微网运行和电能质量控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可再生能源可有效缓解全球能源危机,提高能源可持续发展能力。分布式发电是可再生能源开发利用的有效途径,它充分利用各种可用的分散存在的能源进行发电,有利于缓解集中发电设施建设的压力,是大电网的有效补益。分布式发电优势明显,然而,由于分布式发电的随机性和分散性,大规模接入会对电网的安全稳定运行带来影响,当电网发生故障时,分布式发电必须与电网断开,无法发挥分布式发电削峰填谷的作用。微网这一概念被提出来规范分布式发电,使其“友好地”接入电网,协调分布式发电与电网之间的矛盾。微网是解决分布式电源大规模接入电网的重要方法,也是发展智能电网的重要研究内容。
     微网运行控制和微网及含微网电网的电能质量分析与控制是微网研究的关键技术,为微网应用于实际和大规模微网接入电网提供理论参考和技术支持,本文是在国家重点基础计划项目(“973”计划)的资助下完成的,研究内容涉及到四个方面:微网控制、微源控制、微网内部电能质量控制(微源并网逆变器复合利用)和含多微网配电网的电能质量控制,具体工作和创新点体现在:
     (1)从微网结构出发,考虑微源间环流问题,根据不同类型微源在微网系统所起的作用制定相应的控制策略,提出了微网的综合控制策略。提出了改进型下垂控制,与传统下垂控制相比,可提高微源输出电压的响应速度和调节精度。微源无缝切换技术可减少并网瞬间产生的冲击电流,提高微网运行的稳定性,实现微源即插即用,针对现有微源同步并网控制在实现无缝切换后需变换控制策略的缺陷,本文提出了微源同步并网与功率统一控制策略。该控制策略实现同步并网后,无需改变控制结构就能实现微源输出功率的调节。在MATALB\SIMULINK环境下建立了基于多种分布式能源形式的微网系统仿真模型,讨论了微网孤岛和联网运行特性,微网仿真结果验证了所提控制策略的正确性。
     (2)提出了一种基于LCL滤波器的双环功率控制策略。该功率控制由功率外环、电容电流内环组成。为了给功率外环提供并网有功和无功功率反馈值,提出了基于PQ理论的单相电路检测算法。功率外环的控制量为有功和无功功率,是直流量,分别采用PI控制器,可以确保微源输出有功和无功功率的无稳态误差控制,从而实现单相微源的PQ控制。利用频域卷积的频移特性,推导了功率环的传递函数,并得出了整个系统开环和闭环传递函数。通过绘制闭环传递函数的根轨迹和计算开环传递函数的稳定裕度,分析了所提功率控制系统的稳定性,设计了控制系统的外环和内环控制增益。仿真和实验验证了所提控制策略的正确性和有效性。
     (3)研究了光伏微源并网逆变器复合利用的两个理论基础,在分析了现有两种光伏并网控制策略(即基于同步旋转变换的PI控制和基于静止坐标下的比例谐振控制)基础上,提出了基于同步旋转坐标变换和基于静止坐标系下的两种复合控制策略,分析了两种控制策略的控制原理,从控制结构、调节精度、数字化实现和限幅控制等方面比较分析了两种复合控制策略的优缺点,重点仿真研究了基于静止坐标系下的复合控制策略在实现光伏发电、谐波治理、无功补偿和复合利用的性能,并讨论了复合利用对光伏微源发电的影响。
     (4)分析了多微网接入对配电网电能质量的影响。针对多微网接入对配电网产生的电能质量问题,本文提出了一种由晶闸管控制电抗器(TCR)和谐振阻抗型混合有源电力滤波器(RITHAPF)组成的电力电子混合补偿系统(PEHS),分析了PEHS的工作原理,提出了PEHS控制策略。针对目前TCR的补偿导纳计算公式,是完全补偿方式,容易造成过补偿,且通过研究功率因数与功率的非线性曲线发现:功率因数越接近单位一,关系曲线越陡,此时功率因数每增大一个百分点,所需无功补偿量越大。本文提出了一种基于广义dq变换的补偿导纳计算方法,用于TCR和PPFs补偿多微网联网三相电流不平衡和功率因数。在分析RITHAPF (?)皆波抑制原理的基础上,研究了影响RITHAPF滤波性能的机理,提出了具有相位补偿的分频电流控制策略,分频补偿因RITHAPF主电路等效阻抗引起延时造成的相位偏移,消除延时对RITHAPF滤波性能的影响,提高PEHS谐波抑制能力。仿真验证了所提PEHS控制策略的有效性和正确性,比较研究了有无相位补偿对RITHAPF (?)皆波抑制性能的影响。
Renewable energy resource is effective to relieve global energy resource crisis and enhance the ability of energy source sustainable development. Distributed generation (DG) makes use of all kind of distributed energy resource, which has been becoming the way of renewable energy resource. Distributed generation technologies have been used to relieve the construction pressure of centralized power generation facility, which is the efficient benefit for the utility grid. Although the distributed generation has many advantages, however, large-scale distributed generation connected to the utility grid would cause the influence on the security and stability of the utility grid operation because of its randomness and instability. The distributed generation would be disconnected from the utility grid when broken down, which can not play an important role in rush power supply. To solve the negative influence of the large-scale distributed generation connected to the utility grid on its operation, the concept 'microgrid' which is presented to regulate the distributed generation and promote it friendly connected to the utility grid, can coordinate the contradiction between the distributed generation and the utility grid. The microgrid which is the important solution of the large-scale distributed generation connected to the utility, is also the significant research content of the smart grid development. The study on micogrid is corresponding with the major requirement of the national energy resource strategy.
     Microgrid operation control and power quality control of the microgrid and the utility grid including microgrids are the key technologies of microgrid research, which propose theoretical foundation and technical support for the microgrid practical application and the large-scale microgrids connected to the utility grid. This dissertation which cover four aspects:microgrid control, microsource control, power quality control inside microgrid (microsource grid-connected inverter composite utilization), and distribution grid power control when many microgrid connected to, is finished by financial support of The National Basic Research Program of China (973Program). The major work and novelties in this dissertation are listed below.
