纳米金刚石薄膜及其辐射探测器的制备和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金刚石薄膜以其优异的电、光、热和机械性能及高的抗辐照能力和物理化学稳定性等在微电子和光学领域得到了极大重视。纳米金刚石以其更光滑的表面、更低的摩擦系数和更优异的场发射性能,已成为金刚石薄膜研究领域的新热点。本文研究了纳米金刚石薄膜的沉积工艺和性能,研究了纳米金刚石薄膜辐射探测器的制备工艺及其探测性能,同时还分别研究了作为X射线掩膜材料和在强磁场条件下的纳米金刚石薄膜的生长工艺,以探索纳米金刚石薄膜在各种不同领域内的应用。
     首先采用热丝化学气相沉积法制备了纳米金刚石薄膜,表征了形貌结构和光学性能,确定了最佳生长参数,获得样品表面晶粒尺寸约为30nm,厚度为1000nm,近红外透过率大于50%。提出了一种快速生长高质量厚纳米金刚石膜的方法:先用高温生长,再用低温生长,以克服高温生长引起的孔洞问题。
     其次研究了纳米金刚石薄膜辐射探测器的制备工艺和探测性能。使用ANSYS软件对电极宽度不同的纳米金刚石薄膜辐射探测器的电场分布进行模拟,确定了电极的尺寸参数。设计制作了光刻掩膜版,通过光刻和直流溅射工艺制备出纳米金刚石薄膜辐射探测器。研究了晶粒尺寸为20nm~150nm、粗糙度为22nm~45nm的纳米金刚石薄膜制备的光导型探测器在X射线辐照下的电学性能和光谱响应。电流—电压测试表明,随着金刚石晶粒的减小,薄膜电阻率下降,在5.9 keV 55Fe X射线辐照下,大晶粒(150nm)纳米金刚石薄膜探测器的光电流(Iph)与暗电流(Id)的比值Iph/Id几乎是小晶粒(20nm)探测器的4倍。X射线辐照下的脉冲高度光谱测量表明,大晶粒探测器的计数率和能量分辨率优于小晶粒探测器。这些结果说明:大晶粒金刚石薄膜探测器具有高的信噪比和电荷收集效率,适合于核辐射探测器的制备。
     随后采用氢刻蚀的方法探索了可作为X射线掩膜材料的纳米金刚石薄膜的生长工艺。对薄膜样品的显微结构、光学和电学性能的表征和分析发现:在其他沉积参数保持一定的情况下,随着氢刻蚀时间的增加,晶粒尺寸逐步减小,薄膜的表面平整度、折射率以及光学透过率明显提高,薄膜的暗电流和损耗减小,介电常数接近天然金刚石。采用同步辐射装置,测试和研究了纳米金刚石薄膜在软X射线波段的透过率。经过氢刻蚀的薄膜,X射线透过率在258eV处达到52.8%,明显高于未经刻蚀的薄膜(24.8%),符合X射线光刻掩模材料的要求。
     最后研究了强磁场下纳米金刚石的沉积工艺。研究了不同磁场强度(0-5T)对纳米金刚石性能的影响,结果表明:随磁场强度的增强,薄膜晶粒有逐渐细化的趋势。探索了强磁场下纳米金刚石沉积原理。
Diamond film is a kind of competitive material with its outstanding electrical, optical, thermal and mechanical properties as well as high anti-radioactive intensity and high physical and chemical stability. Compared with micro-crystalline diamond, Nano-Crystalline Diamond(NCD) is with more slippery surface, lower friction factor and better performance in field ejection, so that, it becomes the new hotpot in the research of diamond films. This essay focuses on the CVD NCD film. The fabrication and properties of NCD films are studied together with that of NCD film radiation detector. H etched NCD fims are studied to see if they can be used as X ray masks. At the same time, NCD films are successfully fabricated under high magnetic field to broaden their applications.
     First, NCD films are prepared by Hot Filament Chemical Vapor Deposition (HFCVD), while their surface morphology, optical and detective performances are studied in depth. The best growth parameters are got with the samples’grain size being about 30nm, thickness being 1000nm and near infrared transmittance over 50%. An innovative method is proposed hereof for the growth of thick NCD film in a fast way, where a high growth temperature is introduced in initial stage.
     Next, NCD film radiation detector is successfully fabricated by photolithography and sputtering. ANSYS ( a software based on finite-element method) is used to simulate the distribution of the electric field of the NCD film radiation detectors. The geometric configuration of interdigital electrodes is determined to be 25nm in width and 50nm for pitch. A special photo mask is designed and made for the photolithography. The electrical performance and spectral response of the MSM photo-conductive NCD detectors are studied with the samples’grain size vary from 20nm to 150nm and roughness from 22nm to 45nm. I-V test results show that with the decrease of the grain size, the resistivity of diamond film decreases and the ratio of the photocurrent to the dark-current (Iph/Id) of the detectors decreases rapidly from 0.45 to 0.099 under the radiation of 5.9 keV 55Fe X-ray. At an electric field of 50 kV/cm, the energy resolution of detectors with large grains (150 nm) is 17.5%, for those with small grains (20 nm), the number is 22.7%. All the test results show that larger grain samples are with better counting rate, higher SNR and charge collection efficiency, and therefore, they are more appropriate for nuclear radiation detectors.
