自抗扰控制策略在永磁同步电动机伺服系统中的应用研究与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
永磁同步电动机(PMSM)以其效率高、功率密度大和转矩/惯量比大等优点,在中小容量的伺服系统中得到广泛的应用。本文对无速度传感器PMSM伺服系统中,转子速度和位置估计、速度跟踪控制、位置跟踪控制和摩擦补偿等关键问题进行了深入研究,提出了一种新颖的无速度传感器PMSM位置伺服系统控制方案。
     深入研究分析了PMSM矢量控制理论,提出了一种基于自抗扰控制策略的PMSM转子速度和位置估计方法。将转子速度和d轴电流对q轴电流环的耦合作用,视为q轴电流环的扰动量,通过自抗扰控制器将这个扰动量观测出来,再从观测出的扰动量中提取出转子速度的信息,进而估计出转子速度和位置。仿真和实验表明,在从0r/min到2000r/min的调速范围内,均能准确的估计出转速,并且对负载扰动具有很强的鲁棒性。
     为了抑制负载、摩擦力矩和转动惯量的变化对PMSM伺服系统的影响,本文将以上参数的变化视为伺服系统速度环的扰动量,推导出速度环自抗扰控制的数学模型,提出了PMSM伺服系统速度跟踪控制的自抗扰控制策略。仿真表明,在从0r/min到2000r/min的调速范围内,均能很好的抑制负载和转动惯量的影响,并且对摩擦力矩给与有效补偿,克服了伺服系统速度跟踪中的“死区”现象和位置跟踪中的“平顶”现象。
     针对PMSM位置伺服系统对定位的快速性、准确性和无超调的要求,以及系统鲁棒性的要求,提出了PMSM伺服系统位置跟踪自抗扰控制器。通过跟踪-微分器为位置给定信号提供一个过渡过程,克服了响应速度和超调之间的矛盾,使得系统响应快且没有超调;通过扩展状态观测器将位置环的扰动量观测出来并加以前馈补偿,提高了系统的鲁棒性。仿真表明,当转子位置给定信号分别为100rad和0.1sin( 2πt)rad时,系统的稳态误差分别为0.033rad和0.00038rad,控制精度较高,并且对负载扰动、转动惯量和定子电阻的变化具有很强的鲁棒性。
     在上述工作的基础上,研发了一套基于TMS320LF2407A DSP的高性能PMSM交流伺服系统,并开发了基于CAN总线的上位机监控软件,实现了上位机对伺服系统运行状态的实时监控。
Permanent Magnet Synchronous Motors (PMSM) have numerous inherent advantages over other machines that are conventionally used for AC servo drives. High efficiency, high power density (kw/kg) and high torque to inertia ratio are some of the PMSM characteristics responsible for its wide utilization in different domains. In this dissertation, speed and position estimation, speed and position tracking, friction compensation and other key problems of speed sensorless PMSM servo drive are investigated in detail. And based on those, a novel approach for speed sensorless PMSM servo drive system is presented.
     Based on Active Disturbance Rejection Controller (ADRC) techniques, a novel rotor speed and position estimation strategy to sensorless PMSM servo drive is presented in this dissertation. In the strategy, the rotor speed and d-axis current in q-axis current loop are regarded as cross-coupling item, which is observed by ADRC and then the rotor speed is estimated from the cross-coupling item. Simulation and experimental results show that the rotor speed and position can be accurately estimated from 0r/min to 2000r/min, and the PMSM servo system has strongly robust to load disturbance.
     In order to restrain the disturbances in PMSM servo drive caused by the changes of load, friction and rotor inertia, a speed control method based on ADRC techniques is presented in this dissertation and the speed ADRC model is also proposed. Based on ADRC, these parameter changes are regarded as disturbances of speed loop in PMSM servo system, which are estimated and then compensated by speed ADRC. Simulation results show that the servo system robust to those disturbances from 0r/min to 2000r/min, and the friction torque is compensated by the control method.
     A position control approach based on ADRC techniques is also presented in this dissertation. Aim at the speediness, accuracy and overshootless of position control, as well as the restrain of disturbance, a transitional process is arranged for the given position by the Tracking Differentiator (TD) of ADRC, and the disturbance effects upon position control is also observed and then compensated by the Extended State Observer (ESO) of ADRC. Simulation results show that the servo system robust to stator resistance, rotor inertia changes and load disturbance. When given position is 100rad and 0.1sin( 2πt)rad, the steady state error is 0.033rad and 0.00038rad, respectively.