     (1) Considering the microgrid architecture and the circulating current among microsources, the combined control strategy for the micogrid is proposed and different kinds of microsources in a microgrid system act different roles and should be employed with the corresponding control methods. An improved droop control is presented to promote the response speed and the regulation precision of the output voltage of the microsource, comparing with the traditional droop control. The microgrid seamless transfer technique can suppress the urge current when the microsource is connected to, which can improve the operation stability for the microgrid and achieve the plug-and-play function for the microsource. An unified synchronization and power-output control for the microsource is proposed in order to improve the available synchronous-connection control which need to change the control strategy after the microsource synchronous connection. A simulation model of the microgrid based on several kinds of distributed source is built in MATLAB\SIMULINK. Operation characteristics of island and connection modes of the microgrid are discussed. The simulation results verify the correctness of the proposed control method.
     (2)Dual-loop power control strategy with an LCL filter is proposed to sever constant active and reactive power in single-phase microgrid, which consists of power outer loop and capacitor-current inner loop. To provide references of connected active and reactive power for the power outer loop, the single-phase circuit detecting method is presented based on the PQ theory. The control variables of the power outer loop are active and reactive power, which are DC. Then the power outer loop adopts PI controllers and can obtain zero steady-stat error for regulating the microsource output power, so PQ control of the single-phase microsource is realized. According to the frequency-shift characteristics of frequency-domain convolution, the transfer function of the power outer loop is derived. The open-loop and closed-loop transfer functions of the whole system are also obtained. With drawing the root locus of the closed-loop transfer function and calculating stability margin of the open-loop transfer function, the stability of the proposed power control system is discussed and the control gains of outer and inner loops are designed. The simulation and experimental results verify the correctness and effectiveness of the proposed power control strategy.
     (3)Two theoretical bases of composite utilization of grid-connected inverters are studied for photovoltaic microsources. On the base of analyzing two kinds of photovoltaic grid-connected control strategies (PI control and proportional resonant control), two composite control methods are proposed based on synchronous rotating coordinate transformation and stationary coordinate, respectively. And the principles of two composite controls are also analyzed respectively. From several aspects of control structure, regulating precision, digital realization and amplitude limitation, advantages and disadvantages of two composite controls are compared. Simulation research focuses on the composite control based on stationary coordinate, whose performances of photovoltaic generation, harmonic suppression, reactive power compensation, and composite utilization are discussed in detail. Besides, the influence of the composite utilization on PV generation is also studied.
