深海耐压结构型式及稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
圆柱形和球形耐压壳是最重要的深海耐压结构型式。随着工作深度的增加,对耐压结构的强度与稳定性的要求就越高,合理选用不同强度等级的高强度钢或比强度高的钛合金和合理耐压结构型式是提高深海耐压结构强度和稳定性的主要途径。随着材料屈服强度的提高,结构对缺陷的敏感性则会增加,开展初始挠度对高强度钢耐压壳结构屈曲临界压力的影响研究就显得非常必要。针对深海耐压结构特点,开展深海耐压圆柱壳结构型式和加强方式研究,并在保证耐压结构安全可靠的前提下,进行耐压结构参数优化设计,对于减轻耐压圆柱壳结构自重,提高耐压壳结构设计质量和设计合理性具有重要意义。论文围绕深海耐压圆柱壳结构型式与稳定性开展研究,取得了以下一些主要研究成果:
     (1)提出了具有初始挠度的耐压圆柱壳结构稳定性计算的有限元建模方法,数值仿真结果和模型试验结果相吻合。根据系列计算结果,给出了初始挠度幅值对肋间壳板弹塑性失稳临界压力的影响范围,适当放宽初始挠度的幅值,对耐压圆柱壳结构失稳临界压力的影响不大,如从0.2t放宽到0.25t,肋间壳板的弹塑性失稳临界压力的下降幅度小于5%。
     (2)对高强度钢深海耐压结构型式进行对比研究和结构优化计算,结果表明,T型肋骨圆柱壳结构容重比与材料屈服强度成反比、与最大工作压力成正比,而与半径长度比几乎无关;设置中间支骨可以明显提高高强度钢耐压圆柱壳稳定性效果,当α值较小时,中间支骨存在临界刚度,当α值较大时,中间支骨不存在临界刚度。
     (3)在国内首次开展了聚氨酯材料及其夹层结构的力学性能的试验研究。通过试样试验和数值仿真的对比分析,给出了该新型材料的力学参数,为该新型材料在相关领域的应用研究奠定了基础。
     (4)在国内首次开展了钢-聚氨酯复合夹层深海耐压结构性能对比研究,探讨了夹芯层厚度、肋骨间距、肋骨尺寸的改变对夹层耐压圆柱壳非线性稳定性行为的影响,与传统耐压结构相比,在不降低原结构强度的前提下,钢-聚氨酯复合夹层结构可大幅提高耐压圆柱壳结构的非线性失稳临界压力和抗局部冲击能力。
Cylindrical and spherical pressure hull are the most important deep-sea pressure hull structures. The requirements for strength and stability of pressure hull structure become higher with the working depth increasing. The main ways to improve the strength and stability of deep-sea pressure hull structure are the reasonable use of different strength grades of high strength steel or high specific strength titanium alloy and the choice of reasonable pressure structural style.
     With the increase of material yield strength, sensitivity of structure to the initial deflection increase. So it is very necessary to research the influence of initial deflection to the strength and stability of pressure hull with high strength steel.
     According to its characteristic, structural style and enhance methods of deep-sea pressure cylindrical hull should be studied. The optimization design of the pressure hull parameters should be studied on the premise of ensuring the safety and reliability of pressure hull. It is very important to reduce the weight of pressure cylindrical hull, enhance the design quality and reasonableness of the structure of the pressure hull.The research work and achievements of this thesis is mainly listed as follows:
     (1) A finite element modeling method about the stability of pressure hull with initial deflection has been presented in this paper, the results of numerical simulation and model test is consistent. Based on the results of series calculations, the range of influence of the amplitude of initial deflection to the elastic-plastic buckling critical pressure of the shell between ribs was given. Appropriately extend the amplitude of the initial deflection, the effect on buckling critical pressure of pressure cylindrical shell is small, such as from 0.2t to 0.25t, the elastic-plastic buckling critical pressure of the shell between ribs drop less than 5%.
     (2) To compare and optimize the structure types of deep-sea pressure hull adopted high strength steel. The results show that, the ratio of volume to weight of T-rib cylindrical shell is inversely proportional to material yield strength and proportional to the maximum working pressure almost nothing to do with the length ratio radius; to set intermediate rib can improve stability effect of high strength steel pressure cylindrical shell evidently, when the value is small, there is a critical stiffness of intermediate rib, when the value is larger, does not exist critical stiffness of intermediate rib.
     (3) Experimental research on mechanical properties of polyurethane material and composite sandwich structure material has been carried out in the country for the first time. By contrast and analysis of sample test and numerical simulation, the mechanical parameters of the new material were given. This lay the foundation of the new materials for application in related fields.
