配气机构激励源特性及振动和噪声的预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,内燃机的低噪声设计更多的关注了活塞敲击噪声、燃烧噪声以及空气动力性噪声等,缺乏对配气机构振动和噪声的深入研究。随着相关法规和动力设备声学品质的要求的提高,配气机构振动和辐射噪声的研究成为重要课题。配气机构是内燃机重要的振动和噪声源,由其产生的结构振动和表面辐射噪声直接来源于各部件的接触力。建立一个基于激励源特性的配气机构振动和噪声的预测方法是内燃机低噪声设计的必然要求。
     预测配气机构的激励力需要建立一个合理的动力学模型。影响配气机构动力学规律的因素包括凸轮型线、转速、气阀间隙、润滑以及零件的刚度和质量等。合理的动力学模型应该能够恰当地考虑这些因素的影响,并能够通过数学变量来定性和定量描述。配气机构的各个部分可能采用不同的数学方法进行简化和建模。但是,其目的是一样的,就是使模型的计算结果尽可能地接近真实的动力学响应。
     本文采用离散体方法建立配气机构的集总参数动力学模型。模型中提出凸轮轴、挺杆、摇臂、气阀和气阀弹簧的新简化方法,即模态匹配法。考虑到这些零件的低阶模态对配气机构振动的贡献最大,依据配气机构振动和噪声的频率分析范围,要求凸轮轴、挺杆、摇臂、气阀和气阀弹簧的简化模型与各自的低阶模态匹配。根据这一建模思想研究集总质量参数、刚度参数和阻尼参数的确定方法。考虑到凸轮-挺柱的接触作用对配气机构的动力学特性的重要影响,建立凸轮-挺柱的接触模型。研究凸轮和挺柱的油膜润滑特性并推导摩擦力的计算公式。采用四阶龙格库塔方法求解动力学模型,并对计算结果进行详细分析。
     提出采用子系统法建立配气机构的连续体动力学模型,将凸轮轴、挺杆、摇臂、气阀弹簧和气阀杆考虑为连续体,通过零件之间的接触力将零件的刚体运动及其弹性振动耦合起来。由于零件的弹性振动方程为偏微分方程,同时零件之间有脱离接触的可能性,所以本文采用有限差分法求解配气机构的刚-柔耦合动力学方程组。为了避免边界条件的限制,使求解方法更具有通用性,本文结合接触约束方程建立差分边界条件。这种方法能够适应边界条件的实时变化,从而解决了因零件分离带来的求解困难。
     建立内燃机各部件的有限元模型,采用“耦合+接触”的方法建立各部件的组合结构模型,并通过与模态测试结果的对比验证振动预测模型的有效性;建立配气机构激励力的加载方法,包括凸轮与挺柱的接触力、挺杆与摇臂的接触力、摇臂与气阀杆的接触力、气阀弹簧力以及气阀与气阀座的接触力;在时域内采用分别加载激励力的方法计算了配气机构各激励力单独的和总的结构振动响应。
     在以上研究的基础上,采用边界元法建立配气机构辐射噪声的时域预测模型,以各激励力产生的结构表面振动响应为边界条件,计算不同激励力产生的结构表面辐射噪声。
     设计、搭建配气机构动力学、结构振动和辐射噪声测试系统,测量气阀运动的加速度、挺杆受力、气阀杆受力、结构表面的振动加速度和辐射声压.通过预测结果与实测结果的对比来验证本文预测方法和预测模型的正确性,为内燃机配气机构的振动噪声控制和低噪声设计提供理论指导。
Nowdays the low noise design of internal combustion egine mainly focus on that thecombustion noise, the slap noise of piston and the aerodynamics nosie, neglecting of the deepresearch on the vibration and noise of valve train. With the development of requirement fromlegislations and acoustic quality of powers, the vibration and noise of valve train has becomean important research subject. Valve train is an important source of internal combustionengine noise, which is directly produced by the contact force between any two neighboringcomponents. Therefore, for low noise design of internal combustion engine, it is necessary todevelop a method for predictions of vibration and noise of valve train.
     The prediction of excitations in valve train needs an appropriate dynamic model. Thedynamics of valve train are influenced by cam profile, rotating speed, valve clearance,lubrication, stiffiness and mass of components and so on. All the fators shoud be taken intoconsideration correctly by dynamic model and described qualitatively and quantitativelythrough mathematical variables. Parts of valve train may be simplified and modeled bydifferent mathematical method, but the purposes are the same, that are to make results fromdynamic model even closer to the real dynamic responses of valve train.
     A lumped dynamic model of valve train is developed by lumped parameter method. Anew simplified method, namely mode matching method for camshaft, pushrod, rockarm,valve and valve spring is put forward in the model. The contribution made by pushrod,rockarm, valve and valve spring to the vibration of valve train should be in the low ordermodes, so the models of these components are required to match their low order modes withinthe considered frequency range of vibration and noise. Based on this idea, the computingmethod of lumped parameters such as mass, stiffness and damping is studied. The model ofcontact behaviors between cam and tappet is set up in view of its important influences ondynamic characteristics of valve train. The lubrication characteristics between cam and tappetare studied and the formula for the friction force is derived. The dynamic model is solvedusing a fourth-order Runge-Kutta method and the results are analyzed in detail.