     (4)The influence of many microgrids connected to the distribution grid on its power quality is discussed. The distribution grid would require reactive power compensation and harmonic suppression when many microgrids are connected to. According to the requirement, a power electronic hybrid system (PEHS) which consists of a thyristor controlled reactor (TCR) and a resonant impedance type hybrid active power filter (RITHAPF) is proposed for compensating reactive power and harmonic current. The PEHS working principle and control strategy are analyzed and presented, respectively. Currently, the compensated-susceptance calculation for TCR is a complete compensation manner, which easily causes over compensation. From the nonlinear relationship curve of power factor and power, what obtained is that: The power factor is closer to an unit and the relationship curve is steeper, and at that moment, the power factor increases one percent which would need more capacity of reactive power compensation. The improved compensated-susceptance calculation based on general dq transformation is proposed for TCR and PPFs. After researching the harmonic suppression principle and the mechanism of affecting the filtering performance, a selective-frequency current control with phase compensation for RITHAFP is proposed to eliminate the influence of the phase shift caused by the equivalent impedance of RITHAPF on its filtering performance. Simulation results prove that the proposed PEHS not only can dynamically compensate reactive power, but also can eliminate harmonic current. The filtering performance of RITHAPF whether phase compensation is compared.
引文
[1]江泽民.对中国能源问题的思考[J].上海交通大学学报,2008,42(3):345-359.
    [2]Ackermann T, Andersson G, Soder L. Distributed generation:a definition[J]. Electric Power systems Research,2001,57(3):195-204.
    [3]丁明,王敏.分布式发电技术[J].电力自动化设备,2004,24(7):31-36.
    ]4]张帆,杨明皓.中国农村分布式功能模式供需分析[J].电力系统保护与控制,2010,38(23):121-125.
    [5]梁才浩,段献忠.分布式发电及其对电力系统的影响[J].电力系统自动化,2001,25(12):53-56.
    [6]王志群,朱守真,周双喜,等.分布式发电对配电网电压分布的影响[J].电力系统自动化,2004,28(16):56-60.
    []]陈海焱,段献忠,陈金富.分布式发电对配电网静态电压稳定性的影响[J].电网技术,2006,30(19):27-30.
    [8]冯兴田,韦统振,孔令志.高渗透分布式发电对配电网电压质量的影响研究[J].水电能源科学,2010,28(9):154-157.
    [9]张立梅,唐巍,赵云军,等.分布式发电接入配电网后对系统电压及损耗的影响分析[J].电力系统保护与控制,2011,39(5):91-96.
    [10]Wang C, Nehrir M H. Analytical approaches for optimal placement of distributed generation sources in power sytem[J]. IEEE Trans on Power Systems,2004,19(4):2068-2076.
    [11]Brown B E, Freeman L A A. Analyzing the reliability impact of distributed generation[C]. In:Proceeding of IEEE Power Engineering Society Summer Meeting. Canada,2001,1013-1018.
    [12]庞建业,夏晓宾,房牧.分布式发电对配电网继电保护的影响[J].继电器,2007,35(11):5-8.
    [13]黄伟,雷金勇,夏翔,等.分布式电源对配电网相间短路保护的影响[J].电力系统自动化,2008,32(1):93-97.
    [14]韩民晓,崔军立,姚蜀军,等.大量风电引入电网是的频率控制特性[J].电力系统自动化,2008,32(1):29-33.
    [15]余贻鑫,栾文鹏.智能电网[J].电网与清洁能源,2009,25(1):07-11.
    [16]李兴源,魏巍,王渝红,等.坚强智能电网发展技术的研究[J].电力系统保护与控制,2009,37(17):1-7.
    [17]李振杰,袁越.智能微网——未来智能配电网新的组织形式[J].电力系统自动化,2009,33(17):42-47.
    [18]施婕,艾芊.智能电网实现的若干关键技术问题研究[J].电力系统保护与控制,2009,37(19):1-4.
    [19]王成山,李鹏.分布式发电、微网与智能配电网的发展与挑战[J].电力系统自动化,2010,34(2):10-16.
