栽培条件对玉簪属植物生长和光合作用的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉簪属(Hosta Tratt.)植物为百合科多年生草本植物。玉簪具有丰富多彩的的叶色、叶形和株型,在我国北方地区玉簪已发展成为重要的耐荫露地宿根观赏花卉,倍受人们青睐。随着我国经济快速发展和城市化进程的逐步加快,玉簪属植物的市场需求量逐年增大。然而由于前期投入少,缺乏系统研究,极大地限制了玉簪属植物种质资源的利用。目前玉簪属植物在园林绿化中的应用仍以白玉簪和紫萼为主,玉簪属植物的引种栽培研究虽取得了一些初步成果,但还处于探索阶段。另一方面,栽培条件(光照、肥料、水分等)对玉簪属植物生长和观赏性状的影响研究刚刚起步,难以满足玉簪属植物种质资源保存以及新优种质规模化生产、栽培对科技研究成果的需求。
     本研究围绕影响玉簪生长和观赏性状的主要栽培条件(光照、肥料、水分),通过研究控释氮肥与光照强度互作对玉簪生长和光合作用的影响,以及干旱胁迫及胁迫后复水对玉簪生长和光合作用的影响、氮肥对嵌合体类型玉簪叶色的影响,以期:(1)明确(i)控释氮肥与光照强度互作对玉簪不同生长发育阶段光合作用和生长的影响;(ii)根茎有无对玉簪属植物氮素营养需求以及对光适应性的影响;(iii)控释氮肥与光照强度是否存在互作,为玉簪属植物耐荫机理研究及控释氮肥在玉簪栽培生产上的应用提供必要的依据。(2)弄清干旱胁迫及胁迫后复水对玉簪生长和光合作用的影响,为提高玉簪属植物水分利用效率和实行节水栽培提供理论依据。(3)阐明过量施氮致使不稳定嵌合体玉簪叶色变绿的内在机制,为该类型玉簪品种的应用及观赏性状的人工调控提供必要的理论基础。结果表明:
     以中国产玉簪属原种——东北玉簪(Hosta clausa var. ensata)(有走茎小型玉簪)和紫萼(Hosta ventricosa)(无走茎大型玉簪)为材料,通过盆栽试验研究了控释氮肥与光照强度互作对玉簪生长、气体交换参数和叶绿素荧光参数的影响。结果表明:两种光照(自然光照的50%和70%)条件下,N4(4g控释氮肥/盆)和N8(8g控释氮肥/盆)处理能够显著提高两种玉簪各生长阶段的总干物质量、净光合速率(net photosynthetic rate, PN)、气孔导度(stomatal conductance, gs)、蒸腾速率(transpiration rate, E)、PSII最大光能转化效率(the maximum quantum yield of PSII photochemistry, Fv/Fm)、PSII光化学与非光化学量子产量最大比率(he maximum ratio of quantum yields of photochemical and concurrent nonphotochemical processes in PSII, Fv/Fo)> PSII电子传递量子效率(actual efficiency of photochemical energy conversion in PSII under light, ΦPSII)和光化学猝灭系数(photochemical quenching coefficient, qP),并且显著降低胞间CO2浓度(internal CO2concentration, Ci)和非光化学猝灭系数(nonphotochemical Chl fluorescence quenching, NPQ);而N12(12g控释氮肥/盆)处理并非所有参数都是如此。上述结果表明:适量的控释氮肥供给提高两种玉簪叶片的PN,从而增加了干物质积累的原因,可能与叶片在较长生长期内气孔和非气孔状况的改善有关;控释氮肥与光照强度对两种玉簪的生长和光合特性的影响存在互作;具有明显匍匐根状茎的玉簪对于强光具有更好的适应能力。
     以东北玉簪(Hosta clausa var. ensata)和紫萼玉簪(Hosta ventricosa)为材料,研究了干旱胁迫及胁迫后复水对玉簪干物质量、部分形态指标、叶绿素含量、气体交换和叶绿素荧光参数的影响,结果表明:随干旱胁迫时间的延长和干旱程度的增加,干旱胁迫处理对2种玉簪干物质量、部分形态指标、叶绿素含量的抑制作用逐渐增大。此外,干早胁迫处理能够降低或显著降低2种玉簪的净光合速率(net photosynthetic rate, PN)、气孔导度(stomatal conductance, gs)、蒸腾速率(transpiration rate, E),降低或升高胞间CO2浓度(internal CO2concentration, Ci);降低或显著降低PSII最大光能转化效率(the maximum quantum yield of PSII photochemistry, FV/Fm)、光适应下PSII最大光能转化效率(the PSII maximum efficiency within light-adapted material, Fv'/Fm')、PSII电子传递量子效率(actual efficiency of photochemical energy conversion in PSII under light,ΦPSII)和光化学猝灭系数(photochemical quenching coefficient, qP),显著提高非光化学猝灭系数(nonphotochemical Chl fluorescence quenching, NPQ)。而干旱胁迫处理15/30d后复水15d能够恢复或部分恢复干旱所造成的损失,30d的干旱胁迫未造成光合细胞器的不可逆损伤。东北玉簪抗旱能力强于紫萼。
     以嵌合体类型花叶玉簪的代表品种‘金旗’玉簪(Hosta'Gold Standard')为材料,研究了过量施用氮肥对嵌合体‘金旗’玉簪叶片的不同部位叶色变化、氮代谢关键酶以及叶绿体超微结构的影响,研究结果表明:过量尿素(2g·kg-1栽培基质)处理后28d内,叶片黄色部位完全转绿,叶绿素含量显著上升且达到最大值;与其相对应的绿色部位叶绿素含量在处理后7d达到最大值,而后开始下降并在处理后28d达到最低值。黄色部位和绿色部位的全氮含量、硝酸还原酶(nitrate reductase, NR)活性、谷氨酸脱氢酶(glutamate dehydrogenase, GDH)活性均在处理后7d达最大值;谷氨酰胺合成酶(glutamine synthetase, GS)活性在处理后14d达到最大值;谷氨酸合酶(glutamine oxoglutarate aminotransferase, GOGAT)活性高低与叶绿素含量变化趋势一致。叶片黄色部位的叶绿体在施肥处理前发育受到严重抑制,缺乏正常的基粒堆积,并存在大量“空泡”;施肥处理后28d,叶绿体发育完全,出现正常的类囊体片层结构,与绿色部位的叶绿体结构相似。
     上述结果将为耐荫露地宿根观赏花卉玉簪属植物适宜的配套栽培、种苗生产和推广应用关键技术规程制定提供必要的科学依据,对于提高我国玉簪属植物的园林应用和种质创新能力、增强园林地被植物产业的国际竞争力具有重要的意义。
The genus Hosta is herbaceous perennials belonging to the family Liliaceae. Hosta plants are extremely popular owing to their varieties of leaf types, leaf shape and plant types, which have developed into important shade-tolerant field perennial flowers in northern China. With the rapid economic development and urbanization gradually accelerated in China, the market demand of Hosta plants is increasing year by year. However, the use of Hosta germplasm resources is greatly restricted due to little early investment in science and technology and lack of systematic research.Nowdays Hosta plantaginea and Hosta ventricosa are still the main Hosta plants in landscaping. The studies on introduction and cultivation of Hosta plants have got some preliminary results, but are still at the exploratory stage. On the other hand, the study on effects of cultivation conditions (light, fertilizer, water, etc.) on the growth and ornamental traits of Hosta plant has just started, which difficultly meets the scientific and technological demands ahout germplasm conservations as well as the new superior germplasm large-scale production and cultivation of Hosta plant.
