铜基体上Ti/Ti_xC_y/DLC功能梯度材料的制备及性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电子技术、自动化技术、信息产业、数字网络产业飞速发展,铜在微电子,微电子机械系统(MEMS),精密仪器散热装置等高新技术上的重要作用日益突显。铜在应用过程中存在强度低,易氧化,易磨损,耐腐性差等缺点,限制了铜的应用。本文针对铜在应用中的缺点,采用不同的等离子体制备技术,在铜基体上制备了Ti/Ti_xC_y/DLC功能梯度材料,实现了改善铜基体与DLC膜结合力的目的,并强化了铜的性能。
     对梯度过渡层的结构进行设计,将等离子体增强非平衡磁控溅射物理气相沉积(PEUMS-PVD)和电子回旋共振微波等离子体增强化学气相沉积(MW-ECRPECVD)技术相结合,分别采用Ti、Si作为过渡层元素制备梯度过渡层,来改善类金刚石(DLC)膜与铜基体之间的结合力。所制备的膜具有典型的类金刚石结构,厚度达到纳米量级,并且表面粗糙度低。DLC膜的硬度和弹性模量都远远的超过基体。以Si为过渡层元素沉积Si/Si_xN_y/DLC膜时,Si靶会发生靶中毒现象而使溅射率降低。而Ti可以作为过渡层元素在铜基体上沉积DLC膜,但是过渡层中含有氢元素,残余应力较高,降低了膜与基体的结合力和表面硬度。
     采用等离子增强非平衡磁控溅射技术沉积Ti/Ti_xC_y梯度过渡层,避免了在过渡层中引入氢元素,减小了薄膜的应力集中,增加了过渡层的稳定性。XRD、XPS分析表明,过渡层中形成TiC纳米晶,高能Ti离子和一部分碳原子扩散到基体中,使得过渡层与基体的界面展宽,形成良好的界面混合,提高了DLC膜与基体的结合力。为了制备性能最优的DLC膜,对过渡层的制备参数进行了优化。
     随着过渡层沉积偏压、Ti靶输入电流和C靶功率的增大,活性粒子对基体的轰击和溅射作用增强。高能粒子对表面的轰击能够去除生长表面的杂质和弱键合原子,更有利于sp~3键的形成以及得到更平整的表面。过渡层沉积偏压增大产生的辅助轰击效应,会加快界面处成分的扩散,有利于提高膜基间的结合力。随着Ti靶输入电流增大,DLC膜中的Ti含量也随之增多;Ti替代一个碳原子,造成平均配位数的减少,促使四配位的sp~3键向sp~2键转变。Ti靶电流过大时溅射下的大颗粒会形成富Ti区,成为局部腐蚀的阳极,而薄膜成为阴极,从而诱发局部腐蚀。C靶溅射产生浅注入现象,高能C离子注入到基体表层,薄膜的局部密度增加,引起压应力增大,从而促使sp~3键的生成。当入射能量过大时,高能C离子在薄膜与基体界面进行扩散,恶化了薄膜的结合强度以及机械性能。综合上述结果,过渡层沉积偏压100V,Ti靶输入电流0.2A,C靶功率200W沉积的DLC膜,过渡层的Ti/C原子比为1,此时的DLC膜具有最优异的性能;粗糙度达到最小值2.11nm;硬度与弹性模量分别为17.6GPa和233.7GPa;在400mN正压力下磨损20分钟内仍然性能良好,摩擦系数为0.13:极化电阻值较未镀膜的铜基体提高2个数量级。
     采用最佳过渡层参数制备的DLC膜的热导率最大值为3.63Wm~(-1)K~(-1);Ti/Ti_xC_y/DLC功能梯度材料可以强化铜基体的传热效果。
In recent years,with society stride forward to electronic technology,automatization,and digital network information society.And copper are finding increasing applications in micro-electronics,micro-electro-mechanical systems(MEMS) and Hi-tech material applications.However copper has its material limitations.In particular,it has relatively low hardness,high oxidation and rate of wear,bad corrosion resistance which have severely limited its widespread applications.In this paper,aimed at difficulties of copper applications, Ti/Ti_xC_y/DLC has been proposed as functionally graded material to deposit on the copper substrate with different depositing methods,which intensify the adhesion between DLC films and copper substrate and improve the properties of copper.
     A graded intermediate layer design has been proposed prior to deposition of DLC by combining plasma enhanced unbalanced magnetron sputtering physical vapor deposition (PEUMS-PVD) and microwave electron cyclotron resonance plasma enhanced chemical vapor deposition(MW-ECR PECVD) techniques.Improvement in low adhesion between DLC films and copper substrate can be achieved by depositing the graded intermediate layer of Ti/Ti_xC_y、Si/Si_xN_y.The DLC films were smooth,dense and amorphous with typical diamond-like structure and thickness level was in a nanometer range.And it has excellent hardness and elastic modulus,much higher than substrate.In the experiment of Si/Si_xN_y/DLC films deposition,it was found that Si atom sputtering yield decreased,because of target poisoning phenomenon.So Ti was introduced as intermediate layer element to deposit DLC films on copper substrate to solve this problem.But there was element H in the intermediate layer,which held high residual stress and decreased the hardness and adhesion between the films and substrate.