     Grounded on the work above, a real system includes TI’s DSP TMS320LF2407A as central control unit is developed, and the monitor control system based on Controller Area Network (CAN) bus is designed.
引文
[1] 张莉松,胡祐德,徐立新,伺服系统原理与设计,北京:北京理工大学出版社,2006,1~2
    [2] 潘月斗,全数字交流永磁同步电动机伺服系统及控制策略的研究:[博士学位论文],天津,天津大学,2001
    [3] 马小亮,大功率交-交变频调速及矢量控制技术,北京:机械工业出版社,2004,1
    [4] 王仁祥,通用变频器选型与维修技术,北京:中国电力出版社,2004,2,5
    [5] (美)Muhammad H. Rashid,电力电子技术手册,北京:机械工业出版社,2004,69
    [6] Murai Y, Ohashi, Hosono I, New PWM method for fully digitized inverters, IEEE Industry Applications Society Annual Meeting, Toronto, Ont, Canada, 1985, 448~453
    [7] Murai Y, Ohashi, Hosono I, New PWM method for fully digitized inverters, IEEE Trans. on Industry Applications, 23(5):887~893
    [8] 吴守箴,臧英杰,电气传动的脉宽调制控制技术,北京:机械工业出版社,2003,193~196
    [9] 张燕宾,SPWM 变频调速应用技术,北京:机械工业出版社,2004,69~74
    [10] 李永东,交流电机数字控制系统,北京:机械工业出版社,2003,339~340
    [11] Takeda Y, Hirasa T, Current phase control methods for permanent magnet synchronous motors considering saliency, PESC’88, Kyoto, Japan,1988: 409~414
    [12] Morimoto S, Takeda Y, Hirasa T, Current phase control methods for permanent magnet synchronous motors, IEEE Trans. on Power Electronics,1990,5(2): 133~139
    [13] 窦汝振,高性能永磁交流伺服系统及其新型控制策略的研究:[博士学位论文],天津,天津大学,2002
    [14] Wasynczyk O, Sudhoff S D, Corzine K A, et al, A maximum torque per ampere control strategy for induction motor drives, IEEE Trans. on energy conversion,1998,13(2): 163~169
    [15] Morimoto S, Sanada M, Takeda Y, Effects and compensation of magnetic saturation in flux-weakening controlled permanent magnet synchronous motor drives, IEEE Trans. on Industry Applications,1994,30(6):1632~1637
    [16] Colby Roy S, Novotny Donald W, Efficiency-optimizing permanent-magnet synchronous motor drive, IEEE Trans. on Industry Applications, 1988,24(3): 462 ~ 469
    [17] Griva G, Profumo F, Abrate M, et al, Wide speed range DTC drive performance with new flux weakening control, IEEE Annual Power Electronics Specialists Conference,Fukuoka,Japnese,1998:1599~1604
    [18] Jiunn-Jiang Chen, Kan-Ping Chin, Automatic flux-weakening control of permanent magnet synchronous motors using a reduced-order controller, IEEE Trans. on Power Electronics,2000,15(5):881~890
    [19] 梁艳,李永东,无传感器永磁同步电机矢量控制系统概述,电气传动,2003, 33(4):4~9
    [20] Maidu M, Bose B K, Rotor position estimation scheme of a permanent magnet synchronous machine for high performance variable speed drive. IEEE IAS Annual Meeting, Houston, USA, 1992, (1): 48~53
    [21] French C, Acarnley P, Control of permanent magnet motor drives using a new position estimation technique, IEEE Trans. on Industry Applications, 1996, 32(5): 1089~1097
    [22] Shigeo Morimoto, Keisuke Kawamoto, Yoji Takeda, Sensorless control of salient-pole pmsm based on extended EMF in rotating reference frame, IEEE Trans. on Industry Applications, 2002, 38(4): 1054~1061
    [23] R Wu , G R Slemon, A permanent magnet motor drive without a shaft sensor, IEEE Trans. on Industry Applications, 1991,27(5):1005~1011
    [24] Joohn-Sheok Kim, Seung-Ki Sul, New approach for high-performance PMSM drives without rotational position sensors, IEEE Trans. on Power Electronics , 1997,12(5):904~911
    [25] Joohn-Sheok Kim, Seung-Ki Sul, New approach for the low-speed operation of PMSM drives without rotational position sensors, IEEE Trans. on Power Electronics, 1996,11(3):512~519
    [26] Shin Nakashima, Yuya Inagaki, Ichiro Miki, Sensorless initial rotor estimation of surface permanent synchronous motor, IEEE Trans. on Industry Applications, 2000,36(6):1598~1603
    [27] 吴静,杨俊友,何国锋,永磁同步电动机无传感器控制的滑模观测器,沈阳工业大学学报,2006,28(1):45~48