     The study focused on the main cultivation conditions (light, fertilizer, water) impacting the growth and ornamental characteristics of Hosta plants to explore the effects of nitrogen fertilizer on leaf color of a chimera Hosta, interactive effects of light intensity and controlled release nitrogen fertilizer supply on photosynthesis of Hosta Tratt., as well as effects of drought stress and rewatering in subjecting to water stress on the growth and photosynthesis of Hosta Tratt. The aims of this work were:(1) to ascertain (i)the effects of light intensity and controlled release nitrogen fertilizer supply on photosynthesis and growth of Hosta during different growth stages;(ii) whether stoloniferous rootstock of Hosta affect plant nitrogen requirements and the adaptability to light;(iii)whether the interactive effects of both factors exist.lt could provide a theoretical support for further study on shade tolerance mechanisms of the Hosta plants, as well as guide CRNF application in Hosta cultivation.(2) to determine the effects of drought stress and rewatering in subjecting to water stress on the growth and photosynthesis of Hosta Tratt., which provides theoretical basis for improving water use efficiency Hosta plant and implementing water-saving cultivation.(3) to elucidate the internal mechanism that excessive application of nitrogen fertilizer could result in leaf colors' dramatic changes of an unstable chimera type of Hosta, in order to provide necessary scientific basis for the cultivation application and artificial regulation on ornamental characteristics of those types of Hosta varieties. The results showed:
     The interactive effects of light intensity and controlled-release nitrogen fertilizer (CRNF) supply on growth, gas exchange, and chlorophyll (Chi) fluorescence parameters of two species of potted Hosta seedlings, original species of the genus Hosta in China, were studied. N4(4g of CRNF per pot), N8(8g of CRNF per pot), and sometimes N12(12g of CRNF per pot), significantly increased total dry weights, net photosynthetic rate (PN), stomatal conductance (gs), transpiration rate (E), the maximum quantum yield of PSⅡ photochemistry (Fv/Fm), the maximum ratio of quantum yields of photochemical and concurrent nonphotochemical processes in PSⅡ (Fv/Fo), actual efficiency of photochemical energy conversion in PSⅡ under light (ΦPSⅡ), and photochemical quenching coefficient (qP), but significantly decreased internal CO2concentration (Ci) and nonphotochemical Chi fluorescence quenching (NPQ) compared to control plants at different growth stage of the two Hosta species in two levels of light intensities (50%of natural light (L50) and70%of natural light (L70)). Based on the available data, we concluded that the increments in total dry weights of Hosta clausa var. ensata and Hosta ventricosa by appropriate amount of CRNF supply treatments under L50and/or L70light conditions are directly related to the increments in the PN, which may be due to both stomatal and nonstomatal improvements for a longer growing time. Furthermore, there was an interaction between light intensity and CRNF supply treatments on growth and photosynthetic characteristics of the two Hosta species. The adaptability of Hosta plants with obvious stoloniferous rootstock to stronger light was higher than that of Hosta plants without obvious stoloniferous rootstock.
