微构件粘着接触模型和基于粘着力的微操作方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们对众多工业产品小型化、集成化的不断需求,微操作技术日益凸现其重要性,在微电子工程、精密制造、生物工程等诸多领域均具有广阔应用前景。微纳米技术近年来的快速发展,推动着各类功能化的微器件在多种微操作系统中应用;另一方面,制造组件更加微小、功能更加集成的微光机电系统也对微操作技术提出了更高的要求。
     由于尺度效应作用,在微米尺度下各种表面粘着力的作用开始占据主导地位。粘着力常会干扰微操作过程,影响微操作的可靠性和高效性,制约着微操作技术的推广应用。本文针对上述问题,结合国家杰出青年基金项目和国家高技术研究发展计划项目,对微操作中构件间的粘着机理和粘着接触模型进行研究,并基于所建立的模型,研究基于粘着力控制的微操作方法。
     针对微操作中构件间广泛存在的粘着现象,从尺度效应着手,在分析原子和分子间作用力的基础上,获得微操作中各种粘着作用力的机理和特性。在此基础上,分析了在进行微操作工具优化设计和路径规划时考虑粘着现象的方法,并以简化的典型微构件操作配置为例,研究了微构件间范德华作用力的近程作用特性和毛细作用力的环境依赖性。
     粘着现象是多种作用力共同作用的结果,而每种作用力具有不同的特征。为了定量认识微操作中构件之间的粘着作用力,必须对各种粘着力进行分别分析。本文考虑到实际微构件操作中的配置,重点研究了微构件之间的范德华粘着力和微构件之间的毛细作用力。
     针对实际表面均不是理想光滑表面的特点,采用分形几何描述对粗糙表面建模,基于单微突体的粘着接触模型建立粗糙表面间的粘着接触模型,并在此基础上分析影响范德华粘着作用力的各种因素。分析结果表明,随着粗糙表面分形维数变大,粗糙表面间的粘着力显著增加;随着分形粗糙度参数的增大,粗糙表面间的粘着力减小;随着固体材料弹性模量增大,粗糙表面间的粘着力减小;随着两表面间粘着能的增大,粘着力急剧增大。
     另外,基于圆形轮廓近似建立了微构件之间的毛细作用力模型。与基于Laplace方程的复杂数值模型比较结果显示,所建立的模型在构件间距离较小时,具有较高的精度。分析表明:在微观尺度表面张力通常对毛细作用力具有不可忽略的贡献;弯月面轮廓半径对毛细作用力具有重要影响,液体在两微构件上的接触角及构件几何形状也会影响毛细作用力。
     针对常规微夹持工具和真空吸附式作业工具的不足,考虑到微尺度下粘着力的主导地位,提出了基于粘着力控制的微操作方法。拾取和释放操作中分别需要增强和减弱操作工具和微构件之间的粘着力,为此提出利用粘弹性材料工具通过速度控制改变粘着力,从而实现微构件拾取和释放操作。在微构件转移过程中,依靠粘着力大于重力的特性保持工具和微构件的相对位置。为了可靠释放,提出了利用毛细作用力控制液体种类和体积的方法执行微构件释放操作。
     为了验证所建立的相关模型和提出的基于粘着力的微操作方法,进行了系列的实验研究。首先测量了粘弹性材料工具和微构件之间的粘着力,表明了其相对于重力的主导地位。其次验证了粘弹性材料工具和固体材料之间的粘着迟滞作用,说明了可以利用运动速度控制执行微构件操作。另外测量了微构件之间的毛细作用力,验证了所提出的毛细作用力模型的正确性。最后,进行了基于粘着力控制的微操作实验,验证了所提出的基于粘着力控制执行微操作任务的有效性。
Trends of miniaturization and integration of numerous industry products are continually increased recently. Micromanipulation, as an enabling technology, is being widely used in many fields, such as microelectronic engineering, precision manufacturing, bioengineering. The rapid developments of micro and nanotechnology are making more and more functionized microdevices being uitilized in micromanipulation system, on the other hand, higher demands are proposed to manufacture microsystems with smaller dimensions and more functions.
     Due to the scale effects, various surface forces begin to dominate in the micro meter scales. Adhesion forces often disturb the process of micromanipulation and affect the reliability and efficiency of it, thus restrict their wide applications. Supported by the National Science Funds for Distinguished Young Scholar and the High Technolgy Research and Development Programme of China, this paper focuses on the adhesive contact model between microparts and the micromanipulations methods based on controlling adhesion forces.