    [28] 张剑,温旭辉,刘钧,等,一种基于 DSP 的 PMSM 转子位置及速度估计新方法,中国电机工程学报,2006,26(12):144~148
    [29] 王成元,夏加宽,杨俊友,等,电机现代控制技术,北京:机械工业出版社,2006,245~249,79~109
    [30] Joohn Sheok Kim, Seung Ki Sul, New approach for high performance PMSM drives without rotational position sensors, APEC'95, 1995, Dallas, TX, USA, (1):381~386
    [31] Mizutani R, Takeshita T, Matsui N, Current model-based sensorless drives of salient-pole PMSM at low speed and standstill, IEEE Trans. on Industry Applications, 1998,45(4):682~685
    [32] Jones L A, Lang J H, A state observer for permanent magnet synchronous motors, IEEE Trans. on Industrial Electronics, 1989, 36(3):374~382
    [33] Solsona J, Valla M I, Muravchik C, A nonlinear reduced order observer for permanent magnet synchronous motors, IEEE Trans. on Industrial Electronics,1996 , 43(4): 492~497
    [34] Jun Hu, Dongqi Zhu, Yongdong Li, et al, Application of sliding observer to sensorless permanent magnet synchronous motor drive system, PESC '94, Taipei, Taiwan ,1994(1):532~536
    [35] Chen Yiquang, Fu Tao, Li Xiang, Position sensorless control for permanent magnet synchronous motor using sliding mode observer, Transactions of Tianjin University, 2005, 11(5): 338~342
    [36] Urlep E, Jezernik K, Kos D, Sensorless sliding-mode control of PM synchronous machine, EPE-PEMC 2004 11th International Power Electronics and Motion Control Conference, Riga, Latvia,2004(3): 63~65
    [37] Changheng Li, Malik Elbuluk, A sliding mode observer for sensorless control of permanent magnet synchronous motors, IAS Annual Meeting, Chicago, IL,USA,2001,1273~1278
    [38] Yoon-seok Han, Jung-soo Choi, Young-seok Kim, Sensorless PMSM drive with a sliding mode control based adaptive speed and stator resistance estimator, IEEE Trans. on Magnetics,2000,36(51):3588~3591
    [39] Baik I C, Kim K H, Youn, M J, Robust nonlinear speed control of PM synchronous motor using adaptive and sliding mode control techniques, IEE Proceedings-Electric Power Applications, 1998,145(4): 369~376
    [40] Lin Faa-Jeng, Lin Yueh-Shan, PM synchronous motor drive with adaptive uncertainty observer, IEEE Trans. on Energy Conversion,1999,14(4): 989~995
    [41] Bolognani S, Tubiana L, Zigliotto M, Extended Kalman filter tuning in sensorless PMSM drives, IEEE Trans. on Industry Applications, 2003(39):1741~1747
    [42] Shi K L, Chan T F, Wong Y K, et al,Speed estimation of an induction motor drive using an optimized extended Kalman filter, IEEE Trans. on IndustrialElectronics, 2002(49):124~133
    [43] Bolognani S, Tubiana L, Zigliotto M, Extended Kalman filter tuning in sensorless PMSM drives, IEEE Trans. on Industry Applications,2003,39(6): 423 ~426
    [44] Murat Barut, Seta Bogosyan, Metin Gokasan, Speed-sensorless estimation for induction motors using extended Kalman filter, IEEE Trans.on Industrial Electronics, 2007,54(1): 272~280
    [45] Dhaouadi R, Mohan N, Norum L, Design and implementation of an extended Kalman filter for the state estimation of a permanent magnet synchronous motor, IEEE Trans. on Power Electronics,1991,6(3):491~497
    [46] Sepe R B, Lang J H, Real-time observer-based (adaptive) control of a permanent-magnet synchronous motor without mechanical sensors, IEEE Trans. on Industry Applications , 1992,(28):1345~1352
    [47] Boussak M , Implementation and experimental investigation of sensorless speed control with initial rotor position estimation for interior permanent magnet synchronous motor drive, IEEE Trans. on Power Electronics, 2005,20(6):1413 ~1422
    [48] Kevin G H, Thomas G. H, Sensorless speed measurement using current harmonic spectral estimation in induction machine drives, IEEE Trans. on Power Electronics, 1996, 11(1):66~73
