大型水电站地下厂房结构振动计算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国水电事业的蓬勃发展,水电站的规模越来越大,重要性越来越突出,其安全问题也越来越为人们所关注。水电站厂房,特别是大型水电站地下厂房,作为水电站的重要组成部分,它的振动会带来种种危害,甚至危及整个水电站的安全,这就使得水电站厂房的振动问题受到了普遍重视。
    本文结合龙滩水电站实际工程,对大型水电站地下厂房结构的振动问题进行了计算研究。用有限元法计算分析了龙滩水电站地下厂房在各种不同情况下的动力特性;通过对比分析,深入研究了各个因素对水电站地下厂房动力特性的影响,为优化抗振设计提供了依据;对龙滩水电站地下厂房由水力、机械和电气三方面原因引起的18种振源进行了分析,根据分析结果进行了共振校核,并针对共振校核中出现的问题,提出了几点建议;通过分析和计算,确定了几种对水电站地下厂房振动产生重要影响的典型动荷载,并计算出了龙滩水电站地下厂房结构在这几种典型动荷载作用下的动力响应值。得出了如下主要结论:
    (1)水电站地下厂房由于约束作用强,自振频率较高,第一阶自振频率属中频;厂房上下游边墙围岩对蜗壳层混凝土结构的水平链杆约束对结构动力特性影响较小;流固耦合作用对水电站地下厂房动力特性的影响甚微,可以不予考虑。
    (2)水电站地下厂房动力特性的几个主要影响因素中,楼板的约束条件和二期混凝土弹模影响较大,在抗振设计中可以充分利用这一点来对地下厂房结构的整体动力特性进行有效优化;楼板间设柱也非常重要。
    (3)水电站地下厂房容易与由推力瓦制造不良引起的激振力和由蜗壳不均匀流场引起的激振力发生共振,尤其是当机组出力需要经常大幅度变化时,更要引起注意。对此,需要从水轮发电机和蜗壳流道的设计、制造、安装等方面加以解决,同时,也应尽量避免在某些可能产生强烈振动的负荷区运行。
    (4)拟静力法计算水电站地下厂房动力响应结果偏大,谐响应分析结果更接近实际情况;当地震作用力方向为横流向时,机墩处地震位移响应最大,是动力响应分析中的一个控制工况;龙滩水电站地下厂房动力响应分析结果显示其机墩处的最大振幅没有超过规范规定的值,从抗振的角度判断,设计刚度满足要求。
With the development of the hydro-electrical enterprise in China, the scale of the hydropower station is increasing and its importance is also becoming more and more significant. In the meantime, the safety issue of the hydropower station has also been drawn more attention. As an important constituent part of the power station, the powerhouse, especially the underground powerhouse of the large-scaled station, induces serious vibration problem, which brings various impairs, even causes danger of the whole station. Therefore, the vibration of the powerhouse has been given a common emphasis.
    In this study, the vibration of the underground powerhouse of the large-scaled hydropower station was investigated. Taking the Longtan hydropower station as an example, the finite element method was applied to analyze the dynamic characteristics of the powerhouse under different conditions. Based on the comparison and analysis of the studying results, the influencing factors were explored, which provided the gist for the optimization of the vibration design of the underground powerhouse. In addition, eighteen kinds of vibration source from the hydraulic, mechanic and electrical factors were analyzed. According to the analytical results, the resonance was calibrated and a few pieces of suggestion were put forward in the light of the problems occurred during the resonance calibration. Furthermore, by analyzing and computing, several kinds of typical dynamic loads, which were supposed to introduce the cardinal influence on the vibration of the underground powerhouse structure, were determined. The response of the underground powerhouse structure of the Longtan hydropower station was calculated under these typical loading conditions. The main conclusions were drawn as follows:
    Due to the strong constraints, the natural frequency of the underground powerhouse structure is high and the first s natural frequency is on the middle level. The parallel chain constraint, which is imposed by the sidewall on the concrete structure of the volute layer, plays a relatively small role on the dynamic characteristics of the structure. And the effect
    
    
    of the fluid-solid coupling on the dynamic characteristics of the underground powerhouse structure can be neglected.