     Considering a mass of adhesion phenomema in micromanipulation, this paper starts from the scale effects in micrometer scales. By analyzing the forces between atoms and molecules, the mechanism and properties of adhesion forces are identified. Then the effects of adhesion forces on tools design and path planning in micromanipulation are investigated. The configurations of manipulating typical microparts are analysed to discuss the properties of adhesion forces.
     Adhesion is a result of multiple forces with different characters, so that is necessary to distinguish them. Van der Waals adhesion and capillary adhesion are focused in this paper for considering the actual conditions in micromanipulation. For the usual rough surfaces, the fractal geometry methods are adopted to describe the rough surfaces. The adhesive contact model between them is developed based on the elastic contact model of single asperities. The capillary force model between microparts is also developed based on the circle approximation and the parameters that affect the force are discussed in detail.
     Due to disvantages of the usual microgripper and vacuum tool, the micromanipulation methods based on adhesion force control are proposed according to the predominance of adhesion forces in micro meter scale. In picking process, strengthening the adhesion is positive, so a method using the viscoelastic tool with fast velocities are proposed. The transferring process will be stable if the adhesion force is larger than the gravity of the microobject. To realize the reliable release, a method of controlling capillary forces is suggested.
     To verify the developed model and methods, a series of experiments are performed. The adhesion force between PDMS tool and microparts are measured to make sure that it is more dominate than the gravity. The adhesion hysteresis is verified to show that it is suitable to strengthen the adhesion with velocity control. The capillary force between microspheres and flats are also measured to verify the developed model. Finally, the micromanipulation experiments based on adhesion force control are performed and the results show that the feasibility of proposed methods.
引文
1 H. T. Miyazaki, H. Miyazaki, K. Ohtaka, et al. Photonic band in two-dimensional lattices of micrometer-sized spheres mechanically arranged under a scanning electron microscope. Journal of Applied Physics. 2000, 87(10): 7152~7158.
    2 H. V. Brussel, J. Peirs, D. Reynaerts, et al. Assembly of microsystems. Annals of the CIRP, 2000, 49(2): 451~472.
    3 H. Ishihara, F. Arai and T. Fukuda. Micro mechatronics and micro actuators. IEEE/ASME Transactions on Mechanics, 1996, 1(1): 68~79.
    4 K. Aoki, H.T. Miyazaki, H. Hirayama, et al. Microassembly of semiconductor three-dimensional photonic crystals. Nature Materials. 2003: 1~5.
    5 M. Gauthier, E. Piat. Control of a particular micro-macro positioning system applied to cell micromanipulation. IEEE Transactions on Automation Science and Engineering. 2006, 3(3): 264~271.
    6 M. G. Poirier, J. F. Marko. Micromechanical studies of mitotic chromosomes. Journal of Muscle Research and Cell Motility. 2002, 23: 409~431.
    7 G. T. Roman, Y. Chen, P. Viberg, et al. Single-cell manipulation and analysis using microfluidic devices. Anal Bioanal Chem. 2007, 387: 9~12.
    8 K. -F. Bohringer, K. Goldberg, M. Cohn, et al. Parallel microassembly with electrostatic force fields. in International Conference on Robotics and Automation. 1998.
    9 A. Ferreira, C. Cassier and S. Hirai. Automatic microassembly system assisted by vision servoing and virtual reality. IEEE/ASME Transactions on Mechanics. 2004, 9(2): 321~33.
    10 K. B. Yesin, B.J. Nelson. Robust CAD model based visual tracking for 3D microassembly using image space potentials. IEEE International Conference on Robotics & Automation. 2004. New Orleans, LA: 1868-1873.
    11 M. Tanaka. Development of desktop machining microfactory. RIKEN Review. 2001, 34: 46~49.
    12 B. Kim, H. Kang, D.-H. Kim, et al. A flexible microassembly system based on hybrid manipulation scheme for manufacturing photonics components. International Journal of Advanced Manufacturing Technology, 2006, 28: 379~386.
    13 C. Clevy, A. Hubert, J. Agnus, et al. A micromanipulation cell including a tool changer. Journal of micromechanics and microengineering. 2005, 15: S292~S301.
    14 S. K. Chollet, B. Moll, F. Bourgeois, et al. A flexible microassembly cell for small and medium sized batches. 2002.
    15 P. R. Ouyang, W.J. Zhang, M. M. Gupta, et al. Overview of the development of a visual based automated bio-micromanipulation system. Mechatronics.2007, 17: 578~588.