     Then, Hydrogen etching method is applied to the experiments to optimize the NCD film deposition process. From the test of micro-structure, optical and electrical properties, it shows that, with certain deposit parameters, the increase of etching time will lead to the decrease of the grain size and of surface roughness, the increase of the refractive index and optical transmission rate and the diminish of NCD film’s dark current and dielectric loss, while their dielectric constant come closer to that of natural diamond. NCD films are also tested for soft X-ray transmission by synchrotron radiation. It can obviously be seen that hydrogen-etched NCD films do much better in X-ray transmission: the transmission reaches 52.8% at an X-ray photon energy of 258eV, while the number for non-etched NCD is only 24.8%. The etched NCD film has met the requirements for X-ray mask materials.
     Finally, the deposition of NCD films in high magnetic field is researched. The influence of different magnetic field intensity (0-5T) on the performance of NCD films is studied. With the increase of magnetic intensity, the grain size of NCD films decreases. The principle of nano-crystalline diamond film deposition in high magnetic field is also studied.
引文
【1】.王林军,方志军,张明龙,沈沪江,夏义本,金刚石膜/氧化铝陶瓷复合材料的介电特性和热学性能研究[J]无机材料学报, Vol.19, 2004, pp.902-906
    【2】. Wang L. J., Xia Y. B., Fang Z. J., Zhang M. L. and Shen H. J., Studies on the Properties of Diamond film/alumina Composites for ICs with Ultra-high Speed and High Power [J]. Chinese Physics Letters, Vol.21, 2004, pp.1161-1163
    【3】.夏义本,王林军,张明龙,苏青峰, CVD金刚石核探测材料与器件[J].原子能科学与技术, Vol.39, 2005, pp.63-66
    【4】. Wang L. J., Lou Y. Y., Su Q. F., Shi W. M. and Xia Y. B., CVD diamond alpha-particledetectors with different electrode geometry [J]. Optical Express, Vol.13, 2005, pp.8612-8617
    【5】. Gruen M., Nanocrystalline Diamond Films [J]. Annual Review of Material Science, Vol.29, 1999, pp.211~259
    【6】. Siegel R.W., What do we really know about the atomic-scale structures of nanophase materials [J]. Journal of Physics and Chemistry of Solids, Vol.55, No.10, 1994, pp. 1097~1106
    【7】. Kubo R., Electronic properties of metallic fine particles [J]. Journal of the Physical Society of Japan, Vol.17, No.6, 1962, pp.975~986.
    【8】.李泉,曾广赋,席时权,纳米粒子[J].化学通报,Vol.6, 1995, pp.29~34
    【9】.柳闽生,杨迈之,半导体纳米粒子的基本性质及光电化学特性[J].化学通报,Vol.1, 1997, pp. 2491
    【10】.张立德、牟季美.纳米材料和纳米结构[B].北京:科学出版社, 2001
    【11】.殷敬华,莫志深.现代高分析物理学(下)[B].北京:科学出版社, 2001:409~430
    【12】.周环波,纳米材料、纳米结构及其应用[J].孝感学院学报,Vol.21, No.6, 2001, pp.34-38
    【13】.相英伟,超细金刚石粉末的显微结构和热稳定性[J].金刚石与磨料磨具工程, Vol.2, 1999, pp.5~9
    【14】. Vandenbulcke, L., De Barros, M. I., Deposition, structure, mechanical properties and tribological behavior of polycrystalline to smooth fine-grained diamond coatings [J]. Surface and Coatings Technology, Vol.146~147, 2001, pp.417
    【15】. Frolov, V. D., Karabutov, A. V., Similarity in field electron emission from nano-crystalline diamond and related materials [J]. Diamond and Related Materials, Vol.10, No.9-10, 2001, pp.1719~1726
    【16】. Krauss, A.R., Gruen, D.M., and Zhou D., Morphology and electron emission properties of nanocrystalline CVD diamond thin films [M]. Materials Research Society Symposium - Proceedings, Jan 30, 1998, Boston, Vol.495, pp.299~310
    【17】. McCauley T.G., Corrigan T.D., Krauss A.R., Auciello O., et al, Electron emissionproperties of Si field emitter arrays coated with nanocrystalline diamond from fullerene precursors[M] Materials Research Society Symposium– Proceedings B, Vol.498, 1997,pp. 227-232,
    【18】. Yoshimura M., Honda K., Electrochemical characterization of nanoporous honeycomb diamond electrodes in non-aqueous electrolytes [J]. Diamond and Related Materials, Vol.10, No.3-7, 2001, pp.620-626
    【19】. Krauss A. R., Gruen D. M., Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices [J]. Diamond and Related Materials, Vol.10, No.11, 2001, pp. 1952-1961
    【20】. Gudden B., Pohl R., Das quantenaquivalent bei der lichtelektrischen leitung [J]. Physica, Vol.17, 1923, pp.331-346
    【21】. Robertson R., Fox J.J. and Martin A.E., Two types of diamond [J]. Philosophical Transactions of the Royal Society A, Vol.232, 1934, pp.463-535.
    【22】. Kozlov S. F., Stuck R., Hage-Ali M., et al., Preparation and characteristics of natural diamond nuclear radiation detectors [J]. IEEE Transactions on Nuclear Science, Vol.22, No.1, 1975, pp.160-170
    【23】. Kozlov S.F., Konorova, E.A. Kuznetsov Y.A., et al., Diamond dosimeter for x-ray and gamma-radiation [J]. IEEE Transactions on Nuclear Science, Vol.NS-24, No.1, 1977, pp.235-237.