    Among the main factors, which affect the dynamic characteristics of the underground powerhouse of the hydropower station, the constraint of the slab and the Young’s modulus of the second-term concrete are most significant. This could be made full use of to optimize the overall dynamic characteristics of the underground powerhouse structure. Additionally, the design of the columns between the slabs is also important.
    The resonance between the underground powerhouse structure and the centrifugal force which is induced by the poor manufacture of the thrust bushing and the non-uniform potential field in the scroll case should be paid attention, especially when the output of the power station needs to be changed frequently and greatly. Improving the design, manufacture and installation of the power generator and the flow path of scroll case could solve this problem. At the same time, it is better to avoid the operation in the region where strong vibrations are possible to happen.
    Compared with the dynamic responses computed from the method of simulation static state, the results of the harmonic response analysis is more close to the real condition. When the earthquake force is in the cross-flow horizontal direction, the displacement response of supporting structure is the largest, which is a controlling condition in the analysis of dynamic responses. It was found that the maximum amplitude of supporting structure did not exceed the standard value defined by the norm. It indicates that the stiffness designed satisfies the requirements from the vibration resistance point of view.
引文
[1] 邴凤山,21世纪初中国水电建设的展望,水电能源科学,1999
    [2] 舒扬棨,王日宣,水电站厂房动力分析,水利电力出版社,1987
    [3] 国家电力公司中南勘测设计研究院,红水河龙滩水电站可行性研究补充设计报告,2000
    [4] 杨述仁,周文铎,地下水电站厂房设计,水利电力出版社,1993
    [5] 董毓新、李彦硕,水电站建筑物结构分析,大连理工大学出版社,1995
    [6] 董毓新,马震岳,水轮发电机组的振动评价,大电机技术,1990
    [7] 马震岳,董毓新,郭永刚等,三峡水电站厂房结构动力分析与优化,水电
    能源科学,2000
    [8] 马震岳,董毓新,水力荷载作用下水电机组的动力响应 ,水力发电学报,1990
    [9] 马震岳,董毓新,朱尔容等,可逆式机组混凝土支承结构的动力响应,水力水电技术,1994
    [10] 马震岳,沈成能,王溢波,红石水电站厂房的机组诱发振动及抗振加固研究,水力发电学报,2002
    [11] 王日宣,水电站与水工建筑物振动和抗振理论论文集,天津大学出版社,1991
    [12] 天津大学水利水电建筑工程系,广州抽水蓄能电站二期工程机墩振动问题研究报告,1996
    [13] 天津大学水利水电建筑工程系,广州抽水蓄能电站二期工程机墩振动问题补充研究报告,1996
    [14] 董毓新,水轮发电机组振动,大连理工出版社,1989
    [15] 崔广涛,练继建,彭新民等,水流动力荷载与流固相互作用,中国水利水电出版社,1999
