基于光纤陀螺的光电平台稳定控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机载光电平台稳定与跟踪系统由于受到外部各种干扰的影响,需要首先建立一个稳定控制回路。稳定回路是实现高精度跟踪的基础,稳定回路设计的好坏直接影响着整个光电跟瞄系统的跟踪性能。本论文主要对机载光电平台的稳定回路控制问题进行了研究。
     首先概述了国内外光电平台发展现状;分析了机载光电跟瞄系统中影响视轴稳定的因素及目前常用的视轴稳定方法;结出了对系统稳定精度的性能要求。
     结合实际要求,系统采用四框架二轴稳定结构平台,应用整体稳定的视轴稳定方式,用直流力矩电机直接驱动,以光纤陀螺作为敏感平台角运动的测量元件;通过公式推导和实验测量得到了电机负载特性和光纤陀螺的数学模型,并对模型进行相应的处理以方便系统分析与设计;从理论上分析了两轴光电稳定平台隔离载体角运动的原理,总结并提出了视轴稳定对伺服系统的性能要求,从而为伺服系统的设计提供了理论依据。
     从伺服刚度指标的概念出发,通过分析指出了提高系统稳定精度的途径;并根据系统稳定精度的要求,采用经典控制方法设计了稳定回路校正控制器,并进行了仿真,给出了仿真结果。
     由于系统采用光纤陀螺作为惯性元件来敏感平台角速率,从高频和低频两方面分析了光纤陀螺噪声对系统输出的影响;并分别指出了抑制光纤陀螺高、低噪声的有效措施。
     针对系统中存在的由于负载(CCD摄像机)可变带来的模型不确定性问题,应用Popov超稳定性理论设计了模型参考自适应控制器,通过仿真对系统的鲁棒性进行了分析,而且对引入自适应环对系统的抗干扰性影响也进行了分析。
In stabilizing and tracking system of opto-electronic platform, a stabilizing control loop must be designed firstly because of various external disturbances. The stabilizing loop is the base of the high-precision tracking and the design of stabilizing loop affects the whole tracking system’s performance directly. The control problems about the stabilizing loop of the airborne opto-electronic platform are discussed in this dissertation.
     Firstly the development of the opto-electronic platform in home and abroad was summarized. The facts that affect the stabilizing of the line-of-sight(LOS) and the stabilizing methods in common use at the present time were analyzed. And then the performance of the stabilization precision we want came out.
     In accordance with practical requirement, this system applys a platform with four frame but two stabilizing axes, adopts whole stabilizing method,and use direct current moment motor as a driver and fiber optic gyroscope(FOG) as the angle velocity sensor. The mathematics models of the motor and FOG were founded through experment measures and were predigested to analyze and design the controller expediently. The principal of how movement of airplane can be isolated by a two-axis platform is analyzed theoretically. Requirements of stabilization of LOS to servo system are put forward which provide the basis of theory for designing servo system.
     From the defination of the index of servo toughness, the approach of how to improve the stabilization precision is pointed out through some analysis. The controller in stabilizing loop was designed according to the requirement of the stabilizing accuracy with the frequence field responsing method. Also, there were the results of the simulation shown in figures.
     The effect of the noise of the FOG to the system ouput was analyzed from two sides of low and high frequence, and effective steps to suppress the noise of FOG were pointed out.
     The Popov’s hyperstability theory was applied to design a model reference adaptive controller(MRAC) in allusion to the problem of model uncertainty which results from the variable load. And the robustness and the anti-jamming of the system were analyzed through the simulation.