     Hosta clausa var. ensata and Hosta ventricosa which were two original species of the genus Hosta in China was used as materials to study the effects of drought stress and rewatering in subjecting to water stress on the plants' dry weights, some morphological indicators, chlorophyll content, gas exchange and chlorophyll fluorescence parameters. The results showed that:with the extension of drought stress time and the increase of aridity, the inhibition of drought stress on dry weights, some morphological indicators and chlorophyll content of two kinds of Hosta plants gradually increasesd. In addition, drought stress could reduce or significantly reduce the net photosynthetic rate (PN), stomatal conductance (gs), transpiration rate (E), decrease or increase internal CO2concentration (Ci), and reduce or significantly reduce the maximum quantum yield of PSⅡ photochemistry (Fv/Fm), the PSⅡ maximum efficiency within light-adapted material (Fv'/Fm'), actual efficiency of photochemical energy conversion in PSⅡ under light (ΦPSⅡ), photochemical quenching coefficient (qP), but significantly enhance the nonphotochemical Chi fluorescence quenching (NPQ) of the two kinds of Hosta plants.While rewatering for15d after drought stress for15d or30d could restore or partially restore the losses caused by drought, and drought stress for30d didn't cause irreversible damage to the photosynthetic organelles. The drought resistance of Hosta clausa var. ensata was stronger than Hosta ventricosa.
     Leaf color was studied in excessive application of nitrogen fertilizer cultivation on chimera Hosta 'Gold standard'. The results showed that:chlorophyll content significantly increased or decreased in yellow or green leaf area of the chimera in the2g·kg-1of urea fertilizer treatment respectively, and leaf of chimera completely turned green within28d. Total N content, activities of nitrate reductase (NR) and glutamate dehydrogenase (GDH) of chimera leaf reached to their highest level after7days treatment; activities of glutamine synthetase (GS) reached to their highest level after14days treatment, and the changing trends of glutamate synthetase (GOGAT) activities was similar to chlorophyll content on chimera leaf. The develepoment of chloroplast ultrastructure, which lacks normal grana stacking, and contains large number of vacuoles was severely inhibited in the yellow leaf area of the chemera. After28d-fertilization treatments, normal thylakoid lamellar structure was formed in chloroplast of yellow leaf area, which was similar to the chloroplast structure of the green leaf area.
     These results will provide necessary theoretical supports for the key technical protocol development of suitable supporting cultivations, seed production and application on Hosta shade-tolerant open perennial ornamental flowers, as well as be of great significance to improve China's garden applications and germplasm innovation capability of Hosta plants and enhance the international competitiveness of the garden plants industry.