    [20]Lasseter R, Abbas A, Marnay C, et al. Integration of distributed energy resources:TheCERTS Microgrid concept[R]. http://certs.lbl.gov/pdf/50829.pdf, 2002-04-01.
    [21]Marnay C, Bailey O C. The CERTS microgrid and the future of the microgrid[R]. http://certs.lbl.gov/pdf/55281.pdf,2006-11-01.
    [22]Arulampalam A, Barnes M, Engler A, et al. Control of power electronic interfaces in distributed generation microgrids[J]. International Journal of Electronics,2004,91(9):503-523.
    [23]袁越,李振杰,冯宇,等.中国发展微网的目的方向前景[J].电力系统自动化,2010,34(1):59-63.
    [24]鲁宗相,王彩霞,闵勇.微电网研究综述[J].电力系统自动化,2007,31(9):100-107.
    [25]杨占刚,王成山,车延博.可实现运行模式灵活切换的小型微网实验系统[J].电力系统自动化,2009,33(2):82-86.
    [26]韩奕,张东霞,胡学浩,等.中国微网标准体系研究[J].电力系统自动化,2010,34(1):69-72.
    [27]肖朝霞,王成山,王守相.含多微型电源的微网小信号稳定分析[J].电力系统自动化,2009,33(6):81-85.
    [28]Chakraborty S, Weiss M D, Simoes M G. Distributed intelligent energy management system for a single-phase high-frequency AC microgrid[J]. IEEE Trans on Industrial Electronics,2007,54(1):97-109.
    [29]Chakraborty S, Simoes M G. Experimental evaluation of active filtering in a single-phase high-frequency AC microgrid[J]. IEEE Trans on Energy Conversion,2009,24(3):673-682.
    [30]Salomonsson D, Soder L, Sannino A. Protection of low-voltage DC microngrids[J]. IEEE Trans on Power delivery,2009,24(3):1045-1053.
    [31]Tsai-Fu Wu, Kun-Han Sun, Chia-Ling Kuo, et al. Predictive current controlled 5-kW single-phase bidirectional inverter with wide inductance variation for DC-microgrid applications[J]. IEEE Trans on Power Electronics,2010,25(12): 3076-3084.
    [32]Kakigano, Hiroaki Nada, Kaho Miura, et al. Power sharing control between load-side inverters in DC microgrid for superhigh-quality electric power distribution system[J]. Electrical Engineering In Japan,2011,176(1):55-64.
    [33]Kwasinski A. Quantitative rvaluation of DC microgrids availability:effects of system architecture and converter topology design choices[J]. IEEE Trans on Power Electronics,2011,26(3):835-851.
    [34]Gueerero J M, Vasquez J C, Matas J, et al. Hierachical control of droop-controlled AC and DC microngrids-a general approach toward standardization[J]. IEEE Trans on Industrial Electroics,2011,58(1):158-172.
    [35]Dimeas A L, Hatziargyriou N D. Operation of a multiagent system for microgrid control[J]. IEEE Trans on Power Systems,2005,20(3):1447-1455.
    [36]McArthur S D J, Davidson E M, Catterson V M, et al. Multi-agent systems for power enginnering applications-part Ⅰ:concepts, approaches, and technical challenges[J]. IEEE Trans on Power Systems,2007,22(4):1743-1752.
    [37]McArthur S D J, Davidson E M, Catterson V M, et al. Multi-agent systems for power enginnering applications-part Ⅱ:technologies, standards, and tools for building multi-agent systems[J]. IEEE Trans on Power Systems,2007,22(4): 1753-1759.
    [38王守相,李晓静,肖朝霞,等.含分布式电源的配电网供电恢复的多代理方法[J].电力系统自动化,2007,31(10):61-65.
    [39]周恒俊,曹晋彰,郭创新,等.基于ASOA集群智能微网的信息化管理平台设计[J].电力系统自动化,2010,34(13):66-71.
    [40]Xu Yinliang, Liu Wenxin. Novel multiagent based load restoration algorithm for microgrids[J]. IEEE Trans on Smart Grid,2011,2(1):152-161.
    [41]黄伟,孙昶辉,吴子平,等.含分布式发电系统的微网技术研究综述[J].电网技术,2009,33(9):14-18.
