聚乙烯流化床中静电分布的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚乙烯流化床中,颗粒与颗粒之间、颗粒与壁面之间以及颗粒与气体之间存在反复碰撞、摩擦及分离,若流化介质为高绝缘性物质,则不可避免地会发生静电的产生与积累,产生的静电场会改变流化床内的流体行为,导致颗粒团聚、粘壁,形成死区和沟流等。当静电积累到一定程度,达到周围介质的击穿场强,还可能引起火花放电甚至爆炸。静电问题已成为长期困扰气相法聚乙烯流化床生产过程的突出技术难题。因此,研究聚乙烯气固流化床中静电产生机理以及静电特征具有非常重要的理论意义和实用价值。
     论文针对上述问题,开展了以下四方面的工作:1.分析流化床中静电的产生机理;2.流化床中静电压分布特征的研究;3.基于静电压分布的流化床料位检测研究;4.基于流化床中静电测量的结片检测研究。具体的工作及成果如下:
     1.针对气相流化床聚合反应器生产聚乙烯的特点,提出了流态化颗粒的双极带电理论。该理论主要包括三部分内容:流化床中的静电产生-累积模型、颗粒的双极带电机理以及流化床中粒径分布与静电压分布的关系。前者利用能带模型对流化床中静电的产生和累积机理作出了解释;颗粒的双极带电理论则通过建立颗粒有效功函数与颗粒粒径和介电常数之间的物理模型,证明同种材质的聚合物颗粒的有效功函数随粒径增大而减小,因此不同粒径颗粒在接触分离后所带电荷极性相反。当可转移电荷载体为电子或阴离子时,则大颗粒带正电,小颗粒带负电,当电荷载体为阳离子,则大颗粒带负电,小颗粒带正电;最后提出颗粒在流化床轴向上具有一定的粒度分布,因此流化床中的静电荷同样存在一定分布,其中的静电场为非均匀电场。
     2.应用自行开发的静电压在线测量系统,对聚乙烯气固流化床中不同床高处的静电压进行测量,发现床内的静电场为一非均匀电场,静电压沿床层轴向呈“Z”型分布,且在床层稀密相分界面,即料位附近会发生极性的改变。实验同时发现,提高流化气速和静床高,稀密相分界面上升,极性改变位置也随之出现较明显的升高。而颗粒的粒径发生改变后,若颗粒在流化过程中存在较明显的料位,则极性改变现象明显,反之这种现象不会发生。最后结合静电产生-累积模型和颗粒的双极带电机理对上述现象进行了合理解释。
     3.基于静电压在料位处发生极性改变的特征,提出了一种流化床料位检测的新方法,该方法可实现床内静电压和料位高度的双重监控,能替代现有对人体具有致命伤害的γ射线,或可作为其它料位检测方法的补充。实验结果表明,该方法计算得到的料位高度值与实测值之间的最大相对误差4.08%,平均相对误差为2.02%,具有较高精度,符合工业生产中的要求。
     4.应用自行开发的静电流在线测量系统,提出了一种基于静电流的流化床结片检测方法。针对聚乙烯流化床中正常流化状况下,以及壁面和分布板上存在结片时的故障情况,分别对不同轴向和径向位置处的静电流进行了测量。实验结果表明,在正常流化状况下,床内流化均匀,左右两侧静电流大小和波动情况基本一致,对称性良好。当存在壁面结片和分布板上非对称分布结片时,均在一定区域破坏了流化状况的均匀性。前者主要影响结片下方区域的流化状态,造成下方左右两侧各测点处的平均静电流和标准偏差的差别较大。后者则对距离分布板较近的两个测点影响较大,同样造成了左右两侧静电流大小和波动程度的差异增大。结片位于分布板中心时,对流化床中流动状况的对称性几乎没有影响,但与空白实验结果相比,相同高度、相同气速下的平均电流和标准偏差均增大。
Electrostatics can cause serious problems for fluidized beds, altering hydrodynamics, causing agglomeration, interfering with instrumentation, generating nuisance discharge and even creating the danger of explosion. The accumulated electrostatic charges on powder particles or plastic films inside large commercial fluidized bed reactors can interfere with their performance, leading to undesirable byproduct/waste. Despite these negative effect, the mechanism of charge generation and dissipation are still poorly understood. Although there have been some efforts to prevent electrostatic charges in fluidized beds, the mechanism of reducing electrostatic charge accumulation are still poorly understood.