    16 B. J. Nelson, Y. Sun and M.A. Germinger. Microrobotics for molecular biology: manipulating deformable objects at the microscale. Springer tracts in advanced robotics. ed. R. Chatila, P. Dario and O. Khatib. 2005: Springer. 115~124.
    17 K. Autumn, M. Sitti, Y.A. Liang, et al. Evidence for van der Waals adhesion in gecko setae. PNAS. 2002, 99(19): 12252~12256.
    18 P. H. Tsang, G. Li, Y.V. Brun, et al. Adhesion of single bacterial cells in the micronewton range. PNAS. 2006, 103(15): 5764~5768.
    19 C. H. Mastrangelo, C.H. Hsu. Mechanical stability and adhesion of microstructures under capillary forces-part I: basic theory. Journal of microelectromechanical systems. 1993, 2(1): 33~43.
    20 C. H. Mastrangelo, C.H. Hsu. Mechanical stability and adhesion of microstructures under capillary forces-part II: experiments. Jouranl of microelectromechanical systems. 1993, 2(1): 44~55.
    21 A. Hariri, J. Zu and R.B. Mrad. Modeling of wet stiction in microelectromechanical systems (MEMS). Journal of Microelectromechanical Systems. 2007, 16(5): 1276~1285.
    22 K. Komvopoulos. Adhesion and friction forces in microelectromechanical systems: mechanisms, measurement, surface modion the adhesion of particles. Journal of Colloid and Interface Science, 1975, 53: 314~326.
    31 V. M. Muller, V. S. Yushchenko and B. V. Derjaguin. General theoretical consideration of the influence of surface forces on contact deformations and the reciprocal adhesion of elastic spherical particles. Journal of Colloid and Interface Science, 1983, 92: 92~101.
    32 D. Tabor. Surface forces and surface interactions. Journal of Colloid and Interface Science, 1977, 58: 2~13.
    33 V. M. Muller, V. S. Yushchenko and B. V. Derjaguin. On the influence of molecular forces on the deformation of an elastic sphere and its sticking to a rigid plane. Journal of Colloid and Interface Science, 1980, 77: 91~101.
    34 D. Maugis. Adhesion of spheres: the JKR-DMT transition using a Dugdal model. Journal of Colloid and Inlerface Science, 1991, 150(1): 243~269.
    35 K. L. Johnson, J. A. Greenwood. An adhesion map for the contact of elastic spheres. Journal of Colloid and Inlerface Science, 1997, 192: 326~333.
    36 J. A. Greenwood, J. B. P. Williamson. Contact of nominally flat surfaces. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1966, 295(1442): 300~319.
    37 K. N. G. Fuller, D. Tabor. The effect of surface roughness on the adhesion of elastic solids. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1975, 345(1642): 327~342.
    38 D. Maugis. On the contact and adhesion of rough surfaces. Journal of Adhesion Science & Technology, 1996, 10(2): 161~175.
    39 C. Morrow, M. Lovell and X. Ning. A JKR-DMT transition solution for adhesive rough surface contact. Journal of Physics D: Applied Physics, 2003, 36: 534~540.
    40 J. C. Melrose.Model calculations for capillary condensation. A. I. Ch. E. Journal, 1966, 12(5): 986~994.
    41 F. M. Orr, L.E. Scriven and A.P. Rivas. Pendular rings between solids: meniscus properties and capillary force. Journal of Fluid Mechanics, 1975, 67: 723~742.
    42 A. Marmur. Tip-surface capillary interactions. Langmuir, 1993, 9: 1922~1926.
    43 A. de Lazzer, M. Dreyer and H.J. Rath. Particle-surface capillary forces. Langmuir, 1999, 15(13): 4551~4559.
    44 O. H. Pakarinen, A.S. Foster, M. Paajanen, et al. Towards an accurate description of the capillary force in nanoparticle-surface interactions. Modelling and Simulation in Materials Science and Engineering, 2005, 13: 1175~1186.
    45 S. K. Nah, Z.W. Zhong. A microgripper using piezoelectric actuation for micro-object manipulation. Sensors and Actuators A, 2007, 133: 218~224.
    46 B. E. Volland, H. Heerlein and I.W. Rangelow. Electrostatically driven microgripper. Microelectronic Engineering, 2002, 61-62: 1015~1023.