引文
[1]傅立国,陈潭清,郎楷永,等.中国高等植物·第13卷.青岛出版社:2002,第一版.91-92
    [2]陈俊愉.中国农业百科全书·园艺卷.中国农业出版社:1996,第一版.502
    [3]Schmid W G. The genus hosta. Timber Press:1991, First edition.236-256,283-314,27
    [4]Grenfell D. The gardener's guide to growing hostas. Ti Timber Press:1996, Second edition.74-97
    [5]Bailey L H. Hosta,the plaintain lilies. Gentes Herbarium,1930,2:117-142
    [6]Hylander N. The genus hosta in swedish gardens. Acta Horti Bergiani,1954,16:331-420
    [7]Steam W T. Hostas or Funkias. Gard Chronicle,1931,2:27-110
    [8]Chung M. Hosta jonesii (Liliaceae/Funkiaceae):A new species from Korea. Ann Missouri BoT Gard,1989, 76:920-922
    [9]Jones S B. Hosta yingeri (Liliaceae/Funkiaceae):A new species from Korea, Annals of the Missouri Botanical Garden,1989,76:602-604
    [10]Brickell C. The royal horticultural society A-Z encyclopedia of garden plants. Covent Garden Books:1999, Second edition.528-533
    [11]The Reader's Digest Association Limited, Encyclopaedia of garden plants and flowers. The Reader's Digest Association Far East Limited:1978,Fifth edition.343
    [12]Fujita N. Flooding tolerance of Japanese Hosta in relation to habitat preference. Memoirs of the faculty of science, Kyoto University, Series of Biology,1978(7):45-57
    [13]Fujita N. Reproductive capacity and leaf development of japanese hosta as viewed from ecology and evolution. Memoirs of the faculty of science, Kyoto University, Series of Biology,1978(7):59-86
    [14]Chung M G, Jones S B. Pollen morphology of Hosta Tratt. (Funkiaceae) and related genera. Bulletin of the Torrey Botanical Club,1989,116 (1):31-44
    [15]Chung M G, Park K B. Spatial genetic structure in populations of hosta capitata and hosta minor (Liliaceae). Israel Journal of Plant Sciences,1998, Vol.46:181-187
    [16]刘家熙,苏立娟,陈祖铿,等.玉簪属花药结构和花粉发育.吉首大学学报(自然科学版),2007,28(6):81-86
    [17]Akemine T. Chromosome studies on Hosta. The chromosome numbers in various species of Hosta. Journal of the Faculty of Science, Hokkaido,1935,5:25-32
    [18]Matsuura H, Suto T. Contributions to the idiogram study on phanerogamous plants.
    [19]Kaneko K, Maekawa F. Chromosome numbers of 26 species of hosta. The Journal of Japanese botany, 1968,43(7):200-205
    [20]Kaneko K. Cytological studies on some species of hosta I. The Botanical Magazine Tokyo,1966, 79:131-137
    [21]Kaneko K. Cytological studies on some species of hosta II. The Botanical Magazine Tokyo,1968, 81:267-277
    [22]Kaneko K. Cytological studies on some species of hosta III. The Botanical Magazine Tokyo,1968, 81:396-403
    [23]Kaneko K. Cytological studies on some species of hosta IV. The Botanical Magazine Tokyo,1969, 82:32-39
    [24]Kaneko K. Cytological studies on some species of hosta V. The Botanical Magazine Tokyo,1969, 82:253-262
    [25]Kaneko K. Cytological studies on some species of hosta VI. The Botanical Magazine Tokyo,1970, 83:27-35
    [26]Yasui. K. Cytological studies in diploid and triploid hosta. faculty of science, Tokyo Imperial University, No.161
    [27]Zonneveld B J M, Iren F van. Genome Size and Pollen Viability as Taxonomic Criteria:Application to the Genus Hosta. Plant boilogy,2001(3):176-185
    [28]Maekawa F, Kaneko K. Evolution of karytype in hosta(Liliaceae). The Journal of Japanese botany,1968, 43(5):132-140
    [29]Zonneveld B J M, Iren F van. Flow cytometric analysis of DNA content in hosta reveals ploidy chimeras. Euphytica,2000,111:105-110
    [30]李天菲,蔡得田.植物嵌合体机理及研究进展.湖北大学学报.2002,24(1):81-86
    [31]Romberger J A, Hejnowicz Z, Hill J F. Plant Structure:Function and Development. Springer Verlager Berlin,1993,324-401
    [32]Simon R. Function of plant shoot meristems. Cell and Developmental Biology,2001,12:357-362