     Ti/Ti_xC_y intermediate layer were prepared by PEUMS-PVD technique so as to avoid introducing H element,which reduced the stress concentration and improved the stability of intermediate layer.XRD and XPS analyses indicated that TiC nanocrystallines generated in the films,high-energy Ti ion and some C atoms diffused into the substrate which widened the interface between intermediate layer and substrate to make a nice interface mixing and improve the adhesion between DLC films and substrate.For acquiring the DLC films with excellent properties to protect the copper substrate,the experiment to make the best optimization parameter choice had been studied systematically.
     With the increase of intermediate layer deposition bias voltage,Ti target input current and C target power,bombardment of active radical around the substrate increased.The bombardment may wipe off any weak bond and impurity,be more conducive to sp~3-bond come into being and get much smooth surface.Increase of intermediate layer deposition bias voltage and proper bombardment would accelerate the diffusion of interface components,which enhanced adhesion between films and substrate.When the Ti target input current was rised,the Ti content of DLC films increased too.Ti atoms substituted triply bonded carbon atoms,which would reduce the average coordination number of DLC films,and improved the transformation from sp~3-bond to sp~2-bond.The incidence of Ti ion with high energy leaded to the improvement of adhesion.At high value of Ti target input current,micro-cell corrosion would take place between the large granule Ti and films,the riched large granule Ti would become anode and the films become cathode of local corrosion.With shallow infusion caused by C target sputtering, ions with high energy penetrated into the coating of substrate causing internal pressure stress. This leaded to the increases of film density and formation of sp~3 bonds.However,the ion of high energy diffused in the interface which deteriorated the adhesion and mechanism of the films,once the bombardment energy had exceeded a critical value.As a result,the best parameters for excellent performance of DLC films found were:intermediate layer deposition bias voltage of 100V,Ti target input current of 0.2A,C target power of 200W,and Ti/C ratio was 1.And the high quality DLC films with minimal roughness of 2.11nm was obtained at the aboved parameters,maximal hardness and elastic modulus of 17.6GPa and 233.7GPa were respectively achieved too.DLC films held excellent hardness suffering from the positive pressure of 400mN for 20 minutes,the coefficient of friction was only 0.13.And the polarization resistance of DLC films improved two orders of magnitude compared with copper substrate.
     The maximal value of thermal conductivity of DLC films with optimized parameter of graded intermediate layer was 3.63Wm~(-1)K~(-1),which enhanced the heat transfer effect of copper substrate.
引文
[1]张建臣,周智刚,杨文彬.新型铜铝爆炸复合CPU散热器的研制[J].计算机工程与应用,2006,34:93-97.
    [2]Bejan A.,Tsataronis G,Moran K.Thermal Design and Optimization[M].New York:Wiley,1996.
    [3]余鹏.CPU散热器温度场及流场的实验研究和数值模拟[D].西安:西安交通大学,2002.
    [4]韩宁.型材散热器热特性分析[J].西安电子科技大学学报(自然科学版),2000,29(4):24-28.
    [5]KI M Kwang-soo,WON Myong-hee,KI MJong-wook,et al.Heat pipe cooling technology fordesktop PC CPU[J].Applied Thermal Engineering,2003,(23):1137-1144.
    [6]余鹏.垂直均匀射流下CPU散热器换热性能的数值分析[J].工程热物理学报,2003,24(3):87-91.
    [7]Mochizuki Masataka,Nguyen Thang,Mashiko Koichi,et al.Practical application of heat pipe and vapor chamber for cooling high performance personal computer[C].13rd International Heat Pipe Conference.Shanghai:2004.
    [8]Yu Xiao-ling,Feng Jian-mei,Feng Quan-ke,et al.Development of a plate-pin heat sink and its performance comparisons with a plate fin heat sink[J].Applied Thermal Engineering,2005,25:173-182.
    [9]陈宏周.铜材在计算机散热器领域的应用前景分析[J].铜加工,2006,1:1-5.
    [10]Shatil H,William A S,Douglas J N,et al.Thermal Management of Power electronics Modules Packaged by a Stacked-Plate Technique[J].Microelectronics Reliability,1999,39:1343-1349.
    [11]Howard W M.Cold Plate Heat Sinking for PCBs[J].Electronic Packaging and Production,1996,36(7):46-50.
    [12]杨会娟,王志法,王海山.电子封装材料的研究现状及进展[J].材料导报,2004,18(6):86-90.
    [13]Cheng Wei,Jiang Xiaolin.Study on the Thermal Failure of Metal Substrates in Electronic Packaging[J].Journal of experimental mechanics,2003,18(1):17-22.
    [14]Geiger A L.Low-expansion MMCs boost avionics[J].Advanced Materials& Process,1989,136(7):23 -28.
    [15]王常春,朱世忠,孟令江.铜基电子封装材料的研究进展[J].临沂师范学院学报,2008,30(6):43-47.
    [16]Zhang L,Qu X H,He X B,et al.Thermo-physical and mechanical properties of high volume fraction SiCp-Cu composites prepared by pressureless infiltration[J].Materials Science and Engineering A,2008,489A:285-293.