     (4) For the first time in the domestic contrastive study of structure properties of steel-Polyurethane Sandwich deep sea pressure was carried out. It discusses the influence of changes of core thickness, ribs distance and rib sizes to the nonlinear stability of composite sandwich structure pressure cylindrical hull. Comparing with the traditional pressure structure, it does not reduce the strength of the original structure, and steel-polyurethane composite sandwich structure can improve the nonlinear instability critical pressure and resistance to local shocks of pressure cylindrical shell significantly.
引文
[1]白雪飞,郭日修. 2007.Riccati传递矩阵法在潜艇结构强度和稳定性分析中的应用[J].海军工程大学学报,19卷3期:66-72.
    [2]包孙蓉,王作玉. 1991.圆柱壳体在轴压及外压作用下的稳定性研究[J].舰船性能研究, 3期.
    [3]蔡同昌. 1990.承受均匀外压的有撑加肋圆柱壳的总体稳定性试验研究(续)[J].舰船科学技术, 1期:13-18.
    [4]曾广武,吴九强,黎庆芬,等. 2007.潜水器耐压结构可靠性计算及衡准[J].中国造船, 48卷4期: 19-25.
    [5]陈爱志,万正权,朱邦俊. 2008.基于遗传算法和可变多面体算法的耐压结构混合优化[J].船舶力学, 12(2), pp:283-289.
    [6]陈铁云. 2004.船舶结构极限承载能力[M].上海,上海交通大学出版社.
    [7]陈炜然,丁德勇. 2007.深水环境下潜艇舯部结构撞击强度数值分析[J].海军工程大学学报, 2期.
    [8]陈志坚,郭日修. 2004.加肋轴对称旋转壳非线性稳定性分析[J].中国造船, 45卷, 1期: 54-60.
    [9]崔维成,斐俊厚. 2000.圆锥壳的精确解与等效圆柱壳的解的比较[J ].船舶力学, 4期.
    [10]崔维成,张伟. 2002.具有薄壳理论同样精度的圆锥壳简化解[J].上海交通大学学报.
    [11]崔维成. 1996.正交加强的正交各向异性圆柱壳的稳定性分析[J].舰船科学技术, 3期:1-9.
    [12]丁海旭. 1999.由圆环板正交连接的带纵筋双层圆柱壳弹性屈曲[J].中国造船,总第146期, 8期: 47-56.
    [13]丁海旭. 2001.带纵筋双层圆柱壳弹性屈曲[J].船舶力学, 5卷,1期: 32-41.
    [14]董师润,顾晓波,徐秉汉,等. 2004.提高潜艇重要构件疲劳寿命的工艺措施--超声冲击技术[J].中国造船, 45卷, 3期: 38-42.
    [15]董文胜,邓子辰,刘东常,等. 2006.基于遗传-神经算法的圆柱壳结构外压稳定性研究[J].西北工业大学学报, 24卷, 1期: 119-123.
    [16]范名琦,王永军. 2007.潜艇端部舱壁结构分析[J].船舶力学, 4期.
    [17]高灵芝. 2003.大型深潜潜艇耐压船体结构设计研究[D].哈尔滨:哈尔滨工程大学: 7-8.
    [18]高艳.1989.环肋圆柱壳总稳定反常机理和工程实际意义的探讨[D].哈尔滨工程大学: 7~27.
    [19]苟鹏,崔维成. 2009.基于Kriging模型的深海潜器多球交接耐压壳结构优化[J].船舶力学, 13(1), pp: 100-106.
    [20]顾永宁,王自力. 2001. LPG船的一种新型舷侧耐撞结构研究[J].船舶工程, (2):12-14.
    [21]顾永宁,王自力. 2001. LPG船舷侧结构的碰撞性能研究[J].船舶工程,(1):21-24.
    [22]顾永宁,王自力. 2002.提高VLCC侧向抗撞能力的一种新式双壳结构[J].船舶力学, (6): 27-36.
    [23]郭日修.1987.壳板初挠度对潜艇耐压船体强度的影响及加强方法的研究报告[R].
    [24]韩铭宝,杨青春. 1994.在径向载荷和轴向击合作用下的圆柱壳塑性稳定性分析[J],应用力学学报,第ll卷, 2期:25-32.
    [25]侯维廉,张学亮. 1992.潜艇深潜试验艇结构应力测试技术[J].舰船科学技术, 6期.
    [26]胡建兰,靖建光. 2007.加劲压力钢管稳定性分析方法研究[J],洛阳大学学报, 2期.
    [27]黄婧. 2002.圆柱壳的弹塑性稳定性分析[D].武汉:武汉理工大学, 5: 1~8.
    [28]黄浩才. 2006.集体逃生舱总体结构形式研究[D].武汉:武汉理工大学: 21~28.