    【24】. Bergonzo P., Tromson D. and Mer C., Radiation detection devices made from CVD diamond [J]. Semiconductor Science and Technology, Vol.18, No.3, 2003, pp.S105-S112
    【25】. Kania D.R., Landstrass M.I., Plano M.A., et al., Diamond radiation detectors [J]. Diamond Related. Materials, Vol.2, No.5-7, 1993, pp.1012-1019
    【26】. Adam W., et al. (RD42 Collaboration). Performance of irradiated CVD diamond micro-strip sensors [J]. Nuclear Instruments and Methods in Physics Research A, Vol.476, No.3, 2002, pp.706-712
    【27】. Adam W., et al. (RD42 Collaboration). Micro-strip sensors based on CVD diamond[J]. Nuclear Instruments and Methods in Physics Research A, Vol.453, No.1-2, 2000, pp.141-148
    【28】. W. Adam, et al. (RD42 Collaboration). Review of the development of diamond radiation sensors [J]. Nuclear Instruments and Methods in Physics Research A, Vol.434, No.1, 1999, pp.131-145
    【29】. M. Friedl, et al. (RD42 Collaboration). CVD diamond detectors for ionizing radiation [J]. Nuclear Instruments and Methods in Physics Research A, Vol.453, No.1-2, 1999, pp.194-201
    【30】. R. Wedenig, et al. (RD42 Collaboration). CVD diamond pixel detectors for LHC experiments [J]. Nuclear Physics B - Proceedings Supplements, Vol.78, No.1-3, 1999, pp.497-504.
    【31】. Krammer M., et al. (RD42 Collaboration). Status of diamond particle detectors [J]. Nuclear Instruments and Methods in Physics Research A, Vol.418, No.1, 1998, pp.196-202
    【32】. Bauer C., et al. (RD42 Collaboration). Recent results from the RD42 diamond detector collaboration [J]. Nuclear Instruments and Methods in Physics Research A, Vol.383, No.1, 1996, pp.64-74.
    【33】. Adam W., et al. (RD42 Collaboration). The development of diamond tracking detectors for the LHC [J]. Nuclear Instruments and Methods in Physics Research A, Vol.514, No.1-3, 2003, pp.79-86
    【34】. Adam W., et al. (RD42 Collaboration). Status of the R&D activity on diamond particle detectors [J]. Nuclear Instruments and Methods in Physics Research A, Vol.511, No.1-2, 2003, pp.124-131
    【35】. W. Adam, et al. (RD42 Collaboration). Recent Results with CVD Diamond Trackers [J]. Nuclear Physics B - Proceedings Supplements, Vol.78, No.1-3, 1999, pp.329-334
    【36】. H. Kagan. Diamond radiation detectors may be forever! [J]. Nuclear Instruments and Methods in Physics Research A, Vol.546, No.1-2, 2005, pp.222-227
    【37】. Stone R., Doroshenko J., Koeth T., et al., CVD Diamond Pixel Development [J]. IEEETransactions on Nuclear Science, Vol.49 II, No.3, 2002, pp.1059-1062
    【38】. Husson D., Bauer C., Baumann I., et al. Neutron irradiation of CVD diamond samples for tracking detectors [J]. Nuclear Instruments and Methods in Physics Research A, Vol.388, No.3, 1997, pp.421-426
    【39】. Mer C., Pomorski M., Bergonzo P., et al, An insight into neutron detection from polycrystalline CVD diamond films [J]. Diamond Related Materials, Vol.13, No.4-8, 2004, pp.791-795
    【40】. Bergonzo P., Brambilla A., Tromson. D., et al, CVD diamond for radiation detection devices [J]. Diamond Related Materials, Vol.10, No.3-7, 2001, pp.631-638
    【41】. Bergonzo P., Brambilla A., Tromson D., et al, CVD diamond for nuclear detection applications [J]. Nuclear Instruments and Methods in Physics Research A, Vol.476, No.3, 2002, pp.694-700.
    【42】. Jany C., Tardieu A., Gicquel A., et al., Influence of the growth parameters on the electrical properties of thin polycrystalline CVD diamond films [J]. Diamond Related Materials, Vol.9, No.3-6, 2000, pp.1086-1090.
    【43】. Marinelli M., Milani E., Paoletti A., et al, High collection efficiency in chemical vapor deposition diamond particle detectors [J]. Diamond Related Materials, Vol.9, No.3-6, 2000, pp.998-1002
    【44】. Wang S.G., Zhang Q., Yoon S.F.,et al,. Investigation on polycrystalline CVD diamond based alpha-particle detectors [J]. Materials Research Bulletin, Vol.37, No.6, 2002, pp.1033-1040
    【45】. Keddy R.J., Nam T.L.. Diamond radiation detectors [J]. Radiation Physics and Chemistry, Vol.41, No.4-5, 1993, pp.767-773
    【46】. Berdermann E., Blasche K., Moritz P., et al, The use of CVD-diamond for heavy-ion detection [J]. Diamond Related Materials, Vol.10, No.9-10, 2001, pp.1770-1777.