    [17]钟涛兴,吉元,李英等.SiCp/Cu复合材料的热膨胀性和导热性[J].北京工业大学学报,1998,16(9):34-37.
    [18]崔春翔,赵晓宏,徐华一.碳纤维/铜复合材料研究[J].河北工业大学学报,2002,31(6):43-45.
    [19]Hunt M.Electronic packaging[J].Materials Engineering,1991,108(1):24-25.
    [20]马慧君,段云雷.高散热复合多层板的研制[J].电子工艺技术,1993,14(6):2-6.
    [21]胡明,费维栋,姚忠凯等.非连续增强金属基复合材料的变形行为[J].宇航工业材料,2001,31(1):25-28.
    [22]李劲风,张昭,张鉴清.金属基复合材料(MMCs)的原位制备[J].材料科学与工程,2002,20(3):453-456.
    [23]Ramesham R,Ghaffarian R.Challenges in interconnection and packaging of microeletromechanical systems[C].50~(th) Electronic Components and Technology Conference,Las Vegas,2000,666-675.
    [24]Katrin Persson.Fundamental Requirements on MEMS Packaging and Reliability[C].8~(th)International symposium on advanced packaging materials,Atlanta,2002,1-6.
    [25]Hsieh C T,Ting J M.The introduction of MEMS packaging technology[C].IEEE International Symposium on Electronic Materials and Packaging,Taiwan,2002,300-306.
    [26]Sarvar Farhad.Application of adhesives in MEMS and MO-EMS assembly:A review[C].IEEE polytronic conference,Zalaegerszeg,2002,22-28.
    [27]Schuenemann Matthias.MEMS modular packaging and interface[C].50~(th) Electronic Components and Technology Conference,Las Vegas,2000,681-688.
    [28]Robertson J.Properties of diamond-like carbon[J].Surface & Coatings Technology,1992,50:185-203.
    [29]Grill A.Diamond-like carbon:state of the art[J].Diamond & Related Materials,1999,8(2-5):428-434.
    [30]Robertson J.Diamond-like amorphous carbon[J].Materials Science and Engineering Reports,2002,37(4-6):129-281.
    [31]Robertson J.Buckling patterns in diamond-like carbon films[J].Thin Solid Films,1995,256:94-100.
    [32]Robertson J.Mechanical properties and coordinations of amorphous carbons[J].Physical Review Letters,1992,68(2):220-223.
    [33]Robertson J,O'Reilly P.Electronic and atomic structure of amorphous carbon[J].Physical Review B,1987,35(6):2946-2957.
    [34]Luo J K,Fu Y Q,Le H R,et al.Diamond and diamond-like carbon MEMS[J].Journal of micromechanics and microengineering,2007,17:147-163.
    [35]Peng X L,Clyne T W.Residual stress and debonding of DLC films on metallic substrates[J].Diamond and Related Materials,1998,7(7):944-950,
    [36]Bhushan B.Chemical,mechanical and tribological characterization of ultra-thin and hard amorphous carbon coatings as thin as 3.5 nm:recent developments[J].Diamond and Related Materials,1999,8(11):1985-2015.
    [37]Aisenberg S,Chabor S.Ion-beam deposition of thin films of diamond like carbon[J].Journal of Applied Physics,1971,42(7):2953-2958.
    [38]李刘合,夏立芳,张海泉,等.类金刚石碳膜的摩擦学特性及其研究进展[J].摩擦学学报,2003,21(1):76-80.
    [39]Donnet C.Recent prosress on the tribology of doped diamond-like and carbon alloy coatings:areview [J].Surface & Coatings Technology,1998,100-101(1-3):180-186.
    [40]Murakawa M,Takeuchi S.Diamond Coating Using Multiple Flame Torches in an Atmospheric Chamber[J].Surface & Coatings Technology,1992,55(1-3):403-407.
    [41]Lettington A H.Applications of diamond-like carbon thin films[J].Carbon,1998,36(5-6):555-560.
    [42]伟丽,夏义本,居建华,等.不同掺氮量的类金刚石薄膜的电导性能[J].半导体光电,2003,1:24-27.
    [43]祝士富,沈丽如.类金刚石膜的性能、制备与应用[J].真空,2008,45:52-55.
    [44]Novikov N V,Gontar A G,Khandozhko S I,et al.Protective diamond-like coatings for optical materials and electronic devices[J],Diamond and Related Materials,2000,9:792-795.
    [45]梁海锋.类金刚石薄膜的光学性的研究[J].光学仪器,2004,2:183-187.
    [46]Colin A W,Davis R F,Sitar Z,et al.Low-temperature deposition of optically transparent diamond using a low-pressure fiat flame[J].Diamond and Related Materials,1997,6:1862-1867.
    [47]Wang Jian,Carlisle John A.Covalent immobilization of glucose oxidase on conducting ultra nanocrystalline diamond thin films[J].Diamond and Related Materials,2006,15:279-284.
    [48]Adamschik M,Hinz M,Maier C,et al.Diamond micro system for bio-chemistry[J].Diamond and Related Materials,2001,10:722-730.
    [49]Zhu Xiangwei,Aslam Dean M.CVD diamond thin film technology for MEMS packaging[J].Diamond and Related Materials,2006,15:254-258.