    [29]黄加强,贺小型. 1996.带纵骨实肋板式耐压液舱壳板强度计算方法研究[J].中国造船,3期.
    [30]姜金辉. 2002.舰船结构碰撞性能研究[D].江苏:江苏科技大学.
    [31]蒋鞠慧. 2001.复合材料加筋壳稳定性研究[J].玻璃钢/复合材料, 2期:5-9.
    [32]蒋凌海,王永亮. 2008.加筋圆柱曲板稳定性的微分求积单元法分析[J].南京航空航天大学学报, 40卷, 5期: 632-636.
    [33]蒉纪山. 1991.圆柱壳环焊缝区段的强度及稳定性[J].化工设备设计, 2期.
    [34]雷勇军,唐国金,卓曙君,等. 2003.复合材料圆柱壳失稳载荷的振动监测[J].实验力学, 18卷.3期:383-388.
    [35]李国栋,尚新春. 2007. Timoshenko环梁加强圆柱壳的稳定性[J].辽宁工程技术大学学报,自然科学版, 26卷, 5期: 694-696.
    [36]李国栋,尚新春. 2007.考虑剪切效应的环肋圆柱壳的稳定性[J].工程力学, 24卷, 9期:43-49.
    [37]李良碧,罗广恩. 2006.潜艇结构锥柱结合壳损伤容限研究[J].船舶力学, 10卷, 1期: 92-97.
    [38]李良碧,王仁华,俞铭华,等. 2005.深海载人潜水器耐压球壳的非线性有限元分析[J ].中国造船, 46卷第4期(总第171期) 12月.
    [39]李名兴,黄一鸣. 1989.具有椭圆孔圆柱壳的稳定性[J].北京理工大学学报, 2期.
    [40]李学斌,刘土光. 2004.轴向压力作用下正交各向异性圆柱壳的稳定性与自由振动特性分析[J].中国造船, 45卷,12期: 125-133.
    [41]李学斌. 1995.正交各向异性圆柱壳的弹性稳定性分析[J].舰船科学技术, 5期: 8-13,25.
    [42]李学斌. 2006.圆柱壳稳定性分析的一种新方法[J].海军工程大学学报, 18卷,年4期: 51-56.
    [43]李之达,黄婧. 2008.圆柱壳的弹塑性稳定性分析[J].湘潭大学自然科学学报, 30卷, 3期: 65-72.
    [44]李治彬,许辑平. 1991.圆柱壳稳定性的研究[J],哈尔滨船舶工程学院学报,第12卷: 273-277.
    [45]梁斌,乐金朝. 2002.弹性圆柱壳的稳定性优化设计[J].机械强度, 24卷3期: 463-465.
    [46]梁学先. 2006.大型深潜潜艇耐压船体结构设计研究[D].哈尔滨:哈尔滨工程大学.
    [47]刘东常,丁立杰. 2000.柱壳结构外压稳定性分析的柱壳有限条元法[J].华北水利水电学院学报,第21卷1期:32-35,42.
    [48]刘东常,马文英. 1992.半解析有限元法分析圆柱壳外压稳定性问题的研究[J],应用力学学报,第9卷2期: 153-157.
    [49]刘东常,赵瑜. 1989.再论圆柱壳稳定性问题的有限元分析[J].华北水利水电学院学报, 3期: 1-9.
    [50]刘东常,赵瑜. 1992.半解析有限元法分析环向加劲圆柱壳外压稳定性[J].工程力学,第9卷1期: 104-114.
    [51]刘钢,孙侠生. 2007.轴向压缩CFRP材料圆柱壳稳定性优化设计研究[J].结构强度研究, 4期: 51-60.
    [52]刘人怀,朱金福. 1993.夹层壳非线性理论[M].北京:机械工业出版社: 2-9.
    [53]刘人怀. 2007.夹层板壳非线性理论分析[M].广州:暨南大学出版社: 189-227.
    [54]刘润泉,石勇,朱锡,等. 2006.夹层复合材料的弯曲理论分析与计算方法研究[J].玻璃钢/复合材料: 6-9.
    [55]刘书田,陈秀华,曹先凡,等. 2005.夹芯圆柱壳稳定性优化[J].工程力学, 22卷1期: 135-140.
    [56]刘涛,徐芑南. 2000.复合材料圆柱壳的稳定性及其优化设计[J].船舶力学, 4卷, 6期:39-50.
    [57]刘涛,徐芑南. 1995.复合材料圆柱壳的稳定性及其优化设计[J].中国造船,总第129期:12-21.
    [58]刘涛. 2001.大深度潜水器结构分析与设计研究[D].无锡:中国船舶科学研究中心.