    [42]丁明,张颖媛,茆美琴.微网研究中的关键技术[J].电网技术,2009,33(11):6-11.
    [43]赵宏伟,吴涛涛.基于分布式电源的微网技术[J].电力系统及其自动化学报,2008,20(1):121-128.
    [44]王成山,肖朝霞,王守相.微网综合控制与分析[J].电力系统自动化,2008,32(7):98-103.
    [45]牟晓春,毕大强,任先文.低压微网综合控制策略设计[J].电力系统自动化,2010,34(19):91-96.
    [46]郭力,王成山.含多种分布式电源的微网动态仿真[J].电力系统自动化,2009,33(2):82-86.
    [47]Nikds L S, Stavros A P, Nikos D H. A stability algorithm for the dynamic analysis of inverter dominated unbalanced LV microgrids[J]. IEEE Trans on Power Systems,2007,22(1):294-304.
    [48]Nagaraju P, Milan P, Timothy C G. Modeling, analysis and testing of autonomous operation for an inverter-based microgrid[J]. IEEE Trans on Power Electronics,2007,22(2):613-625.
    [49]Charles K S, Peter W L. Control and power management of converter fed microgrids[J]. IEEE Trans on Power systems,2008,23(3):1088-1098.
    [50]Serban E, Serban H. A control strategy for a distributed power generation microgrid application with voltage- and current-controlled source converter[J]. IEEE Trans on Power Electronics,2010,25(12):2981-2992.
    [51]Zmood D N, Holmes D G. Stationary frame current regulation of PWM inverters with zero steady-state error[J]. IEEE Trans on Power Electronics, 2003,18(3):814-822.
    [52]Shen Guoqiao, Zhu Xuancai, Zhang Jun, et al. A new feedback method for PR current control of LCL-flter-based grid-connected inverter[J]. IEEE Trans on Industrial Electronics,2010,57(6):2033-2041.
    [53]Mohamed Y A -R, El-Saadany E F. Adaptive discrete-Time grid-Voltage sensorless interfacing scheme for grid-connected DG-Inverters based on neural-network identification and deadbeat current regulation[J]. IEEE Trans on Power Electronics,2008,23(1):308-321.
    [54]Weiss G, Zhong Q, Green T C, et al.H∞ repetitive control of DC-AC converters in microgrids[J]. IEEE Trans on Power Electronics,2004,19(1):219-230.
    [55]袁佳歆,陈柏超,田翠华,等.基于免疫遗传算法的逆变器控制[J].中国电机工程学报,2006,26(3):110-118.
    [56]罗斌,刘强,黄剑.微网的电能质量问题[C].见:2009年全国电工理论与新技术学术年会论文集.北京,2009,396-400.
    [57]雷之力,鲁希娟.微网电能质量特点及有源滤波补偿方式研究综述[J].湖南电力,2009,29(5):59-62.
    [58]Paulillo G, Impinnisi P R, Cantao M P, et al. Power quality in distributed generation system based on fuel cell technology-a case study[C]. In:Proc of IEEE 11th International Coference on Harmonics and Auality of Power. Brazil, 2004,608-612.
    [59]Marei M I, El-saadany E F, Salama M M A. A novel control algorithm for the DG interface to mitigate power quality problems[J]. IEEE Trans on Power Delivery,2004,19(3):1384-1392.
    [60]Bert Renders, Koen De Gusseme, Wouter R Ryckaert, et al. Converter-connected distributed generation units with integrated harmonic voltage damping and harmonic current compensation function[J]. Electric Power System Research,2009,79(1):65-70.
    [61]橄奥洋,邓星,文明浩,等.高渗透率下大电网应对微网接入的策略[J].电力系统自动化,2010,34(1):78-82.
    [62]张佳佳,陈金福,范荣奇.微网高渗透对电网稳定性的影响分析[J].电力科学与技术学报,2009,24(1)25-29.
    [63]姚勇,朱桂萍,刘秀成等.谐波对低压微电网运行的影响[J].中国电力,2010,43(10):11-14.
    [64]Li Y W, Vilathgamuwa D M, Loh P C. A grid-interfacing power quality compensator for three-phase three-wire microgrid application[J]. IEEE Trans on Power Electronics,2006,21(4):1021-1031.