     Aiming at the problems mentioned above, four aspects work were carried out: 1. The generation mechanism of electrostatics in fluidized beds was analysed; 2. Experimental study on electrostatic potential profile in the fluidized beds; 3. Study on a new method measuring the bed level basing on the characteristics of electrostatic potential profile; 4. Sheeting detection research basing on the mearsurement of triboelectrical current in the fluidized bed. The main results in this article can be summarized as following:
     1. The mechanism of static charge generation and electrostatic character inside gas-solid fluidized beds was analysed, and a theory on bipolar charging of fluidized particles was proposed, which consists of three parts: a physical model for charge generation and accumulation in fluidized beds, the principle on bipolar charging of different sizes particles and the relationship between particle size distribution and chage distribution in fluidized beds. The first one could interprete how to generate and accumulate static charges with band level model. By developing the physical model realating the effective work function of particles, particle diameter and relative permittivity, the principle on bipolar charging of different sizes particles showed that the effective work function of different sizes particles with similar materials would decrease with the increase of particle diameter, therefore, the polarity of the charge on the different sizes particles would be opposite after contacting each other and separating. If the transferable charge carriers were electrons or negative ions, the coarse particles would charge positively, and the small particles would charge negatively. While the transferable charge carriers were positive ions, the coarse particles would charge negatively, and the small particles would charge positively. Finally it was proposed that due to the axial particle size distribution in fluidized bed, there would be as well a static charge distribution in it and the electric field would be not uniform.
     2. An on-line measurement technique, which consists of the electrostatic probe, signal transmitter and data acquisition systems, was developed to study the electrostatic characters in gas-solid fluidized beds. By measuring the electrostatic potential at different bed height, it was found that the electric field inside the bed was non-uniform. The axial profiles of potential were Z-shaped, and the voltage polarity would reverse near the interface between dense and dilute phases. The axial height where voltage polarity reversal happened would increase with the increase of gas velocity and static bed level. Comparing the fluidization of particles with different sizes, it was discovered that the potential polarity would change significantly when there was a obvious interface between dense and dilute spaces, and the converse was not true. The experimental phenomena mentioned above could be explained plausibly combining the physical model for charge generation and accumulation with the principle on bipolar charging of different sizes particles.
     3. A new method to determine bed level basing on the characteristics of static potential in fluidized beds was proposed. The results showed that bed level could be successfully predicted with the maximum relative error 4.08% and the mean relative error 2.02% through the method in this article. The novel electrostatic approach measuring the bed level in gas-solid fluidized beds could replace theγ-ray in future, and monitor electrostatic potential in the bed and bed level simultaneously.
     4. A new method to detect sheeting basing on the triboelectric current was investigated preliminarily. The results showed that sheeting on the column wall and distributor would influence the mean values and standard deviationof triboelectric current. By detecting the triboelectric current at different radial and axial locations of the column, the position of sheeting could be found out approximately. Triboelectric current had sensible reflection on the sheetings both at wall and distributor and was promisingly to be a novel way to detect sheetings in the fluidized bed reactor.
引文
[1]崔小明,世界聚乙烯生产技术研究新进展,化工文摘.2005,(2):53-55.
    [2]金栋,吕效平,世界聚乙烯工艺现状及生产工艺研究新进展,化工科技市场.2006,29(2):1-5.
    [3]李延辉,浅析LLDPE装置消除静电的处理措施.浙江化工.2001,增刊:82-86.
    [4]管义夫,静电手册,科学出版社.1981:51-53.
    [5]Diaza A F,Felix-Navarro R M.A semi-quantitative tribo-electric series for polymeric materials:the influence of chemical structure and properties.Journal of Electrostatics.2004,62:277-290.
    [6]Diamond,David S,Weiss.Handbook of Imaging Materials.New York,1991.
    [7]Toshihiko O,Masaaki T.Contact Electrification in Inorganic Binary Compounds.Journal of Electrochemical Society.1986,133(4):841-846.
    [8]J.Henniker.Triboelectricity in Polymers.Nature.1962,196(4583):474.
    [9]Adams C K.Nature's Electricity.Blue Ridge Summit,PA,1987:63.
    [10]Poupak M,Hsiaotao T B,John R G.Bench-scale tests to determine mechanisms of charge generation due to particle-particle and particle-wall contact in binary systems of fine and coarse particles.Powder Technology.2007,173:73-81.
    [11]Taylor Measuring technique for electrostatics.Journal of Electrostatics.2001,51-52:502-508.
    [12]Gregory H.Electrostatics and gas phase fluidized bed polymerization reactor wall sheeting.Chemical Engineering Science.2006,61(4):1041-1064.