    [33]Stewart R. Dermen H. Ontogeny in monocotyledons as revealed by studies of the developmental anatomy of periclinal chloroplast chimeras. American Journal of Botany,1979,66:47-58
    [34]Carles C C, Fletcher J C. Shoot apical meristem maintenance:the art of a dynamic balance. Trends in Plant Science,2003,8:394-401
    [35]Poethig R S. Clonal analysis of cell lineage patterns in plant development. American Journal of Botany,1987,74:581-594
    [36]Benedict R H. Taming the wild ones. Hosta Journal,1986,17:28-29
    [37]贾洪革.玉簪品种的引种栽培和组织培养:[硕士学位论文].北京:中国科学院植物研究所,2000
    [38]李钱鱼.玉簪属(Hosta)植物的品种资源及其花叶嵌合体特性研究:[硕士学位论文].浙江:浙江大学,2004
    [39]Vaughn K C, Wilson K G. Genetics and ultrastructure of a dotted leaf pattern in hosta. Journal of Heredity, 1980,71:121-123
    [40]Ivanova T I, Sherstneva O A. Dark respiration of variegated leaves in plants of different life forms, Russian Journal of plant physiology,1999,46(5):763-771
    [41]Vaughn K C, Wilson K G, Stewart K D. Light-harvesting pigment protein complex deficiency in Hosta (Lilliaceae). Planta,1978,143:275-278
    [42]席德慧,蒋红东,崔百明.组培玉簪黄化叶的细胞学研究.石河子农学院学报,1995,29(1):5-7
    [43]夏宜平,李钱鱼,常乐,沈朝栋,李方.玉簪属(Hosta)植物的花叶嵌合体特性研究.浙江大学学报(农业与生命科学版),2008,34(2):193-199
    [44]Jenks M A, Gaston C H. Goodwin M S et al. Seasonal variation in culticular waxes on hosta genotypes differing in leaf surface glaucousness. HortScience,2002,37(4):673-677
    [45]Grenfell D. A survey of the genus hosta and its availability in commerce. The Plantman,1981,3:20-24
    [46]Rhodus T. Top 20 perennials. Greenhouse Grower,1995,1:80-82
    [47]Sam J C. In Hosta heaven. American Nurseryman,1990,10:121-135
    [48]Lawlor D W. Carbon and nitrogen assimilation in relation to yield:mechanisms are the key to understanding production systems. Journal of Experimental Botany.2002,53:773-787
    [49]赵春华.施氮量对烤烟氮代谢及品质形成的影响:[硕士学位论文].河南:河南农业大学,2007
    [50]Pearson C J, Jacobs B C. Yield components and nitrogen partitioning of maize in response to nitrogen before and after anthesis. Australian Journal of Agricultural Research,1990.38(6):1001-1009
    [51]Tischner R. Nitrate uptake and reduction in higher and lower plants. Plant cell Environment,2000,23: 1015-1024
    [52]刘淑云,董树亭,赵秉强,等.长期施肥对夏玉米叶片氮代谢关键酶活性的影响.作物学报,2007,33:278-283
    [53]Britton W, Holcomb E J, Beattie D J. Selecting the optimum slowrelease fertilizer rate for five cultivars of tissue-cultured hosta. HortTechnology,1998,8(2):203-206
    [54]赵卫智,李辉.不同浓度CO2对玉簪试管苗光合蒸腾及气孔导度的影响.北方园艺,1994,127(4):30-31
    [55]张金政,周美英,李晓东,等.氮素水平与光强互作对‘蓝伞’玉簪生长和光合特性的影响.园艺学报,2007,34(6):1497-1502
    [56]施爱萍.玉簪属植物的耐阴性研究:[硕士学位论文].北京:北京林业大学,2004.
    [57]Zhang J Z, Shi L, Shi A P. Photosynthetic responses of four Hosta cultivars to shade treatment. Photosynthetica,2004,42(2):213-218
    [58]施爱萍,张金政,张启翔,等.不同遮荫水平下4个玉簪品种的生长性状分析.植物研究,2004,24(4): 486-490
    [59]Schultz H C, Keever G J, Kessler, et al. BA does not reduce detrimental effects of high nighttime temperature on offset formation in hosta. Journal of Environmental Horticulture,2001,19(1):29-32
    [60]Keever G J, West M S, Kessler J R J. Chilling effects on shoot emergence and subsequent growth in hosta. Journal of Environmental Horticulture,1999,17(2):84-87
    [61]杨红,杨志敏,颜景义.甲哌啶和多效唑对重瓣玉簪的生物学效应.南京农业大学学报,1995,18(3):18-22
    [62]Thompson P. Hosta frome seed. Journal of the royal horticultural society,1980,105:371-372
    [63]Dunwell W C. Hosta propagation. The international plant propagator's society combined proceedings, 1999,49:1-8
    [64]Keever G J, Brass T J. Offset increase in hosta following benzyladenine application. Journal of Environmental Horticulture,1998,16(1):1-3
    [65]Garner J M, Keever G J, Eakes D J,et al. BA application promotes offset formation in Hosta dependent on cultivar., Hortscience 1997,15(3):119-122