    [65]邹三红,裴玮,齐智平.分布式电源与微网互联通用接口单元[J].电力系统自动化,2010,34(3):91-95.
    [66]茆美琴,余世杰,苏建徽.带有MPPT功能的光伏阵列MATLAB通用仿真模型[J].系统仿真学报,2005,17(5):1248-1251.
    [67]Villalva M G, Gazoli J R, Filho E R. Comprehensive approach to modeling and simulation of photovoltaic arrays[J]. IEEE Trans on Power Electronics,2009, 24(5):1198-1208.
    [68]陶琼,吴在军,程军照,等.含光伏阵列及燃料电池的微网建模与仿真[J].电力系统自动化,2010,34(1):89-95.
    [69]Rodriguez P, Pou J, Bergas J, et al. Decoupled double synchronous reference frame PLL for power converter control[J]. IEEE Trans on Power Electronics, 2006,21(4):1021-1031.
    [70]Miranda U A, Aredes M, Rolim L G B. A DQ synchronous reference frame control for single-phase converters[C]. In:Proc of IEEE 36th Power Electronics Specialists Conference. Recife,2006,1021-1031.
    [71]Crowhurst B, El-Saadany E F, El Chaar L, et al. Single-phase grid-tie inverter control using DQ transform for active and reactive load power compensation[C]. In:Proc of IEEE International Conference on Power and Energy. Selangor,2010,489-494.
    [72]Zmood D N, Holmes D G, Bode G H. Frequency-domain analysis of three-phase linear current regulators[J]. IEEE Trans on Industrial Electronics,2001,37(2): 601-610.
    [73]Twining E, Holmes D G. Grid current regulation of a three-phase voltage source inverter with an LCL input filter [J]. IEEE Trans on Power Electronics,2003, 18(3):888-895.
    [74]Loh P C, Holmes D G. Analysis of multiloop control strategies for LC/CL/LCL-filtered voltage-source and current-source inverters[J]. IEEE Trans on Industrial Electronics,2005,41(2):644-654.
    [75]沈国桥,徐德鸿.LCL滤波并网逆变器的分裂电容法电流控制[J].中国电机工程学报,2008,28(18):36-41.
    [76]徐志英,许爱国,谢少军.采用LCL滤波器的并网逆变双闭环入网电流控制技术[J].中国电机工程学报,2009,29(27):36-41.
    [77]曹陆萍,沈国桥,朱选才,等.单相并网逆变器功率控制的实现[J].电力电子技术,2007,41(9):19-20.
    [78]Bhim Singh, Kamal Al-Haddad, Ambrish Chandra. A review of active filters for power quality improvement[J]. IEEE Trans on Industrial Electronics,1999, 46(5):960-971.
    [79]Akagi H, Kanazawa Y, Nabae A. Instantaneous reactive power compensators comprising switching devices without energy storage components[J]. IEEE Trans on Industry Applications,1984, IA-20(3):625-630.
    [80]王兆安,杨君,刘进军,等.谐波抑制和无功功率补偿[M].北京:机械工业出版社,2006:271-272.
    [81]唐杰,罗安,欧剑波,等.配电静止同步补偿器的模糊自适应PI控制策略[J].电工技术学报,2008,23(2):120-126.
    [82]涂春明,李慧,唐杰,等.电网电压不对称对D-STATCOM的影响分析及抑制[J].电工技术学报,2009,24(8):114-121.
    [83]王海宁,苏建徽,张国荣,等.光伏并网发电及无功补偿的统一控制[J].电工技术学报,2005,20(9):114-118.
    [84]吴理博,赵争鸣,刘建政,等.具有无功补偿功能的单级式三相光伏并网系统[J].电工技术学报,2006,21(1):28-32.
    [85]张强,刘建政,李国杰.单相光伏并网逆变器瞬时电流检测与补偿控制[J].电力系统自动化,2007,31(10):50-54.
    [86]Yun Wei Li, Viathgamuwa D M, Loh PC. A grid-interfacing power quality compensator for three-phase three-wire microgrid applications[J]. IEEE Trans on Power Electronics,2007,22(2):584-592.