    【47】. Katherine Derbysgire, Issues in Advanced Lithography [J].Solid State Technology, Vol,40, No.5, 1997, pp.133-138
    【48】. Shigehisa Ohki, Sunao Ishihara. An Overview of X-Ray Lithography [J].Microelectronic Engineering, Vol.30, No.1-4 1996, pp.171-178
    【49】. Ruth DeJule. Resist Enhancement with Antireflective Coating [J]. Semiconductor International, Vol.19, No.8, 1996, pp.169
    【50】. Devon Kinkead. Airborne Molecular Contamination: A Roadmap for the 0.25μm Generation [J]. Semiconductor International, Vol.19, No.6, 1996 pp.233
    【51】. Deguchi K, Miyoshi K, Oda Metal. Extendibility of synchrotron radiation lithography to the sub-100nm region [J] Journal of Vaccum Science and Technology B. Vol.14, No.6, 1996, pp.4294-4297
    【52】. Hawryluk A. M., Seppala L. G., Soft X-ray projection lithography using an X-ray reduction camera [J]. Vaccum Science and Technology, Vol.6, No.6, 1988, pp.2162-2166
    【53】. Lunday C. IBM, Motorola, Japan firms agree on common mask for X-ray lithography [J]. Solid State Technology. Vol.40, No.5, 1997, pp.48
    【54】. Gaines D P, Vernon S.P., Sommargren G.E. et al., X-ray characterization of a four-bounce projection system [M]. Extreme Ultraviolet Lithography Topical Meeting, Monterey, CA, Sep.19-21, 1994, pp171-176
    【55】. Fuchs D., Krumrey M., Mueller, P., et al. High precision soft x-ray reflectometer [J]. Review of Scientific Instruments, Vol.66, No.2, 1995, pp.2248-2250
    【56】. Lebert R., Neff W., Neff W., et al. Pinch plasma source for x-ray microscopy with nanosecond exposure time. Journal of X-Ray [J]. Journal of X-Ray Science and Technology, Vol.6, No.2, 1996, pp. 107-140
    【57】. Lebert R., Rothweiler D., Engel A., et al. Pinch plasmas as intense EUV sources for laboratory application [J]. Optical and Quantum Electronics, Vol.28, No.3, 1996, pp.241-259
    【58】. Smmargren G.E., Seppala L. G., Condenser optics partial coherence and imaging for soft x-ray projection lithography [J]. Appllied Optics, Vol.32, No.34, 1993, pp.6938-6944
    【59】. Kinoshita H. Present and future requirements of soft x-ray projection lithography inMultilayer and Grazing Incidence X-Ray/EUV Optics for A stronomy and Projection Lithography[J], SPIE, Vol.1742, 1992, pp.576-584
    【60】. M Reilly, REILLY M., LEONARD Q., et al, Performance of the modified Suss XRS 200/2M x-ray stepper at CXrL [J]. Japanese journal of applied physics, Vol.33, No.12B, 1994, pp.6899-6904,
    【61】.韩毅松,玄真武,刘尔凯等,纳米金刚石膜—一种新的具有广阔应用前景的CVD 金刚石[J].人工晶体学报,Vol.31, No.2,2002, pp.158-163
    【62】.姜念云,沈峰,胡思福.同步辐射及其应用[B] .北京:科学技术出版社,1996:216-218.
    【63】.吴沐新,朱樟震,张菊芳等.同步辐射及其应用[B].北京:科学技术出版社,1996:212-215.
    【64】. Ravet M.F., Rousseaux F., Status of diamond as membrane material for X-ray lithography masks[J], Diamond and Related Materials, Vol.5, No.6-8, 1996, pp.812-818
    【65】. Schmidt A., Himmelsbach G., Luettge R. et al, High precision mask fabrication for deep X-ray lithography [J]. Proceedings of SPIE - The International Society for Optical Engineering, Vol.3996, 2000, pp.235-243
    【66】. Shimkunas A. R. Advances in X-Ray Mask Technology [J].Solid State Technolgy, Vol.27, No.9, 1984, pp.192-199
    【67】. Trimble L.E, Celler G.K., Frakoviak J. et al, Fabrication and properties of free-standing C60 membranes [J]. Science,Vol.259, No.5103, 1993, pp:1887-1890
    【68】. Shoki. Tsutomu, Yamaguchi. Yoh-ichi, Optical properties of polycrystallineβ-SiC membrane for x-ray masks [M]. Photomask and X-Ray Mask Technology, Apr 22 1994, Kawasaki, Japan, Vol.2254, pp.313-319
    【69】. Moel A., Itoh. M., Mitsui S. et al., Mask distortion analysis for the fabrication of 1 GBit dynamic random access memories by X-ray lithography [J]. Japanese Journal of Applied Physics, Vol.32, No.12B, 1993, pp.5947-5950
    【70】. Rousseaux F., Haghiri-Gosnet A.M., Khan Malek C., et al, X-ray lithography at theSuper-ACO storage ring of Orsay [J]. Microelectronic Engineering, Vol.11, No.1-4, 1990, pp.229-232
    【71】. De Rango, M. Lees, P. Lejay, A. Sulpice, R. Tournier, M. Ingold, P. Germi and M. Pernet., Texturing of magnetic materials at high temperature by solidification in a magnetic field [J]. Nature, 1991, Vol.349, pp. 770-772
    【72】. Noudema J. G., Beilleb J., Bourgaulta D., Chateignerc D. and Tourniera R., Bulk textured Bi-Pb-Sr-Ca-Cu-O (2223) ceramics by solidification in a magnetic field [J]. Physica C, Vol.264,1996, pp,325-330