    [66]Garner J M, Keever G J, Eakes D J, et al. Sequential BA applications enhance offset formation in hosta. Hortscience,1998,33(4):707-709
    [67]Schultz H C, Keever G J, Kessler J R, et al. BA application timing affects offset formation in hosta. Journal of Environmental Horticulture,2000,18(2):63-65
    [68]Schultz H C, Keever G J, Kessler J R, et al. Benzyladenine Improves summer quality of hosta. Journal of Environmental Horticulture,2000,18(1):49-52
    [69]Keever G J, Eakes D J, Gilliam C H. Offset stage of development affects hosta propagation by stem cuttings. Journal of Environmental Horticulture,1995,13(1):4-5
    [70]Garner J M, Keever G J, Eakes D J et al. BA application promotes offset formation in hosta cultivar. Journal of Environmental Horticulture,1997,15 (3):119-122
    [71]Schultz H C, Keever G J, Kessler J R et al. Root mass and BA affect offset formation in hosta Journal of Environmental Horticulture,2000,18(1):45-48
    [72]Papachatzi M, Hammer P A, Hasegawa P M. In vitro propagation of Hosta plantaginea. HotrScience, 1980,15 (4):506-507
    [73]Meyer M M, Jr. In vitro propagation of hosta sieboldiana. HortScience,1980,15(6):737-738
    [74]Papachatzi M, Hammer P A, Hasegawa P M. In vitro propagation of Hosta decorat'Thomas Hogg'using cultured shoot tips. Journal of the American Society for Horticultural Science,1981,106 (2):232-236
    [75]虞耀瑾,王泰哲.玉簪组织培养器官的建成.上海农业学报,1996,12(1):23-27
    [76]Wilson S B, Rajapakse N C. Media composition and light affect storability and poststorage recovery of micropropagated hosta plantlets. HortScience,2000,35(6):1159-1162
    [77]Wilson S B, Rajapakse N C. Carbohydrate status and post storage recovery of micropropagated hosta plantlets stored at varying temperatures in light or darkness. Acta Horticulturae,2001,543:265-270
    [78]Saito H, Nakano M. Plant regeneration from suspension cultures of hosta sieboldiana. Plant Cell,2002, 71:23-28
    [79]American Hosta society. Registrations. The Hosta journal,2009,40(3):3-70
    [80]Chung, Young C. Interspecific relationships of some species of the genus hosta on artificial hybridization experiment. Flora-Morphology, Distribution, Functional Ecology of Plants,1988,18:153-160
    [81]Aden P. The hosta book. Portland Oregon:Timber press,1995:133
    [82]赵连杰,刘淑芳,李雪飞.香花玉簪的培育简报.沈阳农业大学学报,2000,31(2):229
    [83]Akemine T, Kanazawa H. High frequency of chromosome breakage in hosta undulate. Kromosomo,1975, 100:3108-3117
    [84]Miller P D, Wilson K G. Protoplast fusion and organ culture in the genus. Environmental and Experimental Botany,1981,21:431-432
    [85]Yasui K. Studies on the maternal inheritance of plastid characters in Hosta japonica f. albomarginata and its derivatives. Cytologia,1929,1:192-215
    [86]Vaughn K C, Wilson K G A dominant plastome mutation in hosta. The Journal of Heredity,1980, 71:203-206
    [87]Vaughn K C, Wilson K G. An ultrastructural survey of plastome mutants of hosta(Liliaceae). Cytobios, 1980,28:71-83
    [88]Vaughn K C, Wilson K G, Reibach, P H. Ultrastructure and biochemistry of two mutants in hosta(Liliaceae). Cytobios,1980,27:71-80
    [89]Pollock W I. H. ventricosa'Aureo-marginata'. The American Hosta Society Bulletin,1985,16:87-92
    [90]Schmid W G, Burto E W. Questions and answers. The Hosta Journal,1994,25(2):79
    [91]Wang B, Jeffers S N. Fusarium root and crown rot:A disease of container-grown hostas. Plant Disease, 2000,84(9):980-988
    [92]Geiser D M, Juba J H, Wang B, et al. Fusarium hosta sp., a relative of F. redolens with a gibberella teleomorph. Mycologia,2001,93(4):670-678
    [93]Baayen R B, O'Donnell K, Breeuwsma S, et al. Molecular relationship of fungi within the Fusarium redolens-F. hostae clade. Mycology,2001,91(11):1037-1044