    [50]Zhu Xiangwei,Aslam Dean M,Sullivan John P.The application of polycrystalline diamond in a thin film packaging process for MEMS resonators[J].Diamond and Related Materials,2006,15:2068-2072.
    [51]Ryoichi Yamamoto,Kiyoshi Miyashita,Hiroshi Hayashi,et al.Preparation of microstructure bodies in freestanding diamond-like carbon foil prepared using plasma-based ion implantation[J].Diamond and Related Materials,2007,16:292-295.
    [52]Bulir J,Novotny M,Jelinek M,et al.Plasma study and deposition of DLC/TiC/Ti multilayer structures using technique combining pulsed laser deposition and magnetron sputtering[J].Surface & Coating Technology,2005,200:708-711.
    [53]Wu Jin-Bao,Chen Chao-Ying,Shin Chin-Te,et al.Microstructure and physical properties of DLC films deposited by laser induced high current pulsed arc deposition[J].Thin Solid Films,2008,517:114-119.
    [54]Voevodin A A,Capano M A,Laube S J P,et al.Design of functionally gradient coating based on studies of structural transitions in Ti-C thin films[J].Thin Solid Films,1997,298:107-115.
    [55]Zhang Rui-qian,Liu Yao-guang,Huang Ning-kang.Effects of Hydrogen Ion Implantation on TiC-C Coating of Stainless Steel[J].Journal of Iron and Steel Research.2008,15(4):77-81.
    [56]Meskinis S,Andrulevicius M,Tamulevicius S,et al.XPS study of the a-C:H /Ti and a-C:H/a-Si interfaces[J].Vacuum,2006,80:1007-1011.
    [57]Wei Chehung,Chen Chien-Hung.The effect of thermal and plastic mismatch on stress distribution in diamond like carbon film under different interlayer/substrate system[J].Diamond & Related Materials,2008,17:1534-1540.
    [58]Guruvenket S,Li D,Klemberg-Sapieha J E,et al.Mechanical and tribological properties of duplex treated TiN,nc-TiN/a-SiNx and nc-TiCN/a-SiCN coatings deposited on 410 low alloy stainless steel[J].Surface & Coatings Technology,2009,203:2905-2911.
    [59]Wei Chehung,Wang Yi-Shun,Tai Fong-Cheng.The role of metal interlayer on thermal stress,film structure,wettability and hydrogen content for diamond like carbon films on different substrate[J].Diamond & Related Materials,2009,18:407-412.
    [60]Schwarz C,Heeg J,Rosenberg M,et al.Investigation on wear and adhesion of graded Si/SiC/DLC coatings deposited by plasma-enhanced-CVD[J].Diamond & Related Materials,2008,17:1685-1688.
    [61]Jui Yun Jao,Sheng Han,Shen Chang Li,et al.Formation and characterization of DLC:Cr:Cu multi-layers coating using cathodic arc evaporation[J].Diamond & Related Materials,2009,18:368-373.
    [62]Wu WengJin,Hon MinHsiung.Thermal stability of diamond-like carbon films with added silicon [J].Surface and Coatings Technology,1999,111:134-140.
    [63]Wang Peng,Wang Xia,Xu Tao,et al.Comparing internal stress in diamond-like carbon films with different structure[J].Thin Solid Films,2007,515:6899-6903.
    [64]Bui X L,Pei Y T.Magnetron reactively sputtered Ti-DLC coatings on HNBR robber:The influence of substrate bias[J].Surface & Coatings Technology,2008,202:4939-4944.
    [65]Amin M S,Randeniya L K,Bendavid A,et al.Amorphous carbonated apatite formation on diamond-like carbon containing titanium oxide[J].Diamond & Related Materials,2009,DIAMAT-05238.
    [66]Meng W J,Tittsworth R C,Rehn L E.Mechanical properties and microstructure of TiC/amorphous hydrocarbon nanocomposite coatings[J].Thin Solid Films,2000,377-378:222-232..
    [67]Tomas Vitu,Tomas Polcar,Ladislav Cvrcek,et al.Structure and tribology of biocompatible Ti-C:H coatings[J].Surface & Coatings Technology,2008,202:5790-5793.
    [68]Cheng Hsin-Chung,Chiou Shi-Yung,Liu Chung-Ming,et al.Effect of plasma energy on enhancing biocompatibility and hemocompatibility of diamond-like carbon film with various titanium concentrations[J].Journal of Alloys and Compounds,2009,477:931-935.
    [69]Ikeyama Masami,Nakao Setsuo,Sonoda Tsutomu,et al.Improvement of corrosion protection property of Mg-alloy by DLC and Si-DLC coatings with PBⅡ technique and multi-target DC/RF magnetron sputtering[J].Nuclear Instruments and Methods in Physics Research B,2009,267:1675-1679.
    [70]Zhang Guangan,Yan Pengxun,Wang Peng,et al.The effect of applied substrate negative bias voltage on the structure and properties of Al-containing a-C:H thin films[J].Surface & Coatings Technology,2008,202:2684-2689.
    [71]Qin Lizhao,Wu Zhenglong,Zhang Xu,et al.Modification of DLC films by Ni~+ ions implantation [J].Nuclear Instruments and Methods in Physics Research B,2008,266:3939-3944.