     The continuous dynamic model of valve train is developed by son system method, inwhich the cam shaft, pushrod, rock arm, valve spring and valve stem are simplified ascontinuous bodies, and the rigid motions and flexible vibrations of components are coupledwith contact forces between each other. The rigid-flexible coupled dynamic equations aresolved by finite difference method, as the flexible equations are partial differential equations and the components are possible to lose contact with each other. The difference boundarycondition is developed in combination with contact constraint equations for the sake ofindependence of boundary condition and common use of the solution method. This methodcan act in submission to the variations of the boundaries at the right moment, thus the solutionproblem from separation of components is solved.
     The finite element models of the components of internal combustion engine aredeveloped; the composed structure model is set up by “coupled+contact” method, and all themodels for prediction of vibration are verified with the mode test results. The applied methodsof exicitation in valve train, including cam-tappet contact force, pushrod-rockarm contactforce, rockarm and valve stem contact force, valve spring force and valve-seat contact force,are developed. The vibration responses of structure exictated by every acting force and theircombination in time domain are computed.
     Based on the above studies, a model to predict noise of valve train in time domain isdeveloped by boundary element method, and exirior radiation noise is computed withboundary conditions from superficial vibration responses of structure exicited by every actingforce and their combination in time domain.
     Design and build an experimental system for dynamics, vibration and noise of valve train,test valve acceleration, pushrod force, valve stem force, superficial vibration acceleration andexirior radiation noise. The prediction method and model developed in this paper are verifiedby a comparison between the prediction results and the test results to provide directions forvibration and noise control of valve train and low noise design of internal combustion engine.
引文
[1]陈大荣.船舶内燃机设计[M].哈尔滨:哈尔滨工程大学出版社,1995:285-286.
    [2]杨庆佛.内燃机噪声控制[M].太原:山西人民出版社,1985:169-173.
    [3] Masanori Hanaoka, Sadafumi Fukumura. A study of valve train noises and amethod of cam design to reduce the noises[J]. SAE,1973,730247,986-996.
    [4] Lyon, Richard H. An Investigation of Valve Train Noise for the Sound Qualityof I.C.Engines[J]. SAE,1999,1999-01-1711.
    [5] G. Dalpiaz, A. Rivola. A non-linear elastodynamic model of a desmodromicvalve train[J]. Mechanism and Machine Theory,2000,35,1551-1562.
    [6] Dequan Zou, Harold E. Dynamic Model and Computer Simulation of Valve TrainAssemblies with Hydraulic Lash Adjuster[J]. SAE,1996,960351.
    [7] Takashi Iritani, Akira Shozaki, Bencheng Sheng. Prediction of the DynamicCharacteristics in Valve Train Design of a Diesel Engine[J]. SAE2002,2002-32-1839.
    [8] David, Dojoong Kim,Joseph W. A Combined Model for High Speed Valve TrainDynamics[J]. SAE,1990,901726.
    [9] M. Teodorescu, H. Rahnejat. Mathematical modelling of layered contactmechanics of cam–tappet conjunction[J]. Applied Mathematical Modelling,2007,31,2610-2627.
    [10] M Teodorescul, M Kushwahal, H Rahnejat, and D Taraza. Elastodynamictransient analysis of a four-cylinder valvetrain system with camshaftflexibility[J]. Proc. IMechE Part K: J. Multi-body Dynamics,219,13-25.
    [11] M Teodorescu, M Kushwaha, H Rahnejat, and S J Rothberg. Multi-physicsanalysis of valve train systems: from system level to microscaleinteractions[J]. Proc. IMechE Part K: J. Multi-body Dynamics,2007,221,349-361.
    [12] Francesco Frendo,Emilio Vitale,Luca Carmignani, David Gagliardi,LuigiMatteucci. Development of a Lumped–Parameter Model for the DynamicAnalysis of Valve Train Systems[J]. SAE,2004,2004-32-0051.
    [13] David, C. Y. Cheng,D. J. Lewandowski,J. W. Determination of AllowablePushrod Angle Using a Three-Dimensional Valve Train Model[J]. ASME,2001,123,408-412.
    [14]尚汉冀.内燃机配气凸轮机构—设计与计算[M].复旦大学出版社,1988.
    [15]尚汉冀.用摄动方法研究配气机构动力学[J].内燃机学报,1984,2,(1),339-348.
    [16]张立梅,张克刚.配气机构振动的研究[J].山东工业大学,68-76.
    [17]赵雨东,许昕,陆际清.凸轮轴下置式配气机构的一种新型动力学模型[J].内燃机学报,1992,10,(4),30-308.
    [18]陆际清.刚度和摇臂比的变化对凸轮轴下置式配气机构动力学计算结果的影响[J].内燃机学报,1993,11,(2),147-152.
    [19]梅雪松,谢友柏.配气机构冲击振动的数值模拟[J].内燃机学报,1993,11,(3),249-254.
    [20]刘靖,郑德林.一种新型配气机构的数值模拟[J].内燃机学报,1998,16,(1),75-81.