    [49] Corley M J, Lorenz R D, Rotor position and velocity estimation for a permanent magnet synchronous machine at standstill and high speed, IEEE IAS Annual Meeting, San Diego, CA, USA,1996(1): 36~41
    [50] Limei Wang, Lorenz R D, Rotor position estimation for permanent magnet synchronous motor using saliency-tracking self-sensing method, IEEE IAS Annual Meeting, Rome, Italy ,2000(1):445~450
    [51] Ji-Hoon Jang,Seung-Ki Sul,Jung-Ik Ha, Sensorless drive of surface-mounted permanent-magnet motor by high-frequency signal injection based on magnetic saliency,IEEE Trans. on Industry Applications, 2003,39(4):1031~1039
    [52] Corley M J, Lorenz R D, Rotor position and velocity estimation for a salient-pole permanent magnet synchronous motor at standstill and high speeds. IEEE Trans. on Industry Applications, 1998, 34(4):784~789
    [53] Hai-Jiao Guo, Sagawa S, Watanabe T, et al, Sensorless driving method of permanent-magnet synchronous motors based on neural networks, IEEE Trans. on Magnetics, 2003,39(5):3247~3249
    [54] Batzel T D, Lee K Y, An approach to sensorless operation of the permanent magnet synchronous motor using diagonally recurrent neural networks, IEEE Trans. on Energy Conversion, 2003,18(1):100~106
    [55] Hai-Jiao Guo, Sagawa S, Watanabe T, et al, Sensorless driving method of permanent-magnet synchronous motors based on neural networks, IEEE Trans. on Magnetics, 2003,39(5):3247~3249
    [56] 李鸿儒,顾树生,基于神经网络的 PMSM 速度和位置自适应观测器的设计,国电机工程学报,2002,22(12):32~35
    [57] 王晓东,石海峰,基于自适应线性神经元速度观测器在直接转矩控制系统中的应用,电工技术学报,2003,18(1):27~32
    [58] Hai-Jiao Guo, Sagawa S, Watanabe T, et al, Sensorless driving method of permanent-magnet synchronous motors based on neural networks, IEEE Trans. on Magnetics, 2003,39(5):3247~3249
    [59] Batzel T D, Lee K Y, A diagonally recurrent neural network approach to sensorless operation of the permanent magnet synchronous motor,2000 Power Engineering Society Summer Meeting,Seattle,WA,USA,2000(4):2442~2445
    [60] 孙凯,许镇琳,邹积勇,基于自抗扰控制器的永磁同步电机速度估计,系统仿真学报,2007,19(3):582~584
    [61] Jianhua Q ian, Azizur Rahman M, Analysis of field oriented control of permanent magnet hysteresis synchronous motors, IEEE Trans. on Industry Applications,1993,29(6):1156~1163
    [62] Alice Mary K, Patra A, DeN K, et al, Design and implementation of the control system for an inverterfed synchronous motor drive, IEEE Trans. on Control Systems Technology, 2002, 10(6):853~859
    [63] Jorge Solsona, Maria IValla, Carlos Muravchik, Nonlinear control of a permanent magnet synchronous motor with disturbance torque estimation, IEEE Trans. on Energy Conversion,2000,15(2):163~168
    [64] Baik In-Cheol, Kim Kyeong-Hwa, YounMyung-Joong, Robust nonlinear speed control of PM synchronous motor using boundary layer integral sliding mode control technique, IEEE Trans. Control Systems Technology, 2000, 8(1):47~54
    [65] Kim Geon-su,Youn M yung-Joong, Approximate gain-phase margin PI controller for direct drive PM synchronous motors, Electronics letters, 2002, 38(23): 1487~1489.
    [66] 王江,王静,费向阳,永磁同步电动机的非线性 PI 速度控制,中国电机工程学报,2005,25(7):125~130
    [67] 李永刚,宋作晓,PDFF 调节在交流永磁同步电机控制中的应用,科学技术与工程,2006,6(13):1097~1910
    [68] 陈荣,邓智泉,严仰光,基于 LQSF 的伺服系统速度调节器的设计与研究,电工技术学报,2004,19(7):38~43
    [69] Kuo-Kai Shyu, Chiu-Keng Lai, Yao-Wen Tsai, et al, A newly robust controller design for the position control of permanent-magnet synchronous motor, IEEETrans. on Industrial Electronics, 2002, 49(3):558~565
    [70] Jongsun Ko, Sungkoo Youn, Youngil Kim, A robust adaptive precision position control of pmsm, Proceedings of 2002 IEEE Industry Application Society Annual Meeting, Pittsburgh, PA, USA, 2002(1):120~125.