    [72]Sunil K Pal,Jiechao Jiang,Efstathios I Meletis.Effects of N-doping on the microstructure,mechanical and tribological behavior of Cr-DLC films[J].Surface & Coating Technology,2007,201:7917-7923.
    [73]Precht W,Czyzniewski A.Deposition and some properties of carbide amorphous carbon nanocomposites for tribological application[J].Surface and Coatings Technology,2003,174-175:979-983.
    [74]Wang Xuemin,Wu Weidong,Li Shengyin,et al.Properties of W incorporated diamond-like carbon films prepared by pulsed-laser deposition[J].Journal of Alloys and Compounds,2009,479:741-745.
    [75]Zhang Zhenyu,Lu Xinchun,Luo Jianbin,et al.Preparation and characterization of La_2O_3 doped diamond-like carbon nanofilms(1):Structure analysis[J].Diamond & Related Materials,2007,16:1905-1911.
    [76]Heon Woong Choi,David M.Gage,Reinhold H,et al.Effects of thermal annealing and Si incorporation on bonding structure and fracture properties of diamond-like carbon films[J].Diamond & Related Materials,2009,18:615-619.
    [77]Lau K K S,Pryce Lewis H G,Limb S J,et al.Hot-wire chemical vapor deposition(HWCVD) of fluorocarbon and organosilicon thin films[J].Thin Solid Films,2001,395:288-291.
    [78]Yang W J,Choa Y H,Sekino T,et al.Thermal stability evaluation of diamond-like nanocomposite coatings[J].Thin Solid Films,2003,434(1-2):49-54.
    [79]Matsuo S,Ono T,Takahashi C,et al.Electron Cyclotron Resonance Plasma Deposition Technique Using Raw Material Supply by Sputtering[J].Japanese Journal of Applied Physics,1984,23:L534-L536.
    [80]Kidd P.A magnetically confined and electron cyclotron resonance heated plasma machine for coating and ion surface modification use[J].Journal of Vacuum Science and Technology A,1991,9(3):466-473.
    [81]Kidder N,Varhue W J.Diamond like carbon films sputters deposited with an electron cyclotron resonance reactor[J].Journal of Vacuum Science and Technology A,1992,10(4):1414-1422.
    [82]Miller D B.An Experimental X-band Electron-Cyclotron-Resonance Plasma Accelerator IEEE Trans[J].Microwave Theory and Technology,1966,14(3):162-164.
    [83]Kosmahl H G,Miller D B,Bethke G W.Plasma Acceleration with Microwaves near Cyclotron Resonance[J].Journal of Applied Physics,1967,38:4576-4582.
    [84]Suzuki K,Okudaira S,Sakudo N,et al.Microwave Plasma Etching[J].Japanese Journal of Applied Physics,1977,16:1979-1984.
    [85]Levine A M,Kuckes A P,Motley R W.Electron-Cyclotron Resonance Heating of Alkali Plasmas [J].Journal of Applied Physics,1967,38:4435-4440
    [86]Ganguli A,Appala Naidu P.Analysis of the dominant a slotted -helix -loaded cylindrical waveguide for use in plasma production[J].Journal of Applied Physics,1990,68(7):3679-3687.
    [87]Wu C F,Zhan R J,Wen X H,et al.Characterization of the slot antenna microwave plasma source [J].IEEE Trans Plasma Science,2001,29(1):13-17.
    [88]马腾才,胡希伟,胡银华.等离子体物理原理[M].合肥:中国科技大学出版社.1988.
    [89]徐军.微波ECR等离子体增强非平衡磁控溅射技术及CN薄膜的制备研究[D].大连:大连理工大学,2001.
    [90]#12
    [91]Windows B,Sawides N.Unbalance magnetron sputtering[J].Journal of Vacuum Science and Technology,1986,A4(2):196-504.
    [92]Howson R P,J'Afer H A,Spencer A G.Substrate effects from an unbalanced magnetron[J].Thin Solid Films,1990,194:127-137.
    [93]Sproul W D.High-rate reactive DC magnetron sputtering of oxide and nitride superlattice coatings[J].Vacuum,1998,51(4):641-646.
    [94]Roth J.R.,Industrial Plasma Engineering[M].Philadelphia,USA:Institute of Physics Publishing,1995.
    [95]Elman B S.Structural characterization of ion-implanted graphite[J].Physical Review B,1982,25:4142-4156.
    [96]Ferrari A C,Robertson J.Interpretation of Raman of disordered and amorphous carbon[J].Physical Review B,2000,61(20):14095-14107.
    [97]Kwok D Y,Neumann A W.Contact angle measurement and contact angle interpretation[J]Advances in Colloid and Interface Science,1999,81:167-249.
    [98]Tien C L,Chen G.Challenges in microscale conductive and radiative heat transfer[J].Journal of Heat Transfer-Transactions of the ASME,1994,116(4):799-807.
    [99]Kading O W,Skurk H,Goodson K E.Thermal conduction in metallized silicon-dioxide layers on silicon[J].Applied Physics Letters,1994,65(13):1629-1631.