    [16] 伯野之彦,土木工程振动手册,中国铁道出版社,1992
    [17] 冯树荣,龙滩水电站设计及技术特点,红水河,2001
    
    [18] 王文宁,岩滩水电站厂房自振特性计算,广西大学学报,1997
    [19] 抽水蓄能电站建设学术交流会论文集,北京勘测设计研究院,1996
    [20] 秦亮,双排机水电站厂房支撑结构动力特性研究:[硕士学位论文],天津;天津大学,2003
    [21] 中华人民共和国水利部,水电站厂房设计规范SL266-2001,中国水利水电出版社,2001
    [22] 刘晓亭,李维藩,水力机组现场测试手册,水利电力出版社,1993
    [23] 沈可,张仲卿,水电站厂房楼板振动分析,人民长江,2003
    [24] 天津水利水电勘测设计研究院,黄河万家寨水电站水轮发电机组综合试验
    报告,2002
    [25] Bathe K.J. Finite Element Procedures in Engineering Analysis. Englewood Cliff: Prentice Hall,1982
    [26] Specifications for Seismic Design of Hydraulic Structures[S].China Electric Power Press,1997
    [27] Dieter Klemm, Stabilizing the Characteristics of a Pump Turbine in the Range Between Turbine Part load and Reverse Pumping Operation, Voith Research and Constructure,1982
    [28] B.Barp, Dynamic Behaviour of Large Pump-turbine Rotors, Water Power and Dam congstruction,1976
    [29] E.Kramer, Determining the Hydraulic Lateral Porce of Pump-turbines, Water Power and Dam congstruction,1981
    [30] 韦彩新,韩风琴,孙建平等,大型混流式水轮机小负荷工况振动研究,华中理工大学学报,1998
    [31] 刘令娴,张孝松,魏永新,龙滩水电站地下厂房设计中的一些问题,中南水力发电,1996
    [32] 沈可,张仲卿,水电站厂房动力分析模型的选取比较,红水河,2003
    [33] 宋思来,红石水电站厂房振动及其加固研究,东北电力技术,2003
    [34] 郭永刚,张祁汉,三峡水电站厂房结构自振特性研究,水力发电,2002
    [35] 郭江,万家寨水电站机组水力测量与振动监测系统,中国农村水利水电,2001
    
    [36] 唐卫平,五强溪水电厂机组的振动状况及初步试验结果,华中电力,1999
    [37] 何少润,天荒坪电站一号机振动问题初析,水力发电学报,2000
    [38] 文洪,张春生,刘郁子等,天荒坪电站地下厂房结构动静力分析及设计,水力发电,2000
    [39] 田树棠,双排机组厂房布置方案水力共振问题探讨,西北水电,1995
    [40] 赖维刚,郑立群,水电站厂房上部结构的空间分析,重庆建筑,2002
    [41] 骆永平,刘心刚,马刚毅,水电机祖异常振动分析,黑龙江水利科技,1998
    [42] 荣吉利,邹经湘,张嘉钟,水电机组轴系横向自振特性的有限元计算方法与结果分析,中国电机工程学报,1997
    [43] 朱位秋,随机振动,科学出版社,1998
    [44] 周建旭,索丽生,郭锐勤,水电站水力振动实例分析,水力发电学报,1998
    [45] 索丽生,周建旭,刘德有,水电站有压输水系统的水力共振,水利水电科技进展,1998
    [46] 黄燕,水电站机组的振动监测,水电站机电技术,2000
    [47] 李多诚,水轮发电机及承重机架振动处理,陕西水力发电,1992
    [48] 钱学智,董毓新,沙锡林,水轮发电机定子机座、铁芯耦联振动分析,大电机技术,1991
    [49] 郭晓红,张旭红,水轮发电机组振动的计算分析,电力学报,1998
    [50] 盛继红,求法邦,水轮发电机组开机时剧烈振动的分析及处理,水力发电,2002
    [51] 卫少华,石头河水电站3#机组振动原因分析及处理,电站电网运行,1998
    [52] 梁冰,孙可明,薛强,地下工程中的流—固耦合问题的探讨,辽宁工程技术大学学报,2001
    [53] 天津大学水利水电建筑工程系,黄河李家峡水电站双排机组真机试验研究报告,2003
    [54] 李国和,抽水蓄能电站可能出现的水力振动,华北电力技术,1996
    [55] 杨菊生,揽生瑞,李守义,河床式水电站结构分析与结构特性研究,西安理工大学学报,1994
    [56] 宋木仿,陈冬波,隔河岩水电站机组稳定性分析,人民长江,2000
    [57] 江丽川,浅析岩滩电厂厂房振动现象,广西电力技术,1996
    [58] 肖黎,刘礼华,袁文阳,紧水滩4#机组振动试验研究,水电能源科学,2002