    [71] Liu Tian-hua, Cheng Chien-ping, Adaptive control of a sensorless permanent magnet synchronous motor drive, IEEE Trans. on Aerospace and Electron Systems, 1994, 30(3):900~909
    [72] 许强,贾正春,李郎如,永磁同步电动机模型参考自适应速度控制,电气传动,1998,28(5):3~7
    [73] Kenneth R Shouse, David G Taylor, A digital self-tuning tracking controller for permanent-magnet synchronous motors, IEEE Trans. on Control Systems Technology ,1994,2(4):412~422
    [74] Rahman M A, Vilathgamuva M, Uddin M N, et al, Nonlinear control of interior permanent-magnet synchronous motor, IEEE Trans. on industrial application,2003,39(2):408~416
    [75] 沈殿霞,李三成,纪志成,基于反步法的永磁同步电机输出反馈控制系统研究,东南大学学报(自然科学版),2004,34(增刊):71~75
    [76]王家军,赵光宙,齐冬莲,反推式控制在永磁同步电动机速度跟踪控制中的应用。中国电机工程学报,2004,24(8):95~98
    [77] Baik I, Kim K, Youn M, Robust nonlinear speed control of PM synchronous motor using boundary layer integral sliding mode control technique, IEEE Trans. on Control Systems Technology,2000,8(1):47~54
    [78] Han Y, Choi J, Kim Y, Sensorless PMSM drive with a sliding mode control based adaptive speed and stator resistance estimation, IEEE Trans. on Magnetics,2000,36(5):3588~3591
    [79] 王家军,许镇琳,王豪,等,基于逆变器死区特性的永磁同步电动机系统的μ-修整变结构控制,中国电机工程学报,2003,23(4):148~152
    [80] 王江,王家军,许镇琳,等,基于逆变器死区特性的永磁同步电动机系统的自适应变结构控制,中国电机工程学报,2001,21(8):37~41
    [81] Liu Tian-hua, Liu Chang-huan. A multiprocessor based fully digital control architecture for permanent magnet synchronous motor drives, IEEE Trans. on Electronics, 1990, 5(4):413~423
    [82] 赵希梅,郭庆鼎,孙宜标,永磁直线同步伺服电机的零相位二自由度 H∞ 鲁棒跟踪控制,电工技术学报,2004,19(10):32~37
    [83] 郭庆鼎,王军,高性能永磁直线同步电机鲁棒速度伺服系统的研究,电气传动,2001,31(4):14~16,23
    [84] 郭庆鼎,王军。基于在线辨识补偿的永磁直线同步电机模型参考自适应神经网络速度控制,电气传动,2000,30(4),16~19
    [85] 沈显庆,王成元,基于模型参考自适应模糊神经网络的永磁直线同步电动机速度伺服系统,电机与控制学报,2005,9(5):425~427
    [86] 郝东丽,郭丹颖,贾凯,基于神经网络的永磁同步电机矢量控制,电力电子技术,2004,38(4):54~55,61
    [87] 李鸿儒,白湘波,顾树生,等,基于神经网络的永磁同步电机的鲁棒控制,东北大学学报(自然科学版),2002,22(4):362~365
    [88] 冉振亚,杨超,曹文明,等,永磁同步电动机调速系统的模糊控制与仿真,重庆大学学报(自然科学版),2004,27(7):32~35
    [89] 孙业树,周新云,李正明,永磁同步电机交流伺服系统模型参考模糊控制,微电机,2003,36(1):19~21,58
    [90] 王宏,于泳,徐殿国,永磁同步电动机位置伺服系统,中国电机工程学报,2004,24(7):151~155
    [91] Kuo-Kai Shyu, Chiu-Keng Lai, Yao-Wen Tsai, et al, A newly robust controller design for the position control of permanent-magnet synchronous motor, IEEE Trans. on Industrial Electronics, 2002, 49(3):558~565
    [92] Guchuan Zhu, Dessaint L A, Akhrif O, et al, Speed tracking control of permanent-magnet synchronous motor with state and load torque observer, IEEE Trans. on Industrial Electronics,2000,47(2):346~355
    [93] 田艳丰,郭庆鼎,高精度永磁直线同步伺服系统鲁棒位置控制器的设计,沈阳工业大学学报,2002,24(6):481~484
    [94] 高为炳,变结构控制的理论及设计方法,北京:科学出版社,1998,278~299
    [95] Baik I C, Kim K H, Youn M J, Robust nonlinear speed control of PM synchronous motor using boundary layer integral sliding mode control technique, IEEE Trans. on Control Systems Technology,2000,8(1):47~54
    [96] 瞿少成,孟光伟,姚琼荟,PMSM 位置伺服系统的离散积分变结构控制,电机与控制学报,2003,7(2):136~138,146
    [97] 徐波,沈海峰,含有不确定参数的永磁同步电机位置自适应控制,电机与控制学报,2006,10(5):482~486
    [98] 纪志成,李三东,沈艳霞,自适应积分反步法永磁同步电机伺服控制器的设计,控制与决策,2005,20(3):321~331
    [99] 李 三 东 , 沈 艳 霞 , 纪 志 成 , 永 磁 同 步 电 机 位 置 伺 服 控 制 器 及 其Backstepping 设计,电机与控制学报,2004,8(4):353~356
    [100] 苏义鑫,周祖德,陈幼平,等,预测控制方法在位置跟踪控制中的应用研究,华中理工大学学报,2000,28(10):16~18