    【73】. Ma Y.W., Wang Z.T., To enhance Jc of Bi-2223 Ag-sheathed superconducting tapes by improving grain alignment with magnetic field [J]. Physica C, Vol.282-287, 1997,pp.2619-2620
    【74】. Liu H.B., Ferreira P.J. and Vander Sande J. B., Jc enhancement of Bi2Sr2CaCu2O8/Ag thick films melt-grown under an elevated magnetic field (0-10T) [J]. Physica C, Vol.316, No.3-4, 1999, pp.261-266
    【75】. Awaji S., Ma Y., Chen W. P., Maeda H., Watanabea K., and Motokawaa M., Magnetic field effects on synthesis process of high-Tc superconductors [J] Current Applied Physics, Vol.3, No.5, 2003, pp: 391-395
    【76】. Awaji S.,Watanabe K., Motokawa M, Kuramochi A., Fukase T. and Kimura K., Melt textured process for YBCO in high magnetic fields[J] IEEE Transactions on Applied Superconductivity, Vol.9, No.2, 1999, pp. 2014-2017
    【77】. Ma Yanwei, Watanabe Kazuo, Awaji Satoshi, Masumoto Hiroshi and Motokawa Mitsuhiro, Effect of magnetic field on growth of YBa2Cu3O7 films on MgO substrates by metalorganic chemical vapor deposition [J]. Physica C, Vol.353, No.3-4, 2001, pp. 283-288
    【78】. Ma Yanwei, Watanabe Kazuo, Awaji Satoshi and Motokawa Mitsuhiro, Jc enhancement of YBa2Cu3O7 films on polycrystalline silver substrates by metalorganic chemical vapor deposition in high magnetic fields [J]. Applied Physics Letters, Vol.77, No.22, 2000, pp.3633-3635
    【79】. Ma Yanwei, Watanabe Kazuo, Awaji Satoshi and Motokawa Mitsuhiro, Observation of growth- mode change under a magnetic field in YBa2Cu3O7?x [J]. Physical Review B, Vol.65, No.17, 2002, pp.174528
    【80】. Legrand B. A., Perrier de La Bathie R. and Tournier R., Orientation by solidification in a magnetic field: A new process to texture SmCo compounds used as permanent magnets, [J]. Journal of Magnetism and Magnetic Materials, Vol,173, No.1-2, 1997, pp.20-28
    【81】. Cui B.Z., Huang M.Q., Yu R.H., et al. Magnetic properties of (Nd,Pr,Dy)2Fe14B/α-Fe nanocomposite magnets crystallized in a magnetic field [J]. Applied Physics, Vol.93, 2003, pp. 8128-8130
    【82】. Kato H, Miyazaki T, Sagawa M and Koyama K, Coercivity enhancements by high-magnetic-field annealing in sintered Nd-Fe-B magnets. [J] Appllied Physics Letters, Vol.84, No. 21, 2004, pp.4230-4232
    【83】. Masahashi N., Matsuo M. and Watanabe K. Development of preferred orientation in annealing of Fe-3.25%Si in a high magnetic field [J]. Material Research, Vol.13, No.2, 1998, pp. 457-461
    【84】. Tanaka K., Ichitsubo T. and Koiwa M. Effect of external fields on ordering of FePd [J]. Materials Science & Engineering A, Vol.312, No. 1-2, 2001, pp.118-127
    【85】. Gaucherand F., Beaugnon E., Magnetic texturing in ferromagnetic cobalt alloys [J]. Physica B, Vol.346, 2004, pp.262-266
    【86】. Takagi T., Iwai K. and Asai S., Solidified structure of Al alloys by a local imposition of an electromagnetic oscillationg force [J]. ISIJ International, Vol.43, No.6, 2003, pp.842-848
    【87】. Yasuda H., Ohnaka I., Kawakami O., Kazuyuki U. and Kohji K., Effect of magnetic field on solidification in Cu-Pb monotectic alloys [J]. ISIJ International, Vol.43, No. 6, 2003, pp. 942-949
    【88】.李喜,任忠鸣,孙延辉,王俊,余建波,任维丽,纵向强磁场对定向凝固Al-4.5%Cu合金显微组织的影响[J].金属学报, Vol.42, No.2, 2006, pp.147-152
    【89】. Lehmann P., Moreau R. and Camel D., Modification of interdendritic convection in directional solidification by a uniform magnetic field [J]. Acta Materialia, Vol.46, No.11, 1998, pp.4067-4079
    【90】. Liu Y. S., Zhang J. C., Cao S. X., and et. al, Microstructure, crystallization, and magnetization behaviors in MnBi-Bi composites aligned by applied magnetic field [J]. Physical Review B, Vol. 72, No.21, 2005, pp.214410
    【91】. Yasuda H, Ohnaka I, Yamamoto Y, Wismogroho A S, Takezawa N and Kishio K, Alignment of BiMn crystal orientation in Bi-20 at percent Mn alloys by laser melting under a magnetic field [J]. Materials Transactions, Vol.44, No.12, 2003, pp.2550-2554
    【92】.林刚,杨院生,花福安,等.电磁离心1Cr18Ni9Ti不锈钢的凝固组织与变形性能[J].金属学报, Vol 39, No.12, 2003, pp. 1233-1237
    【93】. Walters D. A., Casavant M. J., Qin X. C., and et.al, In-plane-aligned membranes of carbon nanotubes [J]. Chemical Physics Letters, Vol.338, No.1, 2001, pp.14-20
    【94】. Kimura T., Ago H., Tobita M., and et.al, Polymer composites of carbon nanotubes aligned by a magnetic field [J]. Advanced Material, Vol.14, No.19, 2002, pp.1380-1383