    [87]Mastromauro R A, Liserre M, Kerekes T, et al. A single-phase voltage-controlled grid-connected photovoltaic system with power quality conditioner functionality[J]. IEEE Trans on Industrial Electronics,2009, 56(11):4436-4444.
    [88]吴振兴,邹旭东,黄清军,等.应用低次谐波无静差消除策略的三相并联型APF[J].电力系统自动化,2010,34(12):67-70.
    [89]Bose B K. Power electronics and motor drives recent progress and perspective[J]. IEEE Trans on Industrial Electronics,2009,56(2):581-588.
    [90]Tsao-Tsung M. Quantitative design of active anti-islanding controllers for power-converter-based distributed generators[J]. IEEE Trans on Industrial Electronics,2010,57(10):3448-3455.
    [91]Zhang H, Tolbert L M. Efficiency impact of silicon carbide power electronics for modern wind turbine[J]. IEEE Trans on Industrial Electronics,2011,58(1): 21-28.
    [92]Yazdani D, Bakhshai A, Joos G, Mojiri M. A real-time extraction of harmonic and reactive current in a nonlinear load for grid-connected converters[J]. IEEE Trans on Industrial Electronics,2009,56(6):2185-2189.
    [93]Barros J D, Silva J F. Multilevel optimal predictive dynamic voltage restorer[J]. IEEE Trans on Industrial Electronics,2010,57(8):2747-2760.
    [94]Chang G W, Liu Y-J, Dinavahi V, Su H-J. On real-time simulation for harmonic and flicker assessment of an industrial system with bulk nonlinear loads[J]. IEEE Trans on Industrial Electronics,2010,57(9):2998-3009.
    [95]Rahmani S, Mendalek N, Al-Haddad K. Experimental design of a nonlinear control technique for three-phase shunt active power filter[J]. IEEE Trans on Industrial Electronics,2010,57(10):3364-3375.
    [96]Chen J H, Lee W J, Chen M S. Using a static var compensator to balance a distribution system. IEEE Trans on Industry Application,1999,35(2):298-304.
    [97]Xu W, Marti J R, Dommel H W. Harmonic analysis of systems with static compensators[J]. IEEE Trans on Power Systems,1991,6(1):183-190.
    [98]Luo A, Shuai Z, Zhu W, Shen Z. Combined system for harmonic suppression and reactive power compensation[J]. IEEE Trans on Industrial Electronics, 2009,56(2):418-428.
    [99]Varschavsky A, Dixon J, Rotella M, Moran L. Cascaded nine-level inverter for hybrid-series active power filter, using industrial controller[J]. IEEE Trans on Industrial Electronics,2010,57(8):2761-2767.
    [100]Rahmani S, Mendalek N, Al-Haddad K. Experimental design of a nonlinear control techqiue for three-phase shunt active power filter[J]. IEEE Trans on Industrial Electronics,2010,57(10):3364-3375.
    [101]Luo A, Tang C, Shuani Z, et al. A novel three-phase hybrid active power filter with a series resonance circuit tuned at the fundamental frequency[J]. IEEE Trans on Industrial Electronics,2009,56(7):2431-2440.
    [102]Corasaniti V F, Barbieri M, B, Arnera P L, M. I. Valla. Hybrid power filter to enhance power quality in a medium-voltage distribution network[J]. IEEE Trans on Industrial Electronics,2009,56(8):2885-2893.
    [103]涂春鸣,帅智康,李慧,等.谐振阻抗型混合有源滤波器的原理及其补偿特性[J].中国电机工程学报,2008,28(25):146-152.
    [104]李鹏,石新春,梁志瑞,等.对电弧炉平衡化补偿实用公式推导及验证[J].电工技术学报,2001,16(1):77-80.
    [105]刘其辉,蔚芳,康长路.基于电网电压定向矢量变换的SVC平衡化补偿策略[J].电工技术学报,2009,24(8):147-153.
    [106]邓礼宽,姜新建,朱东起,等.APF与SVC联合运行的稳定控制[J].电力系统自动化,2005,29(18):29-34.
    [107]帅智康,罗安,刘定国,等.静止无功补偿器与有源电力滤波器联合运行系统[J].中国电机工程学报,2009,29(3):56-64.