引文
1.李文魁,王俊璞.直升机机载光电吊舱的发展现状及对策.中国惯性技术学报. 2004, (5):75-80
    2.王连明.机载光电平台的稳定与跟踪伺服控制技术研究.中科院长春光机所博士论文. 2002:6-10
    3.姬伟.陀螺稳定光电跟踪平台伺服控制系统研究.东南大学博士论文. 2006:3-5, 48-49
    4.贾平,张葆.航空光电侦察平台关键技术及其发展.光学精密工程. 2005, 11(1):82-88
    5. Larry A.Stockum, James Burge. Electro-mechanical Design for Precision Pointing and Tracking System. SPIE. 1987:779.
    6. Larry A.Stockum, George R.Carroll. Precision Stabilized Platform for Shipboard Electro-Optical Systems. SPIE. 1984:493
    7. J.W. Bukley, R.M. Cramblitt. Comparison of Image Processing Algorithms for Tracking Illuminated Targets. SPIE Conference on Acquisition, Tracking, and Pointing XIII, 1999, (3692):234-243
    8.张秉华,张守辉.光电成像跟踪系统.电子科技大学出版社, 2003:17-19
    9.王承瑶.陀螺稳定系统.国防工业出版社, 1985:35-38
    10. Steven T.Jenkins, J.M. Hilkert. Line of Sight Stabilization Using Image Motion Compensation. SPIE. 1989:1111
    11.沈宏海,刘晶红,贾平,刘洵.摄像稳定技术.光学精密工程. 2001, 9(2):115-120
    12. Karl Wandner, Hans J.Karcher. The Pointing Control System of SOFIA. Proceedings of SPIE in Airborne Telescope Systems, 2000, (4014):360-369
    13.吴金中.电视导引系统的视轴稳定跟踪技术.战术导弹技术. 2002, (1):34-38
    14.姬伟,李奇.陀螺稳定平台私服系统非线性特性补偿控制.电气传动. 2005, 35(7):31-34
    15. Marcelo C.Algrain, Douglas E.Ehlers. Supperssion of Gyroscope Noise Effects in Pointing and Tradking Systems. SPIE. 1994, (2221):402-413
    16. Bo Li, D. Hullender, M. DeRenzo. Nonlinear Induced Disturbance Rejection in Inertial Stabilization Systems. IEEE Transation on Control System Technology.1998, 6(3):421-427
    17.黄一,吕俊芳,卢广山.机载光电跟瞄平台稳定与跟踪控制方法研究.飞机设计. 2003, 3:38-42
    18.李亦君,陈祖金.某型光电跟瞄平台跟踪回路的设计与实现.航空兵器. 2006, 2:38-42
    19.郭富强,于波,汪叔化.陀螺稳定装置及其应用.西北工业大学出版社, 1995
    20. Jim Clemenger, James DeBruin. Application of High-power, Pulse Width Modulated Hybrid Motor Controllers to Stabilized Gimal Systems. SPIE Conference on Acquisition, Tracking and Pointing XIII, 1999,3692:84-92
    21.梅晓榕.自动控制元件及线路.哈尔滨工业大学出版社, 2002:41
    22.王永富.高精度陀螺稳定随动系统研究.哈尔滨工业大学硕士论文. 1996:14-15
    23.冷宗圣.光纤陀螺的研究发展及其应用.中国技术信息. 2006, (6):116-117
    24.吴衍记.闭环光纤陀螺振动热性研究.哈尔滨工业大学博士论文. 2006:11-14
    25.王连明.机载光电平台的稳定与跟踪伺服控制技术研究.中科院长春光机所博士论文. 2002:38-41
    26. Xie Delin, Yuan Jiahu, Yang Hu. Stabilization of Line-of-sight for Airborne O-E Tracking and Imaging system. SPIE Conference on Acquisition, Tracking and Pointing XII, 1998, 3365:191-201
    27. J.A. Krishna, R. Marathe, V.R. Sule. H∞Control Law for Line-of-sight Stabilization for Mobile and Vehicles. Optical engineering. 2002,41(11):2935-2944
    28. K.K. Tan, T.H. Lee, A. Mamum. Composite Control of a Gyro Mirror Line-of-sight Stabilization Platform Design and Auto-tuning. ISA Transaction. 2001,40(2):155-171
    29. K.C. Tan, T.H. Lee, E.F. Khor. Design and Real-time Implementation of a Multivariable Gyro Mirror Line-of-sight Stabilization Platform. Fuzzy Sets and Systems. 2002,128(1):81-93
    30.李友善.自动控制原理(上册).国防工业出版社,第2版. 2000:235-255
    31.王广雄.控制系统设计.宇航出版社, 1992:91-116
    32.黄磊,王巍.闭环光纤陀螺的输出误差特性研究.中国惯性技术. 2005, 13(3):52-55
    33.卢鸿谦.光纤陀螺数字控制回路及系统应用研究.哈尔滨工业大学硕士论文. 2000:73-74
    34.姬伟.光纤陀螺信号误差分析与滤波算法的研究.传感技术学报. 2007, 20(4):847-852
    35.威荣春,崔平远.陀螺随机漂移时间序列建模方法研究.系统仿真学报. 2005, 17(8):1845-1847
    36.付强文,张英敏.光纤陀螺信号处理的使用方法.传感技术学报. 2005, 18(1):101-104
    37.冉启文.小波变换与分数傅立叶变换理论及应用.哈尔滨工业大学出版社, 2003:18-20,102-107
    38.缪玲娟.小波分析在光纤陀螺信号滤波中的应用研究.宇航学报. 2000, 21(1)
    39.刘娟花.基于小波变换的信号去噪方法研究.西安理工大学学报. 2002,20(3):289-291
    40. D.L. Donoho. De-noising by soft-thresholding. IEEE Trans. on IT. 1995, 541(3):613-627
    41.刘鲁源,李士心.双正交小波在陀螺信号去噪中的应用.信号处理. 2002, 18(4):386-388
    42.易康,李延志,吴文启. FLP滤波算法在光纤陀螺信号预处理中的应用.中国惯性技术学报. 2005, 13(5):58-62
    43. J.M. Hilkert. Adaptive Control System Techniques Applied to Inertial Stabilization Systems. SPIE. Acquisition, Tracking, and Pointing IV. 1990, (1304):190-206
    44.李颖,朱伯立,张威. Simulink动态系统建模与仿真基础.西安电子科技大学出版社, 2004:251-261
    45.黄晓明,张国忠,徐春梅.基于S函数的时变系统仿真.计算机仿真. 2004, 21(5):89-91
    46.吴士昌,吴忠强.自适应控制.第2版.机械工业出版社, 2005:8-20
    47. Richard V.Monopoli. Model Reference Adaptive Control with an Augmented Error Signal. IEEE Transactions on Automatic Control. 1974, (19):474-484
    48.吴广玉等.系统辨识与自适应控制(下册).哈尔滨工业大学出版社, 1987:82-87
    49. Yoan D.Landau.Adaptive Control-The Model Reference Approach. Marcel Dekker, 1979:145-148
    50.李言俊,张科.自适应控制理论及应用.西北工业大学出版社, 2005:85-88
    51. I.D. Landau. A Generalization of the Hyperstability Conditions for Model Reference Adaptive Systems. IEEE Transactions on Automatic Control. 1972:246-247
    52. C.C Hang, H.S Tang. Model Reference Adaptie Control Using only Input and Output Measurements. Int. J. Control. 1981(34):858-863