    47 I. Giouroudi, H. Hotzendorfer, J. Kosel, et al. Development of amicrogripping system for handling of microcomponents. Precision Engineering, 2008, 32: 148~152.
    48 K. Ivanova, T. Ivanov, A. Badar, et al. Thermally driven microgripper as a tool for micro assembly. Microelectronic Engineering, 2006, 83: 1393~1395.
    49 A. Menciassi, M.C. Carrozza, C. Ristori, et al. A workstation for manipulation of micro objects. in ICAR '97. 1997. Monterey, CA.
    50 M. C. Carrozza, A. Eisinberg, A. Menciassi, et al. Towards a force controlled microgripper for assemblying biomedical microdevices. Journal of Micromechanics and Microengineering, 2000, 10: 271~276.
    51 C. -J. Kim, A.P. Pisano, R.S. Muller, et al. Polysilicon microgripper. 1990.
    52 W. Zesch, M. Brunner and A. Weber. Vacuum tool for handling microobjects with a nanorobot. in 1997 Internation Conference on Robotics and Automation. 1997. ALbuquerque, New Mexico.
    53 P. F. Man, B.P. Gogoi and C.H. Mastrangelo. Elimination of post-release adhesion in microstructures using conformal fluorocarbon coatings. Journal of microelectromechanical Systmes, 1997, 6(1): 25~34.
    54 A. Menciassi, A. Eisinberg, I. Izzo, et al. From "macro" to "micro" manipulation: models and experiments. IEEE/ASME Transactions on Mechanics, 2004, 9(2): 311~320.
    55 F. Arai, D. Andou, Y. Nonoda, et al. Integrated microendeffector for micromanipulation. IEEE/ASME Transactions on Mechanics, 1998, 3(1): 17~23.
    56 K. Koyano, T. Sato. Micro object handling system with concentrated visual fields and new handling skills. International Conference on Robotics and Automation. 1996. Minneapolis, Minnesota: 2541-2548.
    57 T. Tanikawa, T. Arai. Development of a micro-manipulation system having a two-fingered micro-hand. IEEE Transactions on Robotics and Automation, 1999, 15(1): 152~162.
    58 D. S. Haliyo and S. Regnier. Advanced applications using [mu]MAD, the adhesion based dynamic micro-manipulator. IEEE/ASME Internationa Conference on Advanced Intelligent Mechatronics. 2003: 880-885.
    59 K. W. C. Lai, P.S. Chung, M. Li, et al. Automated micro-assembly of optical MEMS structure by centrifugal force. in the 5th World Congress on Intelligent Control and Automation. 2004. Hangzhou, P. R. China.
    60 J. T. Feddema, P. Xavier and R. Brown. Micro-assembly planning with van der Waals force. Jouranl of microemechanics. 2001, 1(2): 139~153.
    61 T. Tanikawa, Y. Hashimoto and T. Arai. Micro drops for adhesive bonding of micro assemblies and making a 3-D structure "micro scarecrow". IEEE/RSJ International Conference on Intelligent Robots and Systems. 1998. Victoria, B. C. Canada: 776-781.
    62 K. J. Obata, T. Motokado, S. Saito, et al. A scheme for micro-manipulation based on capillary force. Journal of Fluid Mechanics. 2004, 498: 113~121.
    63 P. Lambert, F. Seigneur, S. Koelemeijer, et al. A case study of surface tensiongripping: the watch bearing. Journal of Micromechancis and microengineering. 2006, 16: 1267~1276.
    64郭百巍,刘兵,汪家道,等.利用液体桥力的微球转移操作.清华大学学报, 2005, 45(5): 647~650.
    65 M. A. Meitl, Z. -T. Zhu, V. Kumar, et al. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nature Materials, 2006, 5: 33~38.
    66 C. -M. Ho, Y. -C. Tai.微电子机械系统和流体流动.力学进展, 1998, 28(2): 250~264.
    67 M,谢.,戈. S.微纳米生物摩擦学-大自然的选择. 2004:机械工业出版社.
    68 J. N. Israelachvili. The nature of van der Waals forces. Contemp. Phys. , 1974: 159~177.
    69 D. Myer.表面、界面和胶体-原理及应用. 2005:化学工业出版社.
    70 S. W. Montgomery, M. A. Franchek and V. W. Goldschmidt. Analytical dispersion force calculations for nontraditional geometries. Journal of Colloid and Interface Science, 2000, 227: 567~584.