    [100]Anders S,Callahan D L,Pharr G M,et al.Multilayers of amorphous carbon prepared by cathodic arc deposition[J].Surface & Coatings Technology,1997,94-95(1-3):189-194.
    [101]Tan J,Zaninski J S,Bultman J E.TiC coatings prepared by pulsed laser deposition and magnetron sputtering[J].Surface & Coatings Technology,1997,91:69.
    [102]Wang S J,Tsai H Y,Sun S C.Characterization of Sputtered Titanium Carbide Film as Diffusion Barrier for Copper Metallization[J].Journal of the Electrochemical Society,2001,148:563-566.
    [103]Delplancke-orletree M P,Monteriro O R.Deposition of titanium carbide films from mixed carbon and titanium plasma streams[J].Journal of Vacuum Science and Technology,1997,A15:1943.
    [104]Morosanu C E.The preparation,characterization and applications of silicon nitride thin films[J].Thin Solid Films,1980,65(2):171-208.
    [105]French P J,Sarro P M,Mallee R et al.Optimization of a low-stress silicon nitride process for sufface-micromachining applications[J].Sensors and Actuators A,1997,58(2):149-157.
    [106]Schwan J,UMch S,Batori V,et al.Raman spectroscopy on amorphous carbon films[J].Journal of Applied Physics,1996,80(1):440-447.
    [107]Qi J,Luo J B.Mechanical and tribological properties of non-hydrogenated DLC films synthesized by IBAD[J].Surface & Coatings Technology,2000,128-129:324-328.
    [108]Marcus B,Fayette L,Mermoux M,et al.Analysis of the structure of mufti-component carbon films by resonant Raman scattering[J].Journal of Applied Physics,1994,76(6):3463-3470.
    [109]Zhang S,Zeng X T,Xie H,et al.A phenomenological approach for the I_D/I_G ratio and sp~3fraction of magnetron sputtered a-C films[J].Surface & Coatings Technology,2000,123(2-3):256-260.
    [110]Roth J R.Industrial Plasma Engineering(Volume 1)[M].Philadelphia:Institute of Physics Publishing.1995.
    [111]Hanson D E,Stephens B C,Saravanan C,et al.Molecular dynamics simulations of ion self-sputtering of Ni and Al surfaces[J].Journal of Vacuum Science and Technology A,2001,19(3):820-825.
    [112]Koehler J S.Attempt to Design a Strong Solid[J].Physics Review B,1997,2:547-551.
    [113]Cohen M L.Calculation of bulk moduli of diamond and zinc-blende[J].Solids,1985,32:7988-7991.
    [114]Liu A Y,Cohen M L.Structural properties and electronic structure of low-compressibility materials:β-Si_3N_4 and hypothetical β-C_3N_4[J].Physical Review B,1990,41(15):10727-10734.
    [115]严有为,魏伯康,林汉同等.化学成分对原位TiC/Fe复合材料组织和性能的影响[J].中国有色金属学报,1999,9(2):225-230.
    [116]Zehnder T,Schwaller P,Munnik F,et al.Nanostructural and mechanical properties of nanocomposite no-TiC/a-C:H films deposited by reactive unbalanced magnetron sputtering[J].Journal of Applied Physics,2004,95:4327-4331.
    [117]Scherrer P.Estimation of the Size and Internal Structure of Colloidal Particles by R(o|¨)ntgen Rays [J].Nachrichten Gesellschaft Wissenschaft Gottingen,1918,26:98-100.
    [118]Chen G,Hui P.Pulsed photothermal modeling of composite samples based on transmission-line theory of heat conduction[J].Thin Solid Films,1999,339(1-2):58-67.
    [119]Zhao Y M,Chen G,Wang S Z,et al.Thermal characterization of gallium arsenic nitride epilayer on gallium arsenide substrate using pulsed photothermal reflectance technique[J].Thin Solid Films,2004,450(2):352-356.
    [120]王小平,曹立明.遗传算法-理论、应用与软件实现[M].西安:西安交通大学出版社,2002.
    [121]Christopher J M,Humphrey J M.Picosecond optical studies of amorphous diamond and diamond-like carbon:thermal conductivity and longitudinal sound velocity[J].Journal of Applied Physics,1994,76:2636-2640
    [122]Shamsa M,Liu W L.Thermal conductivity of diamond-like carbon films[J].Applied Physics Letters,2006,89:16921.
    [123]Precht W.Czyzniewski A.Deposition and some properties of carbide/amorphous carbon nanocomposites for tribological application[J].Surface & Coatings Technology,2003,174/175:979-982.
    [124]Ding Xing-zhao,Tay B K,Tan H S,et al.Preferential orientation of titanium carbide films deposited by a filtered cathodic vacuum arc technique[J].Surface & Coatings Technology,2001,138(2-3):301-306.
    [125]Delplancke-Ogletree M P,Monteiro O R.Deposition of titanium carbide films from mixed carbon and titanium plasma stream[J].Journal of Vacuum Science and Technology,1997,A15:1943.
    [126]Dillon R O,Woollam J,Katkanant V.Use of Raman scattering to investigate disorder and crystallite formation in as-deposited and annealed carbon films[J].Physical Review B,1984,29:3482-3489.