    [59]刘文国,任文敏. 2000.加肋斜度对加肋壳稳定性的影响[J].工程力学, 17卷4期: 1-6.
    [60]刘琰玲,何彦舫,刘东常. 2003.圆柱壳结构稳定性分析的半解析柱壳有限条元法[J].华北水利水电学院学报, 24卷1期: 20-23.
    [61]刘勇,张政,徐治平. 2008.环肋圆柱壳肋骨侧向稳定性加强措施研究[J].船舶工程, 30卷3期: 24-26.
    [62]骆东平. 1992.潜艇耐压结构加纵筋的稳定性分析[J].舰船科学技术, 1期.
    [63]吕春雷,王晓天. 2006.多种型式肋骨加强的耐压圆柱壳体结构稳定性研究[J].船舶力学, 10卷5期:113-118.
    [64]马文亮,刘东常,刘琰玲,. 2005.加劲环式压力钢管局部稳定性分析的有限柱壳单元法[J].水利水电科技进展, 25卷2期:33-35.
    [65]梅利元,谢祚水. 1999.环向П型加肋圆柱壳结构研究[J].舰船科学技术, 2期: 1-4.
    [66]梅志远,张伟,李卓,等. 2010.双壳结构水下耐撞变形吸能特性分析[J].海军工程大学学报, 22卷3期:54-59.101.
    [67]梅志远,朱锡,吕岩松. 2007.层间水对水下双层结构撞击历程的影响分析[J].船舶力学, 11卷2期: 259-264.
    [68]梅志远. 2006.基于MSC Dytran的潜艇结构撞击强度分析[J].计算机辅助工程, 15卷B09期:71-74.
    [69]美国各州公路工作者协会(AASHTO). 1991.船舶碰撞公路桥梁设计指南[M].
    [70]潘治. 2008.深海潜器耐压圆柱壳结构计算和校核方法研究[J].海洋技术, 27卷2期: 83-87.
    [71]彭凡,傅衣铭. 2002.粘弹性圆柱壳在轴向恒压下的动力稳定性[J].工程力学, 19卷6期: 49-53.
    [72]彭伟斌,朱森元. 2001.大挠度高阶剪切理论下复合材料圆柱壳的屈曲[J].导弹与航天运载技术, 2期:24-28.
    [73]邱瑞强. 1991.轴压偏心加筋薄壁圆柱壳的塑性稳定性[J].强度与环境, 2期.
    [74]沈惠申,周频. 1991.加肋圆柱壳在轴压作用下的屈曲和后屈曲[J].应用数学和力学,第12卷12期:1127-1139.
    [75]沈惠申. 2001.湿热环境中复合材料层合圆柱薄壳的屈曲和后屈曲[J].应用数学和力学, 22卷3期:228-238.
    [76]施丽娟,谢祚水. 1999.肋骨对环肋圆柱壳壳板稳定性影响的初步研究[J].华东船舶工业学院学报, 13卷5期:1-5.
    [77]施丽娟. 2000.潜艇耐压船体结构设计计算方法研究[D].华东船舶工业学院硕士学位论文: 58.
    [78]石德新,耿峰. 2000.潜艇结构疲劳裂纹形成寿命的分析[J].哈尔滨工程大学学报, 21卷3期: 70-74.
    [79]石德新,王晓天. 1997.潜艇强度[M].哈尔滨工程大学出版社.
    [80]石勇,刘宇,刘鑫,等. 2008.夹层复合材料在潜艇声隐身结构中的应用及其相关技术研究[J].材料开发与应用, 23卷6期:21-25.
    [81]万正权,卞如刚. 2002.潜艇结构低周疲劳寿命工程评估方法[J].舰船科学技术, 24卷3期: 3-5.
    [82]万正权,王永军,卞如冈,等. 2004.耐压船体结构典型接点疲劳寿命评估[J].船舶力学, 8卷6期: 63-70.
    [83]万志敏,谢志民. 2001.玻璃/环氧圆柱壳的冲击响应与稳定性分析[J].复合材料学报, 18卷4期: 82-86.
    [84]王兵伟,刘东常,董文胜,等. 2003.圆柱壳结构外压稳定性的有限条元法分析[J].隧道建设, 23卷6期: 6-7.
    [85]王建立,沈孟育. 2003.圆支—简支端部边界条件下同轴圆柱壳体的流致不稳定性研究[J].原子能科学技术, 37卷1期: 73-75.
    [86]王珂晟,朱晓莹,曹凤利. 2004.含加强肋(环)的非完善复合材料圆柱壳的稳定性分析[J].机械设计, 21卷5期:21-24,58.
    [87]王林,蒋理. 2007.初始缺陷对耐压圆柱壳塑性稳定性影响初探[J].江苏科技大学学报:自然科学版, 5期.