    [13]Fujino M,Ogata S,Shinohara H.The Electric Potential Distribution Profile in a Naturally.Charged Fluidized Bed and Its Effects.Int Chem Eng.1985,25(1):149-159.
    [14]Fulks B D,Sawin S P,Aikman C D,Jenkins Ⅲ J M.Process for reducing sheeting during polymerization of alpha-olefins.US Patent 4,876,320.
    [15]Ali A H,Chranowski S M,Foster J G,Geoghegan T A.Control of static with TEOS.US Patent 5,731,392.
    [16]Aida F,Wang S,Fujita M,et al.Study of the Mechanism of Space Charge Formation in Polyethylene.Journal of Electrostatics.1997,42(1):3-15.
    [17]Goode M G,Williams C C,Hussein F D,McNeil T J,Lee K H.Static control in olefin polymerization.US Patent 6,111,034.
    [18]Servais T,Bernot C.Measurement of electrostatic effects in a fluidized bed reactor.First European Conference on the Reaction Engineering of Polyolefins,Lyons,July 3-6,2000.
    [19]Park A H,Bi H,Grace J R.Reduction of electrostatic charges in gas-solid fluidized beds.Chemical Engineering Science.2002,57(2):153-162.
    [20]Goode M G,Hasenberg D M,McNeil T J,Spriggs T E.Method for reducing sheeting during polymerization of alpha-olefins.US Patent 4,803,251.
    [21]Song G H,Rhee A S,Lowder G R.Method for reducing sheeting and static charges during polymerization of ethylene polymers.US Patent 5,391,657.
    [22]Chirillo J R,Kimbrough Ⅱ K C,McHattie P E.Method for reducing sheeting during polymerization of alpha-olefins.US Patent 4,855,370.
    [23]Daire,Erick,John G.Gas phase olefin polymerization process,US Patent 5,283,278.
    [24]Fulks B D,Sawin S P,Aikman C D,Jenkins Ⅲ J M.Process for reducing sheeting during polymerization of alpha-olefins,US Patent 4,532,311.
    [25]Wolny A,Opalinski I.Electric charge neutralization by addition of frees to a fluidized bed composed of coarse dielectric particles.Journal of Electrostatics.1983,14:279-289.
    [26]P.温琴齐,A.阿勒蒂.一种生产聚合物的工艺.CN1275135A.
    [27]Spriggs,Thomas E,Riley J,James L,Madden,James D,Schwarz Jr,George W,Goode,Mark G.Method of modifying near-wall temperature in a gas phase polymerization reactor.US Patent 6,300,429.
    [28]Taillet J,Sarl V.Elimination of static charges in the processing of bulk material.Journal of Electrostatics.1993,30:181 - 190.
    [29]Revel J,Gatumel C,Dodds J A,Taillet J.Generation of static electricity during fluidization of polyethylene and its elimination by air ionization.Powder Technology.2003,135(1):192-200.
    [30]Kubo,Kunimichi,Niwa,Masahiro,Kobayashi,Eiko,Yoshikawa,Mamoru.Method for vapor phase polymerization of alpha-olefin.US Patent 5,648,581.
    [31]Eisinger,Ronald S,Goode,Mark G,Hasenberg,Daniel M,Lee,Kiu H.Process for reducing sheeting during polymerization of alpha-olefins.US Patent 5,034,479.
    [32]Yamaguchi Y,Suga S,Morikawa M,Kubo K,Watanabe M,Sano Y.Method for producing polyolefin.US Patent 5,385,991.
    [33]Park A H,Bi H T,Grace J R,Chen A.Modeling charge transfer and induction in gas-solid fluidized beds.Journal of Electrostatics.2002,55:135-158.
    [34]Ciborowski J,Wlodarski A.On Electrostatic Effects in Fluidized Beds.Chemical Engineering Science.1962,17(1):23-32.
    [35]Boland D,Geldart D,1971.Electrostatic charging in gas fluidized beds.Powder Technology 5(5):289-297.
    [36]Bafrnec M,Bena J.Quantitative data on the lowering of electrostatic charge in a fluidized bed.Chemical Engineering Science.1972,27(5):1177-1181.
    [37]Rojo,V.,Guardiola,J.,Vian,A.A capacitor model to interpret the electric behavior of fluidized beds.Influence of apparatus geometry.Chemical Engineering Science.1986,41(8):2171-2181.