    【95】. Choi E. S., Brooks J. S., Eaton D. L., and et.al, Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing [J] Appllied Physics, Vol.94, No.9, 2003, pp. 6034-6039
    【96】. Lee G. H., Huh S. H., Park J. W., et al. Arrays of ferromagnetic iron and cobalt nanocluster wires. [J] Physics Chemistry B, Vol. 106, No.9, 2002, pp.2124-2126
    【97】. Hangarter C. M., Myung N. V., Magnetic alignment of nanowires. Chemical Materials, Vol.17, No.6, 2005, pp.1320-1324
    【98】. Niu H. L., Chen Q. W., Zhu H. F.,et.al, Magnetic field-induced growth and self-assembly of cobalt nanocrystallites [J]. Journal of material chemistry, Vol.13, No.7,2003, pp1803-1805
    【99】. Fujiwara M., Fukui M., and Tanimoto Y. Magnetic orientation of benzophenone crystals in fields up to 80.0 kOe [J] Physics Chemistry B, Vol.103, No.14, 1999, pp,2627-2630
    【100】. Sazaki G., Yoshida E., Komatsu H., et. al, Effects of a magnetic field on the nucleation and growth of protein crystals [J] Journal of Crystal Growth, Vol.173, No.1-2, 1997, pp.231-234
    【101】. Torbet J. Magnetic orientation in biology: Virus structure– blood clot assembly-cell guidance.[M] Proceedings of International Workshop on Materials Analysis and Processing in Magnetic Fields, Jan 1, 2004,Tallahassee, Fla. USA , pp.249-256
    【102】. Sakka Y, Suzuki T S, Tanabe N, et al., Alignment of titania whisker by colloidal filtration in a high magnetic field [J]. Japanese journal of applied physics, Vol.41, No.12A, 2002, pp. L1416-L1418
    【103】. Ma, Yanwei, Xu, Aixia, Li, Xiaohang et al. Improved properties of epitaxial YNixMn1?xO3 films by annealing under high magnetic fields. Appllied Physics Letters, Vol.89, No.15, 2006, pp.152505
    【1】. Yoshimoto M.,Yoshida K.,Maruta H.,et al., Epitaxial diamond growth on sapphire in an oxidizing environment [J]. Nature, Vol.399,1999, pp.340-341
    【2】. Gruen D. M., Liu S., Krauss A. R., et al., Fullerenes as precursors for diamond film growth without hydrogen or oxygen additions [J]. Applied Physics Letters, Vol.64, No.12, 1994, pp.1502-1504
    【3】. Zhou D.,Gruen D. M.,Qin L. C., et al, Control of diamond film microstructure by Ar additions to CH4/H2 microwave plasmas [J]. Journal of Applied Physics, Vol.84, No.4, 1998, pp. 1981-1989
    【4】. Zhou D.,McCauley T. G.,Qin L. C.,et al.,Synthesis of nanocrystalline diamond thin films from an Ar-CH4 microwave plasma [J]. Journal of Applied Physics, Vol.83, No.1, 1998, pp.540-543
    【5】. Sharda T., Umeno M., Soga T., et al., Growth of nanocrystalline diamond films by biased enhanced microwave plasma chemical vapor deposition: A different regime of growth [J]. Applied Physics Letters, Vol.77, No.26, 2000, pp. 4304-4306
    【6】. Yugo S., Kanai T., Kimura T., et al., Generation of diamond nuclei by electric field in plasma chemical vapor deposition [J]. Applied Physics Letters, Vol.58, No.10, 1991, pp. 1036-1038
    【7】. Jiang X., Klages C. P., Zachai R., et al., Epitaxial diamond thin films on (001) silicon substrates [J]. Applied Physics Letters, Vol.62, No.26, 1993, pp.3438-3440
    【8】. Paul C. R., David A. H., Larry A. C., et al., Theoretical studies of growth of diamond (110) from Dicarbon [J]. Journal of Physical Chemistry., Vol.100, 1996, pp.11654~11663
    【9】. Tien Syh Yang, Jir Yon Lai and Ming Show Wong, Combined effects of argon addition and substrate bias on the formation of nanocrystalline diamond films by chemical vapor deposition [J]. Journal of Applied Physics, Vol. 92, No.9, 2002, pp.4912~4917
    【10】. Matsumoto S., Sato Y., Tsutsumi M., et al., Growth of diamond particles frommethane-hydrogen gas [J]. Journal of Materials Science, Vol.17, No.11, 1982, pp. 3106-3112
    【11】. Gr?ning O., Küttel O. M., Gr?ning P., et al., Field emission properties of nanocrystalline chemically vapor deposited-diamond films [J]. Journal of Vacuum Science and Technology B, Vol.17, No.3, 1999, pp.1064-1071
    【12】. Karabutov A. V., Frolov V. D., Pimenov S. M., et al., Grain boundary field electron emission from CVD diamond films [J]. Diamond Related Materials, Vol.18, No.2-5, 1999, pp.763-767
    【13】. Filik J., Narvey J. N., Allan N. L., et al., Raman spectroscopy of nanocrystalline diamond: An ab initio approach [J]. Physical Review B., Vol.74, No.035423, 2006, pp. 1-10