    [101] 李鸿儒,顾树生,PMSM 神经网络实时 IP 位置控制,东北大学学报(自然科学版),2003,24(2):114~117
    [102] 王军,肖建。永磁同步电动机自适应神经网络 IP 位置控制器[J]。电机与控制学报,2005,9(6):525~528
    [103] 李志民,张遇杰,同步电动机调速系统,北京:机械工业出版社,1996,54
    [104] 韩京清,自抗扰控制器及其应用,控制与决策,1998,13(1):19~23
    [105] 韩京清,从 PID 技术到“自抗扰控制”技术,控制工程,2002,9(3):13~18
    [106] 韩京清,利用非线性特性改进 PID 控制律,信息与控制,1995,24(6):356~264
    [107] 韩京清,一种新型控制器-NLPID,控制与决策,1994,9(6):401~407
    [108] 黄焕袍,万辉,韩京清,安排过渡过程是提高闭环系统“鲁棒性、适应性和稳定性”的一种有效方法,控制理论与应用,2001,18(增刊),89~94
    [109] 韩京清,王伟,非线性跟踪微分器,系统科学与数学,1994,14(2):177~183
    [110] 黄远灿,韩京清,扩张状态观测器用于连续系统辨识,控制与决策,1998,13(4):381~384
    [111] 韩京清,一类不确定对象的扩张状态观测器,控制与决策,1995,10(1):85~88
    [112] 韩京清,非线性状态误差反馈控制律-NLSEF,控制与决策,1995,10(3):221~225
    [113] 黄一,张文革,自抗扰控制器的发展,控制理论与应用,2002,19(4):485~492
    [114] 韩京清,线性系统的结构与反馈系统计算,控制理论与应用学术年会论文集,1981,43~55
    [115] 高龙,非线性系统的直接反馈线性化方法,控制理论与应用学术年会论文集,1991
    [116] 李华,张宝森,周荣光,用直接大范围线性化方法设计发电机的励磁控制器(第一部分:基本理论),中国电机工程学报,1992,12(2):30~34
    [117] 马幼捷,直接反馈线性化(DFL)理论的发展与创新,青岛大学学报,1998,11(1):68~74
    [118] 李华,张宝森,周荣光,用直接大范围线性化方法设计发电机的励磁控制器(第二部分:励磁控制器的设计),中国电机工程学报,1992,12(2):35~41
    [119] 马幼捷,直接反馈线性化理论和静止无功补偿器的非线性控制:[博士学位论文],北京,清华大学,1993
    [120] 周双喜,汪兴盛,基于直接反馈线性化的非线性励磁控制器,中国电机工程学报,1995,15(4):281~288
    [121] 韩京清,反馈系统中的线性与非线性,控制与决策,1998,3(2):27~32
    [122] 韩京清,系统辨识的一种方法-状态反馈法,控制与决策,1990,5(1):13~17
    [123] 韩京清,非线性系统的状态观测器,控制与决策,1990,5(3):57~60
    [124] 韩京清,非线性控制系统中状态反馈的实现,控制与决策,1991,6(3):161~167
    [125] 韩京清,控制理论-模型论还是控制论,系统科学与数学,1989,9(4):328~335
    [126] 王伟,韩京清,估计非线性系统参数的一种方法,控制与决策,1993,8(3):161~165
    [127] 韩京清,非线性 PID 控制器,自动化学报,1994,20(4):487~490
    [128] 刘强,尔联洁,刘金琨,摩擦非线性环节的特性、建模与控制补偿综述,系统工程与电子技术,2002,24(11):45~50
    [129] Southward S C, Radoliffe C J, MachCluer C R, Robust nonlinear stick-slip friction compensation, ASME Journal of Dynamic Systems, Measurement and Control,1991,113:639~645
    [130] Armstrong B, Amin B, PID control in the presence of static friction: a comparison of algebraic and describing function analysis, Automatic, 1996, 32(5):679~692
    [131] Bonsignore A, Ferretti G, Magnani G., Coulomb friction limit cycles in elastic positioning systems, ASME Journal of Dynamic Systems, Measurement and Control,1999,121:298~301
    [132] Lee T H, Tan K K, Huang S N, et al, Intelligent control of precision linear actuators. Engineering Applications of Artificial Intelligence, 2000, 13(6):671~684
    [133] Karnopp D, Computer simulation of slip-stick friction in mechanical dynamic systems, Journal of Dynamic Systems, Measurement and Control, 1985, 107(1):100~103
    [134] Armstrong H B, Dupont P, Canudas Wit C, A survey of models, analysis tools and compensation methods for the control of machines with friction, Automation,1994,30(7):1083~1138
    [135] Dahl P, Solid friction damping of spacecraft oscillations, In Proc AIAA Guidance and Control Conference,Boston,USA,1975,75
    [136] Haessig D A, Friedland B, On the modeling and simulation of friction, Journal of Dynamic Systems, Measurement and Control, 1991, 113(3):354~362
    [137] Canudas C, Olsson H, Astrom K J, et a, A mew model for control of systems with friction, IEEE Trans. on Automatic Control,1995,40(3):419~425
    [138] Chen H, Pan Y C, Dynamic behavior and modeling of the presliding static friction, Wear, 2000, 242(1):1~17