    [127]Das D,Chen K H,Chattopadhyay S,et al.Spectroscopic studies of nitrogenated amorphous carbon films prepared by ion beam sputtering[J].Journal of Applied Physics,2002,91:4944-4955.
    [128]Moulder J F,Suckle W F,Sobol P E,et al.Handbook of X-Ray Photoelectron Spectroscopy [M].Physical Electronics Inc,Eden Prairie:Minnesota,1992.
    [129]Wheeler D R.Composition of rf-sputtered refractory compounds determined by XPS[J].Journal of Vacuum Science and Technology,1982,16:23.
    [130]王荣,齐宏进.磁控溅射法制备PET基纳米TiO_2膜的XPS表征[J].青岛大学学报,2005,19:42-46。
    [131]Li G,Xia L F.Structural characterization of TiCx films prepared by plasma based ion implantation[J].Thin Solid Films,2001,396:16.
    [132]Radhakrishnan G,Adams P M,Speckman D M.Low temperature pulsed laser deposition of titanium carbide on bearing steels[J],Thin Solid Films,2000,358:131.
    [133]Santerre F,El Khakani M A,Chaker M,et al.Properties of TiC thin films grown by pulsed laser deposition[J],Applied Surface Science,1999,148:24.
    [134]Zhang S,Zeng X T,Xie H,et al.A phenomenological approach for the I_D/I_G ratio and sp~3fraction of magnetron sputtered a-C films[J].Surface & Coatings Technology,2000,123(2-3):256-260.
    [135]Johnston G P,Tiwari P,Rej D J,et al.Preparation of diamond like carbon films by high intensity pulsed-ion-beam deposition[J].Journal of Applied Physics,1994(76):5949-5954.
    [136]Burnett P J,Richerby D S.The Relationship between hardness and scratch adhesion[J].Thin Solid Films,1987,154:403-408.
    [137]Hamdi A H,Qiu X,Malaczynslci G W,et al.Microstructure analysis of plasma immersion ion implanted diamond-like carbon coatings[J].Surface and Coatings Technology,1998,103-104:395-400.
    [138]Erdemir A,Bindal C,Fenske G R,et al.Characterization of transfer layers forming on surfaces sliding against diamond-like carbon[J].Surface and Coatings Technology,1996,(86-87):692-697.
    [139]Liu Y,Erdemir A,Meletis E I.Influence of environmental parameters on the frictional behavior of DLC coatings[J].Surface and Coatings Technology,1997,(94-95):463-468.
    [140]Hazlett R D,Vaidya R N.Lattice Boltzmann simulations and contact angle hysteresis in convergent-divergent media[J].Journal of Petroleum Science and Engineering,2002,33(1-3):161-171.
    [141]Yao Z Q,Yang P.Influence of substrate bias on growth of amorphous fluorinated carbon films [J].Vacuum Science and Technology,2004,1:43-46.
    [142]Djemia P,Tetard F,Ganot F,et al.Mechanical characterizations of diamond carbon films made by PACVD[J].Surface & Coatings Technology,2002,(151-152):170-174.
    [143]Huang L,Lau S P,Yang H Y,et al.Stable super-hydrophobic surface via carbon nanotubes coated with a ZnO thin film[J].Journal of Physical Chemistry B,2005,109(16):7746-7748.
    [144]Wan G J,Yang P,Ricky K Y Fu,et al.Characteristics and surface energy of silicon-doped diamond-like carbon films fabricated by plasma immersion ion implantation and deposition [J].Diamond & Related Materials,2006,15:1276 - 1281.
    [145]王庆璋,杜敏.海洋腐蚀与防护技术[M].青岛:青岛海洋大学出版社,2001.
    [146]Cesar Fernandez-Sanchez,Calum J.McNeil,Keith Rawson.Electrochemical impedance spectroscopy studies of polymer degradation:application to biosensor development[J].Trends in Analytical Chemistry,2005,24(1):37-48.
    [147]张鉴清,曹楚男.电化学阻抗法研究有机涂层[J].腐蚀与防护,1998,19(3):99-104.
    [148]Wang Zhou,Wang Chengbing,Wang Qi,et al.Electrochemical corrosion behaviors of a-C:H and a-C:N_x:H films[J].Applied Surface Science,2008,254:3021-3025.
    [149]Zeng A,Liu E,Zhang S,et al.Impedance study on electrochemical characteristics of sputtered DLC films[J].Thin Solid Films,2003,426:258-264.
    [150]Cai W,Sui J H.Effect of working pressure on the structure and the electrochemical corrosion behavior of diamond-like carbon(DLC) coatings on the NiTi alloys[J].Surface & Coatings Technology,2007,201:5194-5197.
    [151]Li H X,Xu T,Chen J M.Effect of RF power on the structure and properties of diamond-like carbon films[J].Acta Physica Sinica,2005,54(04):1885-1891.
    [152]Kim H G,Ahn S H,Kim J G,et al.Electrochemical behavior of diamond-like carbon films for biomedical applications[J].Thin Solid Films,2005,475(1-2):291-297.
    [153]赵彦辉.脉冲偏压电弧离子镀沉积超硬多层薄膜[D].大连:大连理工大学,2005.