    【14】. Feng T., Schwartz B. D., Characteristics and origin of the 1.681eV luminescence center in chemical-vapor-deposited diamond films [J]. Journal of Applied Physics, Vol.73, No.3, 1993, pp.1415-1425
    【15】. Donato M. G., Faggio G., Messina G., et al., Raman and photoluminescence analysis of CVD diamond films: influence of Si-related luminescence centre on the film detection properties [J]. Diamond Related. Materials, Vol.13, 2004, pp. 923~928
    【16】.苏青峰,夏义本,王林军等.不同取向金刚石薄膜的红外椭圆偏振光谱特性研究[J].红外与毫米波学报, Vol.25, No.2,2006, pp.86-89
    【17】.方志军,夏义本,王林军等.金刚石薄膜的红外椭圆偏振参量的计算和拟合[J].光学学报, Vol.23, No.12, 2003, pp.1507-1512
    【18】. Kuzmany H., Pfeiffer R., Salk N., et al., The mystery of the 1140 cm-1 Raman line in nanocrystalline diamond films [J]. Carbon, Vol.42, No.5-6, 2004, pp.911-917
    【19】. James Birrell, J. E. Gerbi, O. Auciello, et al., Interpretation of the Raman spectra of ultrananocrystalline diamond [J]. Diamond. Related Materials, Vol.14, 2005, pp.86-92
    【1】. Attix, Frank H., Introduction to radiological physics and radiation dosimetry [B]. John Wiley&sons, Inc., New York, 1986: 124-158
    【2】.闻立时,黄荣芳.气相生长金刚石膜[J].薄膜科学与技术, 1990. 3: 72-77.
    【3】.于弋川,何建军,何赛灵,邹勇卓. MSM光探测器直流特性的二维分析[J].半导体学报,Vol.26, No.4, 2005, pp.798-804
    【4】.刘恩科,朱秉升,罗晋生等.半导体物理学[M].北京:国防工业出版社, 1994.4
    【5】. Knoll, Glenn F., Radiation detection and measurement, 2th Edition [B]. JohnWiley&sons, Inc., New York, 1989, pp. 131-382
    【6】. T. M. Jenkins, W. R. Nelson, A. Rindi, Monte Carlo transport of electrons and photons [B]. Plenum Press, New York, 1988, pp. 79~93
    【7】. D. Tromsona, A. Brambillaa, F. Foulona, C. Mera, B. Guizarda, R. Barrettb and P.Bergonzo, Geometrical non-uniformities in the sensitivity of polycrystalline diamond radiation detectors,Diamond and Related Materials, Vol. 9, No.11, 2000, pp.1850-1855.
    【8】. K. Hecht,Zeitschrift fiir Physik, Vol.77, 1932, pp.235
    【1】. Noguchi H., Kubota Y., Takarada T., Use of oxygen gas in diamond film growth for improving stress and crystallinity properties of an x-ray mask [J]. Journal of Vaccum Science and Technology B, Vol.16, No.3, 1998, pp.1167-1173
    【2】. Huang B. R., Sheu J. T., Wu C. H., et al. Bilayer SiNx/diamond films for X-ray lithography mask [J], Japanese Journal of Applied Physics, Vol.38, No.4, 1999, pp. 6530-6533
    【3】. Huang, B. R. Wu C. H., Yang K. Y., Polycrystalline diamond films for X-ray lithography mask [J]. Materials Science and Engineering B, Vol.75, No.1, 2000, pp.61-67
    【4】. Yang X. Q., Ruckman M. W. and Skotheim T. A., X-ray Absorption Study of DiamondFilms Grown by Chemical Vapor Deposition [J]. Journal of Vacuum Science & Technology A, Vol.9, No.3, 1991, pp.1140-1144
    【5】. Ma Y., Wassdahl N., Skytt P., et al., Soft-x-ray resonant inelastic scattering at the C K edge of diamond [J] Physical review letters, Vol.69, No.17, 1992,pp.2598-2610
    【6】.褚圣麟,原子物理学[B].北京:高等教育出版社, 1995:158-165
    【7】. Shah S I, Walls D J. Plasma Assisted Conversion of Carbon Fibers to Diamond [J]. Applied Physics Letters, Vol.67, No.22, 1995, pp.3355-3357
    【8】. Sharda T., Soga T., Jimbo T., Growth of nanocrystalline diamond films by biased enhanced microwave plasma chemical vapor deposition: A different regime of growth [J]. Diamond and Related Materials, Vol.10, No.9-10, 2001, pp.1592-1596
    【9】. Sharda T., Soga T., Jimbo T., et al, Biased enhanced growth of nanocrystalline diamond films by microwave plasma chemical vapor deposition [J]. Diamond and related Materials, Vol.9, No.7, 2000, pp.1331~1335
    【10】. Shigesato Y., Boekenhauer R. E., Emission spectroscopy during direct-current-biased, microwave-plasma chemical vapor deposition of diamond [J]. Applied Physics Letters, Vol.63, No.3, 1993, pp.314-316
    【11】. Robertson J., Gerber J., Sattel S., et al, Mechanism of bias-enhanced nucleation of diamond on Si [J]. Applied Physics Letters, Vol.66, No.24, 1995, pp.3287-3289
    【12】. Lifshitz Y., Lempert G.D., -Grossman E., Substantiation of subplantation model for diamond like film growth by atomic force microscopy [J]. Physical Review Letters, Vol.72, No.17, 1994, pp.2753-756
    【13】. Jiang X., K. Schiffmann, Coalescence and overgrowth of diamond grains for improved heteroepitaxy on silicon (001) [J]. Journal of Applied Physics, 1998, 83(5):2511
    【14】. Z.Sun, Morphological features of diamond like carbon films deposited by plasma-enchanced CVD [J]. J Noncryst Solids, 2000, 261: 211-217.