    [88]王林,谢祚水. 1998.纵横加肋耐压圆柱壳结构的稳定性[J].华东船舶工业学院学报, 12卷5期: 21-24.
    [89]王明贵,黄义. 2 000.双向密肋壳体结构风稳定性研究[J].工程力学, 17卷4期: 44-49.
    [90]王仁华,俞铭华,李良碧,等. 2005.初始缺陷对深海载人潜水器耐压球壳塑性稳定性的影响[J].海洋工程,第23卷第4期.
    [91]王仁华. 2005.大深度载人潜水器耐压壳塑性稳定性研究[D].镇江:江苏科技大学.
    [92]王晓天,邓剑平. 1997.环肋圆柱壳稳定特性与破坏模式的探讨[J].哈尔滨工程大学学报, 18卷3期: 13-21.
    [93]王晓天,高艳,许辑平. 1990.大型潜艇总稳定性计算中出现异常特性的研究[J].中国造船, 3期:36-46.
    [94]王晓天,许辑平. 1990.跨距对环肋圆柱壳应力强度及稳定性的影响[J].哈尔滨船舶工程学院学报,第11卷2期:111-118.
    [95]王晓天,姚文,梁超. 2007.不同纵横均匀外压作用下环肋圆柱壳稳定性分析[J].哈尔滨工程大学学报, 28卷10期:1079-1083.
    [96]王晓天. 1999.新材料大直径环肋圆柱壳强度与稳定分析[D].哈尔滨工程大学: 23-56.
    [97]王燕舞. 2004.双称双圆弧柱壳强度及稳定性解析计算方法研究[D].哈尔滨:哈尔滨工程大学.
    [98]王自力,张延昌. 2008.基于夹层板的单壳船体结构耐撞性设计[J].中国造船, (1): 61-65.
    [99]魏东,黄劲松. 1997.复合材料加筋圆柱壳分层屈曲研究[J].华中理工大学学报, 25卷2期: 94-97.
    [100]吴洪飞,苑世剑. 2002.轴压柱壳弹塑性稳定性分析的通用方程推导[J].哈尔滨工业大学学报, 34卷1期: 35-39.
    [101]吴洪飞,苑世剑. 2003.初始缺陷和比例加载路径对圆柱壳弹塑性稳定性的影响[J].机械工程学报, 39卷2期:53-57.
    [102]吴连元,许卫章. 1990.圆柱壳在线性变化横向载荷作用下的非线性稳定性[J],固体力学学报, 1期.
    [103]吴亚舸,刘从军,吴剑国. 2003.基于模拟退火算法的潜艇结构系统可靠性计算[J].海洋工程, 21卷3期: 24-28.
    [104]吴亚舸,吴剑国. 2003.一种基于方向概率的潜艇结构可靠性计算方法[J].船舶力学, 7卷1期: 84-93.
    [105]武杰. 1995.环肋圆柱壳稳定性方程式特性探讨[J].中国造船,总第128期1期: 45-53.
    [106]武杰. 1997.再论环肋圆柱壳总体稳定的“新特性“[J].舰船科学技术1期: 13-17.
    [107]夏贤坤,谢祚水. 2004.夹层圆柱壳结构的应力与总稳定性分析[J].华东船舶工业学院学报, 18卷1期: 10-12.
    [108]谢禹钧,刘占民. 1995.混杂纤维缠绕圆柱壳外压稳定性与缠绕参数[J],复合材料学报, 12卷1期: 106-110.
    [109]谢柞水. 1998.环肋圆柱壳稳定特性研究[J].中国造船,总第143期4期: 73-80.
    [110]谢祚水,李巍. 1998.潜艇耐压液舱结构稳定性的初步研究[J].船舶工程6期: 12-15.
    [111]谢祚水,施丽娟. 2002.环肋圆柱壳结构壳板稳定性研究[J].海洋工程,第20卷4期: 32-36.
    [112]谢祚水,施丽娟. 2002.潜艇耐压结构的稳定性分析[J].华东船舶工业学院学报, 16卷4期: 1-4.
    [113]谢祚水,王志军. 1996.再谈环肋圆柱壳的总稳定特性[J].舰船科学技术, 3期: 58-61.
    [114]谢祚水,王自力,吴剑国. 2004.潜艇结构分析[M].武汉:华中科技大学出版社: 84.
    [115]谢祚水,许辑平. 1994.潜艇薄壁大半径圆柱壳的总稳定性[J].中国造船,总第125期2期: 82-88.
    [116]谢祚水. 1998.关于环肋圆柱壳稳定特性的新概念[J].舰船科学技术3期: 1-6.