    [94]Wang B, Jeffers S N. Effects of cultural practices and temperature on Fusarium root and crown rot of container-grown hostas. Plant Disease,2002,86(3):225-231
    [95]Currier S, Lockhart B E L. Characterization of a potexvirus infecting hosta spp. Plant Disease,1996, 80:1040-1043
    [96]Lockhart B E L, Currier S. Viruses occurring in hosta spp. in the USA. Acta Horticulturae,1996, 432:62-67
    [97]Lockhart B E L. Differential response of hosta cultivars to infection by hosta virus X potexvirus-a basis for practical disease management. Acta Horticulturae,2002,568:69-71
    [98]Pratt M E. Cooking with Hosta. The Hosta Tournal,1990,21(1):58-60
    [99]Shaviv A. Advances in Controlled Release of Fertilizers. Advances in Agronomy,2001,71:1-49
    [100]Ji X H, Zheng S X, Lu YH, et al. Study of Dynamics of Floodwater Nitrogen and Regulation of Its Runoff Loss in Paddy Field-Based Two-Cropping Rice with Urea and Controlled Release Nitrogen Fertilizer Application. Agriculture Sciences in China,2007,6(2):189-199
    [101]王新民,候彦林,介晓磊.冬小麦施用控释氮肥增产效应研究初报.中国农业生态学报,2004,12(2):98-101
    [102]李伶俐,马宗斌,谭金芳.控释氮肥对棉花产量的影响及光合特性的研究.棉花学报,2005,17(5):275-279
    [103]Cechin I, Fumis T F. Effect of nitrogen supply on growth and photosynthesis of sunflower plants grown in the greenhouse. Plant Sciense,2004,166:1379-1385
    [104]Zhao D L, Reddy K R, Kakani V G, et al. Nitrogen Deficiency Effects on Plant Growth, Leaf Photosynthesis, and Hyperspectral Reflectance Properties of Sorghum. European Journal of Agronomy, 2005,22(4):391-403
    [105]Cabrera-Bosquet L, Albrizio R, Araus J L, et al. Photosynthetic Capacity of Field-Grown Durum Wheat under Different N Availabilities:A Comparative Study from Leaf to Canopy. Environmental and Experimental Botany,2009,67(1):145-152
    [106]Van Kooten O, Snell J F H. The Use of Chlorophyll Fluorescence Nomenclature in Plant Stress Physiology. Photosynthesis Research,1990, vol.25, pp.147-150
    [107]Kitajima M, Butler W L. Quenching of Chlorophyll Fluorescence and Primary Photochemistry in Chloroplasts by Dibromothymoquinone. Biochimica et Biophysica Acta (BBA)-Bioenergetics,1975, 376(1):105-115
    [108]Rohacek K. Chlorophyll Fluorescence Parameters:The Definitions, Photosynthetic Meaning, and Mutual Relationships. Photosynthetica,2002,40(1):13-29
    [109]Genty B, Briantais J M, Baker N R. The Relationship between the Quantum Yield of Photosynthetic Electron Transport and Quenching of Chlorophyll Fluorescence. Biochimica et Biophysica Acta (BBA)-Bioenergetics,1989,990(1):87-92
    [110]Bilger W, Bjorkman O. Role of the Xanthophyll Cycle in Photoprotection Elucidated by Measurements of Light-Induced Absorbance Changes, Fluorescence, and Photosynthesis in Hedera canariensis. Photosynthesis Research,1990,25(3):173-185
    [111]Poorter H, Nagel O. The Role of Biomass Allocation in the Growth Response of Plants to Different Levels of Light, CO2, Nutrients, and Water:A Quantitative Review. Australian Journal of Plant Physiology,2000,27(12):595-607
    [112]Lone P M, Khan N A. The Effects of Rate and Timing of N Fertilizer on Growth, Photosynthesis, N Accumulation and Yield of Mustard (Brassica juncea) Subjected to Defoliation. Environment and Experimental Botany,2007,60(3):318-323
    [113]Schreiber U, Bilger W, Neubauer C. Chlorophyll Florescence as a Nonintrusive Indicator for Rapid Assessment of In Vivo Photosynthesis. Ecological studies:analysis and synthesis,1995,100:49-70
    [114]许大全.光合作用效率.上海科学技术出版社:2002
    [115]Maxwell K, Johnson G N. Chlorophyll Fluorescence-A Practical Guide. Journal of Experimental Botany,2000,51(345):659-668