    [139] Misovcc K M, Friction compensation using adaptive nonlinear control with persistent excitation, Proccedings of the 1998 American Control Conference, Philadelphia,USA,1998,1483
    [140] Laura R R, Ashok R, Jennifer T, Adaptive friction compensation using extended Kalman-bucy filter friction estimation, Control Engineering Practice, 2001,9(2):169~179
    [141] Canudas de Wit C, Lischinsky P, Adaptive friction compensation with partially known dynamic friction mode, Adaptive Control and signal Processing, 1997(11): 65~80
    [142] 张绍德,陈主成,一种基于干扰观测器的伺服系统设计,电子科技大学学报,2005,34(1),83~86
    [143] Armstrong-Helouvry, Stick-slip arising stribeck friction, Robotics and automation Proceedings, 1990 (12):1377~1382
    [144] 王英,熊振华,丁汉,基于状态观测的自适应摩擦力补偿的高精度控制,自然科学进展,2005,15(9):1100~1105
    [145] Friedland B, Park Y J, On adaptive friction compensation, IEEE Trans. on Automatic Control, 1992, 37(10):1609~1612
    [146] Yazdizadeh A, Khorasani K, Adaptive friction compensation based on the Lyapunov scheme, In Proceedings of the 1996 IEEE International Conference on Control Application,1996:1060~1065
    [147] Amin J, Friedland B, Harnoy A, Implementation of a Friction estimation and compensation Technique, IEEE Control Systems,1997:71~76
    [148] Huang P Y, Chen Y Y, Chen M S, Position-dependent friction compensation for Ballscrew Tables, In Proceedings of 1998 IEEE International Conference on Control Applications,1998:863~867
    [149] Tafazoli S, De Silva C W, Lawrence P D, Tracking control of an electrohydraulic manipulator in the presence of friction, IEEE Trans on Control Systems Technology,1998,6:401~411
    [150] Phillips S M, Ballou K R, Friction modeling and compensation for an induxtrial robot, Journal of Robotic System,1993,10(7):947~971
    [151]杨元凯,朗需英,精密转台中摩擦力矩的动态补偿,自动化学报,1983,9(4):248~252
    [152]Yang Y P, Chu J S, Adaptive velocity control of DC motors with coulomb friction identification, ASME Journal of Dynamic Systems, Measurement and Control, 1993, 115:95~102
    [153] Canudas De Wit C, Robust control for servo-mechanisms under inexact friction compensation, Automation, 1993, 29(3):757~761
    [154] 张伟英,张友安,非线性观测器用于高精度甚低速系统的动态补偿,控制与决策,1989,4(1):35~37,27
    [155] Canudas De Wit , Novel P, Brogliato B, Adptive friction compensation on robot manipulators: low-velocities, International Journal of Robotics Research ,1993,10(3):189~199
    [156] Craig T J, Lorenz R D, Experimental identification of friction and its compensation in precise, position controlled mechanisms, IEEE Trans. on Industry Applications,1992,28(6):1392~1398
    [157] Lee S W, Kim J H, Friction identification using evolution strategies and robust control of positioning tables, ASME Journal of Dynamic Systems Measurement and Control,1999,121(4):619~624
    [158] Yen J Y, Huang S J, Lu S S, A new compensation for servo systems with position dependent friction, ASME Journal of Dynamic Systems Measurement and Control,1999,121(4):612~618
    [159] Hinschorn R M, Miller G, Control of nonlinear systems with friction, IEEE Trans. on Control Systems Technology,1999,7(5):588~595
    [160] Dupont P E, Avoiding stick-slip through PD control, IEEE Trans. on Control, 1994,39(5):1094~1097
