and extension[J]. Can. Geotech. J. 2002,39:1243-1253.
    [122] Mroz Z, Boukpeti N and Drescher A. Constitutive model for static liquefaction[J]. International Journal of Geomechanics, 2003,3(2):133-144.
    [123] 郑颖人,沈珠江,龚晓南.广义塑性力学-岩土塑性力学原理[M].北京:中国建筑工业出版社,2002.
    [124] 张学言.岩土塑性力学[M].北京:人民交通出版社,1993.