    [116]Dai Y J, Shen Z G, Liu Y, et al. Hannaway, D., and Lu, H.F., Effects of Shade Treatments on The Photosynthetic Capacity, Chlorophyll Fluorescence, and Chlorophyll Content of Tetrastigma hemsleyanum Diels et Gilg. Environmental and Experimental Botany,2009,65(2-3):177-182
    [117]Ivanov B, Edwards G. Influence of Ascorbate and the Mehler Peroxidase Reaction on Non-Photochemical Quenching of Chlorophyll Fluorescence in Maize Mesophyll Chloroplasts. Planta, 2000,210(5):765-774
    [118]田其云,曹艳英.我国干旱半干旱地区治理环境资源问题的技术规范探讨.干旱区资源与环境,2005,19(3):98-103
    [119]Liu F & Stutzel H. Biomass partitioning,specific leaf area,and water use efficiency of vegetable amaranth (Amaranthus spp.) in response to drought stress.Scientia Horticulturae,2004,102(1):15-27
    [120]任庆成,杨铁钊,刘培玉,等.植物抗旱性研究进展.中国农学通报,2009,25(15):76-79
    [121]关义新,戴俊英,林艳.水分胁迫下植物叶片光合的气孔和非气孔限制.植物生理学通讯,1995,31(4):293-297
    [122]姚庆群,谢贵水.干旱胁迫下光合作用的气孔与非气孔限制.热带农业科学,2005,25(4):80-85
    [123]肖强,叶文景,朱珠,等.利用数码相机和Photoshop软件非破坏性测定叶面积的简便方法.生态学杂志,2005,24(6):711-714
    [124]王巍,董然,李晓东,等.控释氮肥对紫萼玉簪生长和光合特性的影响植物研究.植物研究,2009,29(5):544-548
    [125]Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis.Annual Review of Plant Physiology,1982,33(3):317-345
    [126]Csintalan Z, Proctor M C F,Tuba Z.Chlorophyll fluorescence during drying and rehydration in the mosses Rhytidiadelphus loreus (Hedw.) Warnst.,Anomodon viticulosus (Hedw.) Hook.&Tayl. and Grimmia pulvinata (Hedw.)Sm.Annals of Botany,1999,84:235-244
    [127]何炎红,郭连生,田有亮.白刺叶不同水分状况下光合速率及其叶绿素荧光特性的研究.西北植物学报,2005,25(11):2226-2233
    [128]许大全,张玉忠,张荣铣.植物光合作用的光抑制.植物生理学通讯,1992,28(4):237-243
    [129]Fryer M J,Andrews J R,Oxborough K,et al.Relationship between CO2 assimilation,photosynthetic electron transport,and active 02 metabolism in leaves of maize in the field during periods of low temperature.Plant Physiol,1998,116:571-580
    [130]Dias P C, Araujo W L, MoraesG A B K,et al.Morphological and physiological responses of two coffee progenies to soilwater availability. Journal of Plant Physiology,2007,164(12):1639-1647
    [131]武维华.植物生理学.科学出版社:2008,第二版.105-108
    [132]莫良玉,吴良欢,陶勤南.高等植物GS/GOGAT循环研究进展.植物营养与肥料学报,2001,7:223-231
    [133]李新旺,门明心,王树涛,等.长期施肥对华北平原潮土作物产量及农田养分平衡的影响.草业学报,2009,18(1):9-16
    [134]黄勤楼,钟珍梅,陈恩,等.施氮水平与方式对黑麦草生物学特性和硝酸盐含量的影响.草业学报,2010,19(1):102-112
    [135]何丹,李向林,万里强,等.施用尿素当年对退化天然草地物种地上生物量和重要值的影响.草业学报,2009,18(3):154-158
    [136]赵全志,陈静蕊,刘辉,等.水稻氮素同化关键酶活性与叶色变化的关系.中国农业科学,2008,41(9):2607-2616
    [137]刘岳路,张金政,李晓东,等.氮肥施用量对嵌合体‘金旗’玉簪叶色的影响.草业学报,2011,20(2):93-100
    [138]Arnon D I. Copper enzymes in isolated chloroplasts:Polyphenooxidase in Beta vulgaris. Plant Physiology,1949,24:1-15
    [139]赵世杰,史国安,董新纯.植物生理学实验指导.中国农业科学技术出版社:2002.96-97
    [140]Zhang C F, Peng S B, Peng X X, et al. Response of glutamine synthetase isoforms to nitrogen sources in rice (Oxyza dativa L.) roots. Plant Sciences,1997,125:163-170
    [141]Singh R D, Srivastava H S. Increase in glutamate synthase (NADH) activity in maize seedlings in response to nitrate and ammonium nitrogen.Physiologia Plantarum,1986,66(3):413-416
    [142]Foyer C H, Noctor G, Lelandais M, et al. Short-term effects of nitrate, nitrite and ammonium assimilation on photosynthesis, carbon partitioning and protein phosphorylation in maize. Planta, 1994,192:211-220
    [143]Solomonson L P, Barber M J. Assimilatory nitrate reductase:Functional properties and regulation. Annual Review of Plant Physiology and Plant Molecular Biology,1990,41:225-253
    [144]许振柱,周广胜.植物氮代谢及其环境调节研究进展.应用生态学报,2004,15(3):511-516
    [145]李刚华,丁艳锋,薛利红,等.利用叶绿素计(SPAD-502)诊断水稻氮素营养和推荐追肥的研究进展.植物营养与肥料学报,2005,11(3):412-416
    [146]Bae C H, Tomoko A, Noriko N, et al. Characterization of a periclinal chimera variegated tobacco (Nicotiana tobacum L.). Plant Science,2000,151:93-101
    [147]简令成,王红.逆境植物细胞生物学.科学出版社:2009.44