    [117]熊晓云,熊建武. 2005.静水外压下环肋圆柱壳的稳定性分析[J].工兵装备研究, 24卷1期: 17-21.
    [118]徐秉汉,万正权. 1987.柱壳屈曲的非线性有限元分析[J ].舰船性能研究(4).
    [119]徐秉汉,徐绚,万正权. 1993.圆柱壳开孔后的结构稳定性[J].舰船科学技术,2期.
    [120]徐秉汉,徐绚. 1993.圆柱壳开孔后的结构稳定性[J].舰船科学技术, 2期.
    [121]徐秉汉,朱邦俊,欧阳吕伟,等. 2007.现代潜艇结构强度的理论与试验[M].国防工业出版社, ISBN: 7118050369.
    [122]徐凯宇,周哲伟. 1997.各向异性层合圆柱壳的亚谐分叉[J].上海大学学报:自然科学版, 3卷1期: 88-92.
    [123]徐孝诚,夏初. 1994.超硬铝合金整体精车加工成形壳体外压稳定性研究[J].强度与环境, 1期.
    [124]杨民献,张淑芬,王彦生. 2003.圆柱壳的屈曲荷载最大化设计[J].河南科技大学学报:自然科学版, 24卷1期: 71-74.
    [125]杨佑发. 1998.弹性地基上圆柱壳的稳定性[J].湖南大学学报:自然科学版,第25卷4期:96-99.
    [126]姚熊亮,刘东岳,张阿漫,等. 2008.潜艇结构水下爆炸动态响应仿真研究[J].哈尔滨工程大学学报, 29卷9期: 902-906.
    [127]俞铭华,王仁华,王自力,等. 2005.深海载人潜水器有开孔耐压球壳的极限强度[J ].中国造船, 46卷第4期(总第171期), 12月.
    [128]张能辉,程昌钧. 2001.超音速流动中粘弹性圆柱壳的稳定性[J].振动与冲击, 20卷3期: 40-41,28.
    [129]张少焱,陈万吉. 2002.基于几何非线性不协调元变分原理的圆柱壳非线性初始稳定性分析[J].工程力学, 19卷1期: 14-18.
    [130]张伟,毛秀兰. 2001.影响潜艇结构壳板失稳的各因素灵敏性分析[J].船舶力学, 5卷4期: 47-53.
    [131]张伟,张圣坤,崔维成,等. 2000.潜艇耐压圆柱壳结构的可靠性研究[J].中国造船, 41卷,第4期(总第151期), 12月.
    [132]张雪丽,果立成. 2003.三维编织复合材料圆柱壳的稳定性研究[J].哈尔滨工业大学学报, 35卷2期: 222-226.
    [133]张振华,朱锡. 2000.受压带肋圆柱壳体固有振动频率和稳定性计算[J].海军工程大学学报,总第92期, 3期: 35-41, 46.
    [134]赵振,刘才山. 2004.薄壁加筋肋圆柱壳稳定性分析的参数化研究[J].力学与实践, 26卷2期: 17-21.
    [135]中国船级社. 1996.潜水系统和潜水器入级与建造规范[M].人民交通出版社.
    [136]周承倜,王列东. 2001.复合材料叠层圆柱壳的非线性动力稳定性理论[J].应用数学和力学, 22卷1期: 47-55.
    [137]朱邦俊,万正权,徐秉汉,等. 2005.半圆环壳型肋骨加强的耐压圆柱壳结构稳定性研究[J].船舶力学, 9卷1期:79-83.
    [138]朱国锋,吴剑国. 2002.潜艇结构的失效模式及影响分析[J].船舶工程, 6期: 57-61.
    [139]竺润祥,姜晋庆. 1989.充有弹性介质多层复合材料圆筒壳稳定性[J].宇航学报, 1期.
    [140]祝恩淳, Call.,CR. 2000.均匀轴压圆柱薄壳的稳定性分析[J].哈尔滨建筑大学学报, 33卷4期:12-15.
    [141]祝恩淳,沈世钊. 1996.钢纤维混凝土圆柱壳稳定性能的试验研究[J].哈尔滨建筑大学学报, 1期.
    [142] A.A. Golafshani, A. Gholizad. 2008. Friction damper for vibration control in offshore steel jacket platforms[J]. Journal of Constructional Steel Research, available in internet.
    [143] A.G.Hanssen, Y.Girard, L.Olovsson. 2006. A numerical Model for bird strike of aluminium foam-based sandwich Panels[J]. International Journal of Impact Engineering.
    [144] A.K.L.Srivastava, P.K.Datta. 2003. Buckling and vibration of stiffened Plates subjected to parital edge loading. Intermation Journal of mechanical Sciences, 45: 73-93.