    [161] Armstrong B, Neevel D, Kusik T, New result in NPID control: tracking, integral control, friction compensation and experimental result, IEEE Trans. on Control Systems Technology,2001,9(2):399~406
    [162] Lee S, Meerkov S M, Generalized Dither,IEEE Trans.on Information Theory, 1991,37(1):50~56
    [163] Yang S, Tomizuka M, Adaptive pulse width control for precise positioning under influence of stricktion and coulomb friction, ASME Journal of Dynamic Systems, Measurement and Control,1998,110(3):221~227
    [164] Armstrong B, Control of machines with friction, Norwell, Kluwer Academic Publishers, 1991
    [165] Luh J Y S, Fisher W D, Paul R P C, Joint torque control by a detect feedback for industrial robots, IEEE Trans. on Automatic Control,1983,28(2):153~161
    [166] Morel G, Iagnemma K, Dubowsky S, The precise control of manipulators with high joint-friction using base force/torque sensing,Automation,2000,36:931~941
    [167] White M T, Tomizuka M, Smith C, Improved track following in magnetic disk drives using a disturbance observer, IEEE Trans. on mechanics, 2000,5(1):3~11
    [168] Ro P I, Shim W, Jeong S, Robust friction compensation for submicrometer positioning and tracking for a ball-screw-driven slide system, Precision Engineering,2000,24(2):160~173
    [169] Lee H S, Tomizuka M, Robust motion controller design for high-accuracy positioning systems, IEEE Trans. on Control Systems Technology, 1996, 43(1):48~55
    [170] Taghirad H D, Belanger P R, Robust friction compensation for harmonic drive transmission, Proceedings of the 1998 IEEE International Conference on ControlApplications,Trieste,Italy,1998(1):547~551
    [171] Kang M S, Robust digital friction compensation, Control Engineering Practice, 1998, 6(3):359~367
    [172] Young K D, A variable structure control approach to friction force compensation, Proceedings of the 1998 American Control Conference, Philadephia, PA,USA,1998(4):2138~2142
    [173] Hara S, Yamamoto Y, Omata T, et al, Respective control system: a new type servo system for periodic exogenous signals, IEEE Trans. on Automatic Control,1988,33(7):659~668
    [174] 李翠艳,庄显义,伺服系统中抑制非线性扰动的有限维重复控制方法, 控制与决策,2005,20(7):798-802
    [175] 简林柯,李新忠,基于重复控制的跟踪系统设计及应用,机床与液压,1998,(6):13~15
    [176] 黄进,叶尚辉,陈其昌,基于自调整量化因子模糊控制器的摩擦补偿研究,机械设计与研究,1999,(1):27~29
    [177] Teeter J T, Chow M Y, Jame J, A nonel fuzzy friction compensation approach to improve the performance of a DC motor control system, IEEE Trans. on Industrial Electronics,1996,43(1):113~120
    [178] Larsen G A, Cetinkunt S, Donmez A, CMAC neural network control for high precision motion control in the presence of large friction, ASME Journal of dynamic systems, measurement, and control,1995,117:415~420
    [179] Rastko R S, Lewis F L, Deadzone compensation in motion control systems using neural networks, IEEE Trans on Automatic Control,2000,45(4):602~613
    [180] 黄进,叶尚辉,基于 CMAC 网络的摩擦补偿研究,中国机械工程,1999,10(3):269~272
    [181] Du H L, Nair S S, Modeling and compensation of low-velocity friction with bounds, IEEE Trans. on Control Systems Technology,1999,7(1):110~121
    [182] 孙凯,许镇琳,邹积勇,等,基于自抗扰控制器的 PMSM 无位置传感器矢量控制系统,中国电机工程学报,已录用
    [183] 孙凯,许镇琳,盖廓,等,基于自抗扰控制器的永磁同步电机位置伺服系统,中国电机工程学报,已录用