    [154]Dai H Y,Wang L W,Hui J,et al.A New Empirical Model for Estimation of sp~3 Fraction in Diamond-Like Carbon Films[J].Chinese Physics Letter,2007,24:2122-2124.
    [155]肖剑荣,徐慧.含氮氟化类金刚石薄膜的研究(Ⅱ)射频功率对薄膜光学带隙的影响[J].物理学报,2007,56(3):1809-1814.
    [156]Delplancke-Ogletree M P,Monteiro O R.Depositon of titanium carbide films from mixed carbon and titanium plasma streams[J].Journal of Vacuum Science and Technology A,1997,15:1943-1947.
    [157]高铁,钱朝勇,于向阳.表面亲水性[J].材料导报,2000,14(7):27-30.
    [158]Hubler R.Characterisation of gradient interfaces in thin film multilayers used to protect orthopaedic implants[J].Surface & Coatings Technology,1999,116-119:1116-1122.
    [159]黄美东,林国强,董闯等.偏压对电弧离子镀薄膜表面形貌的影响机理[J].金属学报,2003,39(5):510-515.
    [160]Ahn S H,Lee J H,Kim H G,et al.A study on the quantitative determination of through-coating porosity in PVD-grown coatings[J].Applied Surface Science,2004,233(1):105-114.
    [161]Lifshitz Y,Lempert G D,Grossman E.Substantiation of subplantation model for diamond-like filin growth by atomic force microscopy[J].Physics Review letters,1994,72(17):2753-2756.
    [162]Yang W B,Fan S H.Investigation of diamond-like carbon films prepared by unbalanced magnetron sputtering[J].Acta Physica Sinica,2005,54(10):4944-4949.
    [163]Shum P W,Zhou Z F,Li K Y,et al.Mechanical and tribological properties of amorphous carbon films deposited on implanted steel substrates[J].Thin Solid Films,2004,458(2):203-211.
    [164]Pooh R W Y,Yeung K W K,Liu X Y,et al.Carbon plasma immersion ion implantation of nickel-titanium shape memory alloys[J].Biomaterials,2005,26(15):2265-2272.
    [165]Davis C A.Cross-sectional structure of tetrahedral amorphous carbon thin films[J].Surface &Coatings Technology,1995,76-77:316-321.
    [166]Zhao J P,Chen Z Y.Sandwich atomic structure in tetrahedral amorphous carbon:Evidence of subplantation model for film growth from hyperthermal species[J].Physical Review B,2001,63:115318-115326.
    [167]Meng W J,Tittsworth R C,Rehn L E.Mechanical properties and microstructure of TiC/amorphous hydrocarbon nanocomposite coatings[J].Thin Solid Films,2000,377-378:222-227.
    [168]Leonhardt A,Liepack H,Bartsch K.CVD of TiC x a C layers under dc pulse discharge[J].Surface & Coatings Technology,2000,133-134:186-191.
    [169]James C,Stock H R.Influence of the PACVD process parameters on the properties of titanium carbide thin films,H.Berndt,etc[J].Surface & Coatings Technology,1998,98:1547-1550.
    [170]Deng J,Braun M,Wei Y.Reactive sputtered titanium carbide nitride and diamondlike carbon coatings[J],Journal of Vacuum Science and Technology,1998,16:2073-2075.
    [171]江晓红,Rogachev A V.Ti合金化DLC膜的结构和力学性能[J].无机材料学报,2002,17(4):771-776.
    [172]Conway N M,Milne W I,Robertson J.Electronic properties and doping of hydrogenated tetrahedral amorphous carbon films[J].Diamond and Related Materials,1998,7(2-5):477-481.
    [173]Catherine Y,Rhallabi A.Computer simulation of a carbon-deposition plasma in C_2H_2[J].IEEE.Traps.Plasma Sci.,1991,(1):277-279.
    [174]Kline L E,Partlow W D,Bies W E.Deposition of a-C:H films in a Hall accelerator plasma[J].Journal of Applied Physics,1989(75):70-74.
    [175]Keudell A V,Schwarz T,Jacob W.Quantification of a radical beam source for methylradicals [J].Journal of Vacuum Science and Technology,2001,A19(1):101-107.
    [176]Yu X,Wang C B,Liu Y,Yu D Y.Cr-doped DLC films in three mid-frequency dual-magnetron power modes[J].Surface & Coatings Technology,2006,200:6765-6769.
    [177]黄岳山,蒙继龙,刘正义.金属钛的离子注入表面改性[J].暨南大学学报(自然科学版),1997,18:66-68.
    [178]王贻华,胡正琼.离子注入抑制摩擦温升的研究[J].航空学报,1994,15:188-191.
    [179]萨尔满,舒尔赫,黄照柏译.陶瓷学[M].北京:轻工业出版社,1989.
    [180]王零森.特种陶瓷[M].中南工业大学出版社,2003.
    [181]Shamsa M,Liu W L,Balandin A A.Thermal conductivity of diamond-like carbon films[J].Applied Physics Letters,2006,89:161921-161923.
    [182]陈旭,李晓刚,杜翠薇等.阴极极化条件下X70钢的缝隙腐蚀行为[J].金属学报,2008,44(12):1431-1438.