    [145] Alexander P.survorov, Geogre J.Dvorak. 2005. Enhancement of low velocity impact damage resistance of sandwich Plates[J]. Solid and structures, (42): 2323-2344.
    [146] Banichuk N V, Serra M and Sinitsyn A. 2006. Shape optimization of quasi-brittle axisymmetric shells by genetic algorithm[J]. Computers and Structures, 84: 1925-1933.
    [147] Boote D ,Figari M, Iaccarino R. 1996. Submarine pressure hull collapse : a correlation between numerical and experimental analysis[C]. Proceedings of the 15th Conf. on OMAE, I Part A: 307-317.
    [148] Boote D, Mascia D, Tedeschi R. 1989. Etude theorique-experimentale sur le flambement des cylindres a paroi miace charges par pression exterieure[J]. Bulletin de L’ATMA, (89) :295-321.
    [149] Bosman TN. 1993. Experimental and numerical determination of the nonlinear overall collapse of imperfect pressure hull compartments[C]. Warship’93 International Symposiumon Naval Submarines, 4.12.
    [150] C.T.F. Ross. 1987. A Novel Submarine Pressure Hull Design[J]. Journal of Ship144 Research, Vol.31, No.3,186-188.
    [151] C.T.F.Ross etal. 2005. Plastic generla instability of ring-reinforced conical shells under unifrom external pressure. Ocean Engineer,No.32,2005, 21-36.
    [152] CAPT Harry A. Jackson. 1992. Fundamentals of Submarine Concept Design[M]. SNAME Transactions Vol.100, 419-448.
    [153] Castanie B, Barrau J J, Jaouen J P. 2002. Theoretical and Experimental Analysis of Asymmetric Sandwich Structures [J]. Composite Structures, 55: 295-306.
    [154] Compton-Hall. 1989. The Incredible Shrinking Submarine. Canadian Defense Quarterly, December, 17-22.
    [155] D.Faulkner etal. 1991. Application of Reliability theory in submarine Design. In Advances in Marine Structures 2, Elsevier Applied Publishers , 566-585.
    [156] Ding Haixu. 2003. Strength and stability of double cylindrical shell structure subjected to hydrostatic external pressure-PartI. Marine Structure, Vol.16,373-395.
    [157] Faulkner D. 1991. Application of reliability theory in submarine design [M]. In Advances in Marine Structures, 2: 566-585.
    [158] G. Lu. R. Mao. 2001. A study of plastic buckling of axially compressed cylindrical shells with a thick-shell theory [J]. Mech. Sci: 2319-2330.
    [159] GOU Peng,LIU Wei,CUI Wei-cheng. 2007. A Comparison of Approximation M ethods for M ultidisciplinary Design Optimization of Ship Structures[J]. Journal of Ship Mechanic, vol.11. No.6. Dec.pp: 913-923.
    [160] Graham.D.DR. 1994. A structural research on submarines and submersibles[J]. Marine Structures, (7): 231-256.
    [161] He G, Zeng GW. 1994. Analysis and optimization of stiffened cylindrical shells under external pressure [J]. International Shipbuilding Progress, 41(427): 199-222.
    [162] Hutchinson J. 1974. Plastic Buckling. Advances in Applied Mechanics, v. 14.
    [163] Huther M. 1992. Analyse de formules de dimensionnement de coques de sous-marin par approche probabiliste[J]. Bulletin tech - nique de Bureau Veritas, (1): 99 - 115.
    [164] J.Girsh, L.S.Ramachandra.2004. Thermomechanical Postbuekling Analysis of Symmetric and Antisymmetric Composite plates with Imperfections[J]. Composite Structures, 02:1-3.
    [165] Khan R, Uddin W. 1995. Instability of cup-cylinder compound shell under uniform external pressure[J]. Journal of Ship Research, 39(2): 160-165.
    [166] Kiamura O. 1998. Comparative Study on Collision Resistance of Side Structure[J]. Marine Technology, vol.34, No.2, p: 293-308.
    [167] Kioter.W.T. 1963.Elastic stability and postbuckling behavior. Nonlinear Problems. Pro.of symp.Conducted by Math.Res.Center,US Army,at the Uni. of Wisconsin,Apr. 1962;edited by R.E.Langer:257-275.
    [168] Kioter.W.T. 1967. On the stability of elastic equilibrium. Eglish Translation issued as NASA TTF-10, 833.
    [169] Krapivin.V.Y.1996. Provision of structural ruggedness of submarines at the design stage[R]. NSN’96 Section A: 1-8.
    [170] Kusuba S, Kiamura O, Kuroiwa T. 1995. Numerical Simulation on Collision and Grounding of oil Tankers. Proceeding of the 3rd International LS-DYNA3D Conference, Kyoto, Japan: 1-21.