    71 J. Israelachvili. Intermolecular & Surface Forces. 1991: Acdemic Press.
    72 T. J. Senden, C.J. Drummond. Surface chemistry and tip-particle interactions in atomic force microscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 94: 29~51.
    73 Q. Quyang, K. Ishida and K. Okada. Investigation of micro-adhesion by atomic force microscopy. Applied Surface Science, 2001, 169-170: 644~648.
    74 B. Cappella, G. Dietler. Force-distance curves by atomic force microscopy. Surface Science Reports, 1999, 34: 1~104.
    75 H. -J. Butt, B. Cappella and M. Kappl. Force measurements with the atomic force microscope: Technique, interpretation and applications. Surface Science Reports, 2005, 59: 1~152.
    76 D. L. Malotky, M.K. Chaudhury. Investigation of capillary forces using atomic force microscopy. Langmuir, 2001, 17: 7823~7829.
    77 H. T. Miyazaki, Y. Tomizawa, K. Koyano, et al. Adhesion force measurement system for micro-objects in a scanning electron microscope. Review of Scientific Instruments, 2000, 71(8): 3123~3131.
    78 R. A. Quon, A. Ulman and T.K. Vanderlick. Impact of humidity on adhesion between rough surfaces. Langmuir, 2000, 16: 8912~8916.
    79 B. Bhushan. Contact mechanics of rough surfaces in tribology: multiple asperity contact. Tribology Letters, 1998, 4: 1~35.
    80 F. F. Ling. Fractal engineering surfaces and tribology. Wear, 1990, 136(1): 141~156.
    81李国宾,关德林,魏海军.磨合过程摩擦力单重分形和多重分形的研究.摩擦学学报, 2006, 26(5): 167~471.
    82吴兆宏,朱华,李刚.摩擦信号分形维数与载荷和速度的关系研究.摩擦学学报, 2007, 27(2): 161~165.
    83 S. Wang, K. Komvopoulos. A fractal theory of the interfacial temperature distribution in the slow sliding regime: Part I. Elastic contact and heat transfer analysis. ASME Journal of Technology, 1994, 116(4): 812~823.
    84 K. Komvopoulos, W. Yan. A fractal analysis of stiction in microelectrical systems. Journal of Tribology, 1997, 119: 391~400.
    85 C. A. Morrow, Adhesive rough surface contact. 2003, University of Pittsburgh: Pittsburgh.
    86 Z. X. Li, L. J. Zhang, H.H. Yi, et al. Theoretical study on the capillary force between an atomic force microscope tip and a nanoparticle. Chinese Physics Letters, 2007, 24(8): 2289~2292.
    87 X. Xiao, L. Qian. Investigation of Humidity-Dependent Capillary Force. Langmuir, 2000, 16: 8153~8158.
    88 E. T. Enikov, L.L. Minkov and S. Clark. Microassembly experiments with transparent electrostatic gripper under optical and vision-based control. IEEE Transactions on Industrial Electronics, 2005, 52(4): 1005~1012.
    89 N. Chronis, L.P. Lee. Polymer MEMS-based microgripper for single cell manipulation. in the 17th IEEE International Conference on MEMS. 2004.
    90李勇,李玉和,李庆祥,等.基于体硅工艺的微夹持器设计.清华大学学报, 2003, 43(5): 655~658.
    91 R. Wierzbicki, K. Houston, H. Heerlein, et al. Design and fabrication of an electrostatically driven microgripper for blood vessel manipulation. Microelectronic Engineering, 2006, 83: 1651~1654.
    92 C. Guoliang, H. Xinhan. Research on vacuum micro-gripper of intelligent micromanipulation robots. in the 2004 IEEE International Conference on Robotics and Biomimetics. 2004. Shenyang, China.
    93 B. N. J. Persson, O. Albohr, G. Heinrich, et al. Crack propagation in rubber-like materials. Journal of Physics: Condensed Matter, 2005, 17: R1071~R1142.
    94 D. Maugis, M. Barquins. Fracture mechanics and the adherence of viscoelastic bodies. J. Phys. D: Appl. Phys. , 1978, 11: 1989~2023.
    95 K. R. Shull, D. Ahn, W. -L. Chen, et al. Axisymmetric adhesion tests of soft materials. Macromol. Chem. Phys., 1998, 199: 489~511.
    96 F. Robbe-Valloire, M. Barquins. Adhesive contact and kinetics of adherence between a rigid cylinder and an elastomeric solid. International Journal of Adhesion and Adhesives. 1998, 18: 29~34.