粉煤灰的摩擦带电性与放电特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粉煤灰综合利用中等容纳量、中等技术含量的方式是作为生产建材的原料,对粉煤灰主要的技术要求是降低炭含量。与浮选法、流态化燃烧法相比,电选脱炭方法适用范围广,分选获得的焦炭、尾灰纯度较高,开发研究高效率静电分选机是解决粉煤灰利用的中心环节。
     用摩擦电位差判断,10种块状材料的摩擦起电序列为:Pb、Zn、Al、Fe、C(焦炭或石墨)、Mn、Cu、SiC、Ag(粉煤灰),其中Mn、Cu、SiC、Ag,可以使粉煤灰中炭组分与灰组分摩擦产生相反电荷。
     以铁为摩擦材料,采用气力输送摩擦起电方式,焦炭粉的荷质比随着固气比的增大、摩擦管道长度的增加、空气相对湿度的增加而减小;随气体压力的升高和粉体细度的提高而增大。
     以铁、铜、银、自结合碳化硅、硅结合碳化硅为摩擦材料,气力输送管道摩擦后,焦炭粉和灰粉都带同种负电荷。以M为摩擦材料,粉煤灰(灰粉)带正电荷,最大荷质比为14.38μC/g;焦炭粉带负电荷,最大荷质比为-0.5μC/g,两者荷质比的绝对值相差20多倍。
     带电粉体与其它材料碰撞后,很快丧失电荷,焦炭颗粒剩余电荷比粉煤灰颗粒小。
The method of middle carrying capacity capacity and technology is as producing the raw material of building materials in the fly ash comprehensive utilization, and is reducing coke content to the central specification of fly ash. Comparison with flotation, fluidization combustion, electrical separation removing coke techniques has a wide application. The selected coke and tailing fly ash hold more purity, and developing the high efficiency electrostatic separator is the center link to solve the fly ash utilization.
    The judgment with the rub potential difference, the rub electrification alignment of 10 kinds of bulk materials for: Pb, Zn, Al, Fe and C ( coke or graphite ), Mn, Cu, SiC and Ag ( fly ash ), among them Mn, Cu, SiC and Ag, can make coke component part and the pure ash component part rub in the fly ash give rise to the contrary electric charge.
    With iron serve as frictional material, adopted pneumatically electrification, specifical charge in coke reduces as solid-gas mass-ratio, pipeline length and air relative Humidity raising, and increases as gas pressure gone up, enlarges of powder fineness.
    With iron, copper, silver and self-combining silicon carbide and silicon junction silicon carbide serve as frictional material, coke powder and pure fly ash are all taken the negative charge after pneumatically electrification. The pure fly ash rubbed with M material takes positive charge, its largest specifical charge is 14.38μC/g; whereas the coke powder rubbed with petroleum coke material takes negative charge, its largest specifical charge is -0.5μC/g. Both absolute value differ more than 20 times.
    The electrified powder body loses the electric charge with other materials collision very fast, residual electrical charge in coke is smaller than that in fly ash.
引文
[1] 边灿鑫,解强,赵由才,等.煤系固体废物资源化技术[M].第一版.北京:化学工业出版社,2005:121.
    [2] 古德生,胡家国.粉煤灰应用研究现状[J].采矿技术,2002(6).
    [3] 边炳鑫,解强,赵由才,等.煤系固体废物资源化技术[M].第一版.北京:化学工业出版社,2005:123.
    [4] 中国建筑材料科学研究院,中国长江科学科学院.GB/T1596--2005用于水泥和混凝土中的粉煤灰[S].北京:中国标准出版社,2005.4.
    [5] 刘伯,沈旦申,陈以理,吴学礼.上海粉煤灰应用手册[M].上海:同济大学出版社,1995.
    [6] M. D. A. Thomas, J. B. Cripwell and P. L. Owens. Fly ashinconcrete: An overview of more than 30 years of experience in the United Kingdom[A]. 10th International Ash Use Symposium[C]. Orilando, Florida, USA, Jan. 10~21, 1993. 37.
    [7] K. Wesche. Fly ash in concrete: Properties and performance[M]. London: Chapman & Hall, 1991
    [8] 邵靖邦,等.粉煤灰中的残余炭[J].煤炭转化,1997,20,(4).
    [9] R. C. Joshi, V. M. Malhotra. Relationship between pozzolanic activity and chemical and physical characteristics of selected Canadian fly ashes[A]. Materials Research Society Symposia Proceedings[C], Pittsburgh, Pennsylvania, 1987.113~125.
    [10] 黎强,等.煤灰脱炭的流态化实验研究[J],煤炭转化.2002年10月第25卷第4期.
    [11] 石云良,等.粉煤灰脱炭技术[J],矿产综合利用.1999年4月,第2期.
    [12] 何新露,等.粉煤灰选炭的试验研究[J],粉煤灰.1999年,第3期.
    [13] H·R·马诺切赫里,等.电选法基础理论评述[J],国外金属矿选矿.2002年7月:4~16.
    [14] 黎强,等.粉煤灰的微观结构与脱炭方法的实验比较[J],选煤技术.2003年2月,第1期.
    [15] R.奇库.粉煤灰中未燃尽煤的静电分选[J],国外金属矿选矿.1999年,第1期.
    [16] 张全国,等.粉煤灰高压静电脱炭工艺特性的试验研究[J],粉煤灰.2002年,第5期.
    [17] 成志英.热电厂粉煤灰回收炭的探讨[J],大氮肥.2000年,第23卷,第5期.
    [18] E.Tondu, W.G.Thompson, D.R.Whitlock, J.D.Bitter and A.Vasiliauskas: Commerial separation of unburned carbon from Fly ash; Mining Eng, 6, 47~50, 1996.
    [19] 张覃,等.中炭处理方式对粉煤灰浮选的影响,有色金属(选矿部分).2002年,第2期.
    [20] 邵靖邦,等.粉煤灰中的残余炭[J],煤炭转化.1997年10月,第20卷,第4期.
    [21] 黎强,等.粉煤灰的微观结构与脱炭方法的实验比较[J],选煤技术.2003年2月,第1期.
    [22] 张国胜,等.粉煤灰中炭粒的浮选试验研究[J],选煤技术2003年8月,第4期.
    [23] J. Lowell, A. C. Rose-Innes. Contact electrification[J]. Adv. Phy, 1980, 29 (6): 947~1023.
    [24] J. Eilbeck, G. Rowley, P. A. Carter, E. J. Fletcher. Effect of contamination of pharmaceutical equipment on powder triboelectrification[J], Int. J. Pharm, 2000, 195:7~11.
    [25] M. Murtomaa, P. Harjunen, V. Mellin, V. P. Lehto, E. Laine. Effect of amorphicity on the triboelectrification of lactose powder[J]. Journal of electrostatics, 2002, 56:103~101.
    [26] T. N. Vladykina, B. V. Deryagin, Y. P. Toporov. The effect of surface roughness on triboelectrification of insulators[J]. Chem. Mech. Surf, 1985, 3: 2817~2821.
    [27] Matti Murtomaa, Static electrification of powders during spray drying[M].Journal of Electrostatics 62, (2004),63~72.
    [28] Matti Murtomaa, Static electrification of powders during spray drying[M].Journal of Electrostatics 62, (2004),63~72.
    [29] R·奇库,等,粉煤灰中未燃尽煤的静电分选[J].周外金属矿选矿,1999,1:27~32.
    [30] H·R·马诺切赫里,等.电选法基础理论评述[J],国外金属矿选矿.2002,7:4~16.