    [171] Lagaros N D, Fragiadakis M and Papadrakakis M. 2004. Optimum Design of Shell Structures with Stiffening Beams[J]. AIAA Journal, 42 (1): 175-184.
    [172] M.R. Honarvara, M.R. Bahaaria, B. Asgarianb, P.Alanjari. 2007. Cyclic inelastic behavior and analytical modelling of pileleg interaction in jacket type offshore platforms [J]. Applied Ocean Research, 29:167-179.
    [173] M.R. Honarvara, M.R. Bahaaria, B. Asgarianb, P.Alanjari. 2007. Cyclic inelastic behavior and analytical modelling of pile–leg interaction in jacket type offshore platforms[J]. Applied Ocean Research, 29:167-179.
    [174] Mangelsdorf, C.P. 1971. Koiter’buckling mode for short cylindrical shells[J]. AIAA J, Vol.9, No.10, Oct, p: 2098-2099.
    [175] Mao.R, Williams, F.W. 2001. Plastic buckling of circular cylindrical shells under combined in-plane loads [J]. Solids Struc, 38: 741-757.
    [176] Martinez MA B, Souza de G F M. 1991. Calculating the error of the improved bridge gauge transverse method for circularity measurement[C]. Warship’91 International Symposiumon Naval Submarines, 3.13.
    [177] Mei-Wen Guo, lssam E.Harik. 2002. Buckling behavior of stiffened laminated Plates[J]. International Journal of Solids and Structures, 39: 3039-3055.
    [178] Morandi A C,et al. 1994. An outline of application of reliability based techniques to structural design and assessment of submarines and other externally pressurised cylindrical structures[J]. Marine Structures, 7 (2-5): 173-187.
    [179] Morandi A C,et al. 1996. Frame tripping in ring stiffened externally pressurised cylinders[J]. Marine Structures, 9 (6): 585-608.
    [180] P. T. Pedersen, S. Zhang. 1998. On Impact Mechanics in Ship Collisions[J]. Marine Structures, 11: 429-449.
    [181] Park.C.M, Yim.S.J. 1993. Ultimate strength analysis of ring-stiffened cylinders under hydrostatic pressure[C]. Proceedings of the 12th Conf. on OMAE, (1): 399-404.
    [182] Pegg. N.G. 1987. Effects of secondary structure on the stress and stability of submarine pressure hulls. AD-A 191715: 25-30.
    [183] Qiao Jin, Xin Li, Ning Sun, et al. 2007. Experimental and numerical study on tuned liquid dampers for controlling earthquake response of jacket offshore platform[J]. Marine Structures, 20: 238-254.
    [184] Ross CTF and Palmer A. 1993. General instability of swedge-stiffened circular cylinders under uniform external pressure[J]. Journal of Ship Research, 37(1), pp:77-85.
    [185] Ross CTF. 1987. A novel submarine pressure hull design[J]. Journal of Ship Research, 31(3), pp: 186-188.
    [186] Rubén Ansola. 2002. An Integrated Approach for Shape and Topology Optimization of Shell Structures. Computers & Structures, No.80, 449-458.
    [187] S.P.Rawal , B.R.Lanning. 1994. Composite Materials for Advanced Submarine Technoloth. NTIS, PB95-216149.
    [188] Sagalevitch. 1996. MIR Submersibles in Science and Technology[J]. MTS Journal, (1): 23-26.
    [189] Sewell,M.J. 1965. The static perturbation technique in buckling problems. J. Mech. Phys. Solids 13:247-264.
    [190] Trouwborst W. 1993. Validation of the design methodology for submarines. a comparison of analyses and experiments[ R]. part l, AD-A 273758: 195.
    [191] V. Baujat et al.1991. Submarine Pressure Hull Construction in 100 HLES Steel. Advances in Marine Structures -2, Elsevier Applied Publishers, 81-106.
    [192] W ilhelm Rust, Karl Schweizerhof. 2003. F inite element lim itload analysis of th in- walled structures by AN SYS ( implicit). L S-DYNA (exp licit) and in combination, Th in- W alled Structures, 41: 227-244.
    [193] William. 1965. The Effect of Intermediate Heavy Frames on the Elastic General-Instability Strength of Ring-stiffened Cylinders under External HydrostaticPressure.DTMB, AD-458050.
    [194] Y.Yamamoto et al.1989. General Instability of Ring-stiffened Cylindrical Shells under External Pressure. Marine Structure,No.2, 133-149
    [195] ZHANGYu-li, ZENGGuang-wu. 2004. Analysis and experiment of a vessels shell cover in submarine structure[J]. The Ocean Engineering, Vol.3, No.1:14-19.