    [38]Wolny A,Kazmierczak W.The influence of static electrification on dynamics and rheology of fluidized bed.Chemical Engineering Science.1993,48(20):3529-3534
    [39]Guardiola J,Rojo V,Ramos G.Influence of particle size,fluidization velocity and relative humidity on fluidized bed electrostatics.Journal of Electrostatics.1996,37(1):1-20.
    [40]Yao L,Bi H T,Park A H.Characterization of electrostatic charges in freely bubbling fluidized beds with dielectric particles.Journal of Electrostatics.2002,56(2):183-197.
    [41]Poupak M,Hsiaotao T Bi,John R G.Electrostatic behavior of different fines added to a Faraday cup fluidized bed,Journal of Electrostatics.2007,65:1-10.
    [42]Buzanov V I,Abramyan V K,Grishina T F,Krapivin L E,1978.Probe measurement of electrostatic fields in particle bearing gas flows.Translated from Izmeritel'naya Tekhnika 5,66-68.
    [43]Gajewski A.Investigation of the electrification of polypropylene particles during the fluidization process.Journal of Electrostatics.1985,17(3):289-298.
    [44]Day D R,1997.New process instrumentation for metallocene-based resin production.Presented at Metallocenes Asia 97 in Singapore.
    [45]李海青.两相流参数检测及应用.1991,浙江大学出版社
    [46]王双群,蒋守国.PFBC中试电站的几种特殊检测方法.能源研究与利用.2003,(2):16-17.
    [47]张宏建,陈伯川,李海青.一种气、固流化床料位检测的新方法.化学反应工程与工艺.1991,7(3):292-297.
    [48]谢利理,李玉忍.一种新型的电容式料位传感器设计.传感器技术.2002,21(12):21-22.
    [49]汪莲,王长军.放射性γ射线料位计在石化行业中的典型应用.工业控制计算机.2003,16(10):17-18.
    [50]汪跃群,李国富.超声波料位仪的研制.声学与电子工程.2003,(3):43-44
    [51]于恒修,王芳,王靖岱,阳永荣.气相聚合流化床内静电与结片现象研究进展.石油化工.2007,36(2):205-209.
    [52]杨宝柱,王靖岱,阳永荣.乙烯气相聚合反应器中颗粒动力学的研究.石油化工.2004,33(12):1130-1132.
    [53]Newton,Robert E,Day,David R,Swartzentruber,Ron L.Apparatus and method for measuring conditions in fluidized beds.US Patent 6,008,662.
    [54]Muhle,Michael E,Hagerty,Robert O,Szul,John F,Goode,Mark G,Britton,Laurence G.Static measurement and detection in a gas phase polyethylene reactor.US Patent 6,831,140.
    [55]Steve Trigwell,Nick Grable,Caner U.Yurteri,et.al.Effects of surface properties on the tribocharging chatacteristics of polymer poeder as applied to industrial processes,IEEE Transactions on industry applications,2003,39(1):79-86.
    [56]F S Ali,M A Ali,R A Ali,and I I Inclulet.Minority charge separation in falling particles with bipolar charge,J.Electrostatics,1998,45:139-155.
    [57]H Zhao,GSP Castle,Ⅱ Inculet,AG Bailey.Bipolar charging of poly-disperse polymer powders in fluidized beds,Industry Applications,IEEE Transactions on,2003,39(3):612-618.
    [58]H.Zhao,G.S.P.Castle,I.I.Inculet The measurement of bipolar charge in polydisperse powders using a vertical array of Faraday pail sensors,Journal of Electrostatics,2002,55(3-4):261-278.
    [59]Ion.I.I,G S Peter Castle,Gerrit Aartsen.Generation of bipolar electric fields during industrial handling of powders,Chemical Engineering Science,2006,61:2249-2253.
    [60]Cross J A.Electrostatic:Principles,Problems and Applications,Adam Hilger,Bristol,1987:31.
    [61]Straton J A.Electromagnetic Theory,New York:McGraw Hill,1941:204.
    [62]Julley L B W.Summation of Series,New York:Dover,1961,39:8.
    [63]J O'Reilly,P Erhardt.In Electrophotography,Second International Conference,Washington,1971:95.
    [64]曹翌佳,石志俭,杨宝柱,段纯刚,王靖岱,阳永荣.气相聚合流化床内聚合物结块的声发射检测技术.石油化工.2006,35(8):766-769.
    [65]王靖岱,蒋斌波,阳永荣,舒伟杰.声波的多尺度分解与气固流化床故障检测.化工学报.2006,57(7):1560-1564.