    【15】. Y H Cheng, Y P Wu, J G Chen, et al. On the depositionmechanism ofα-C:H films by plasma enhanced chemical vapor deposition [J]. Surf Coat Technol. 2000, 135: 27-33.
    【16】. A .C.Ferrari, J.Robertson, Raman and infrared modes of hydrogenated amorphouscarbon nitride [J]. Journal of Applied Physics, 2001, l89(10):5425-5430
    【17】. Lee J., Collins R.W., and Veerasamy V.S., Analysis of amorphous carbon thin films by spectroscopic ellipsometry [J]. J. Non-Crystalline Solids, Vol.617, 1998, pp.227
    【18】. Ferrari, A .C., Robertson, J., Raman and infrared modes of hydrogenated amorphous carbon nitride [J]. Journal of Applied Physics, Vol.189, No.10, 2001, pp.5425
    【19】. Ma Zhibin, Wu Qinchong, Shu Xingsheng, et al., The Raman and Infrared Spectra of Diamond like Carbon Films [J]. Vacuum Elctronics, Vol.5, 2000, pp.1-3
    【20】. Lee J., Collins R. W., Veerasamy V. S., Analysis of amorphous carbon thin films by spectroscopic ellipsometry [J]. Journal of Non-Crystalline Solids, Vol.227-230, 1998, pp.617-621
    【21】.奚正蕾莘海维张志明等[B].微细加工技术2001, 4: 50-55
    【22】. Garcia I., Sanchez Olias J., Agullo-Rueda, F., et al., Dielectric characterization of oxyacetylene flame-deposited diamond thin films [J]. Diamond and Related Materials, Vol. 6, No. 9, 1997, pp,1210-1218
    【1】. Mori T., Mori K., and Mizutani T., Effect of magnetic field on growth of functional organic thin films [J]. Thin Solid Films, Vol.338, No.1-2, 1999, pp.300-303
    【2】. Mori T., Mori K., Mizutani T., Effect of magnetic field on growth of bianthrone thinfilms [J]. Thin Solid Films, Vol.393, No.1-2, 2001, pp.393-143
    【3】. Sazaki G., Yoshida E., Komatsu H., Effects of a magnetic field on the nucleation and growth of protein crystals [J]. Journal of Crystal Growth, Vol.173, No1-2, 1997, pp.231-234,
    【4】. Ma Y.W., Watanabe K., Awaji S., H. Masumoto, Effect of magnetic field on growth of YBa2Cu3O7 films on MgO substrates by metalorganic chemical vapor deposition [J]. Physica C, Vol.353, No.3-4, 2001, pp. 283-288
    【5】. Awaji S., Ma Y., Chen W. P., Maeda H., Watanabea K., and Motokawaa M., Magnetic field effects on synthesis process of high-Tc superconductors [J] Current Applied Physics, Vol.3, No.5, 2003, pp: 391-395
    【6】. Weibmantel S., Rost D., Reiβe G., Magnetic field assisted increase the growth rate and reduction the particulate incorperation in pulse laser deposition boron nitride films [J]. Applied Surface Science , Vol.197, No.30, 2002, pp.494-498
    【7】.佐佐健介,川森拓,浅井滋生,强磁场による晶出相の配向と结晶方位の制御[J]. 日本金属学会志, Vol.61, No.12, 1997, pp.1283-1287.
    【8】. Cloots R., Rulmont S., Hannay C., et al. Texturing of DyBa2Cu3O7 superconducting grains synthesized in situ in a magnetic field [J] Journal of Applied Physics Letters, Vol.61, No.22, 1992, pp.2718-2720
    【9】.王季陶,张卫,刘志杰.金刚石气相生长的热力学耦合模型[B]北京:科学出版社,1998:60~66,73~82,95~100
    【10】. Darin S. Olson, Michael A. Kelly, Sanjiv Kapoor, et al., Sequential deposition of diamond from sputtered carbon and atomic hydrogen [J].Journal of Applied Physics, Vol.74, No.8, 1993; pp.5167
    【11】. Ismat Shah S. and Walls D. J., Plasma assisted conversion of carbon fibers to diamond [J] Applied Physics Letters, Vol.67, No.22, 1995, pp.3355
    【12】.苟清泉,冉均国,郑昌琼.金刚石薄膜和形成机理及原子分子设计.见:蒋翔六主编. 金刚石薄膜研究进展[B]北京:化学工业出版社,1991:57~59