    [21]乐俊秉,李惠珍,吴广全.配气机构有限元动力计算及分析[J].汽车工程,1994,16,(1),36-43.
    [22]袁兆成,李惠珍.用有限元法研究配气机构动力学[J].内燃机学报,1986,4,(3),260-270.
    [23]刘忠民,俞小莉,沈瑜铭.配气机构动力学模型的比较研究[J].浙江大学学报,2005,39,(12),1941-1945.
    [24]刘忠民,俞小莉,沈瑜铭.配气机构动力学试验方法与模型规划研究[D].浙江大学2005.
    [25]王韬.内燃机配气系统的非线性动力学研究[D].天津大学2004.
    [26] Patterson, J. Lee,D. J. Nonlinear Valve Train Dynamics Simulation Witha Distributed Parameter Model of Valve Springs[J]. ASME,2001,119,692-648.
    [27] Husselman, M. Modeling and Verification of valve train Dynamics inEngines.[D]. Stellenbosch University Science in Mechanical Engineering2005.
    [28] Rui Araújo Rego, Jorge Gomes Martins. Valve Motion Modelation for Use inAirflow Engine Simulation[J]. SAE,2001,2001-01-3958.
    [29] Lewandowski, David J. Experimental and Modeled Effects of CamshaftManufacturing Errors on the Dynamics of High Speed Valve Trains[D]. NorthCarolina State University Department of Mechanical and AerospaceEngineering1998.
    [30] T. D. Choi, O. J. Elsinger, C. T. Kelley, J. W. David. Optimization ofAutomotive Valve Train Components With Implict Filtering[J].1998.
    [31] J.Rob, M. Arnold. Analysis of Dynamic Interactions in Valve Train Systemsof Ic-Engines By Using a Simulation Model[J]. SAE,1993,930616.
    [32] G. Gatti, D. Mundo, G. Danieli. A combined feedforward and feedback controlstrategy to improve the dynamic performance of cam-follower systems[A],In12th IFToMM World Congress[C], Besan on (France) June18-21,2007,2007.
    [33] M Teodorescu, V Votsios, And H Rahnejat. Multiphysics analysis for thedetermination of valvetrain characteristics[J]. Proc. IMechE Part D: J.Automobile Engineering,2005,219,1109-1117.
    [34] M. Teodorescu, Theodossiades, H. Rahnejat. Multi-physics Approach toDesign Analysis of Powertrain Sub-systems[A], In12th IFToMM WorldCongress[C], France, June18-21,2007.
    [35]刘梁.发动机电磁驱动配气机构的研究[D].南京理工大学2001.
    [36]曹健.闭式循环柴油机可变配气控制[D].哈尔滨工程大学2006.
    [37]徐立春,刘镇,石荣婷.柴油机电液控制配气机构性能仿真研究[J].车用发动机,2008,2,(174),51-54.
    [38] An-Hsuan Liu, Ta-Chuan Liu, Ming-Jyh Chen, and Tsung-Cheng Wang. AComprehensive Investigation of the High-Speed Overhead-Cam Valve-TrainDynamics in Small Internal Combustion Engine[J]. SAE,1995,951795.
    [39] Mircea Teodorescu, Dinu Taraza, Naeim A. Henein. Experimental Analysis ofDynamics and Friction in Valve Train Systems[J]. SAE2002,2002-01-0484.
    [40] Norton, Robert L. Analyzing Vibrations in an IC Engine Valve Train[J]. SAE,1998,980570.
    [41] Seon-Yang Hwang, Koo-Tae Kang, Byung-Soo Lim, Yoon-Soo Lim. NoiseReduction and Sound Quality Improvement of Valve Train in V6GasolineEngine[J]. SAE2005,2005-01-1834.
    [42] Badawi, B. A. Identification of Diesel Engine Cycle Events using MeasuredSurface Vibration[J]. SAE,2006,2006-32-0097/JSAE20066597.
    [43]王仲章,王德海,姜树李.发动机配气机构动态特性测试和分析[J].江苏工学院学报,1989,10,(1),30-38.
    [44]张效工.车用汽油机配气机构噪声的研究[J].内燃机工程,1989,10,(2),78-83.
    [45]李玉军.柴油机结构噪声预测及其优化控制的研究[D].武汉理工大学2007.
    [46]陈华新,熊友军.发动机配气机构噪声试验研究[J].摩托车技术,2002.
    [47]李香梅.柴油机配气机构的机械噪声研究[D].哈尔滨工程大学2007.
    [48]罗虹,夏铁权,胡加强,王攀.125型发动机配气机构的噪声分析[J].重庆大学学报,2007,30,(9),5-8.
    [49] Debost, Sophie. Valve Seating Impact as a Source of Valve Train Noise[D].France: Massachusetts Institute of Technology Department of MechanicalEngineering1995.
    [50] Eiichi Kamiyama, Shigeki Yasuhara. Improvement of DOHC valve train noiseby analysis of valve and tappet movement[J]. SAE,1991,911061,7.
    [51] H. J. Kalser, R. Deges, D. Schwarz, J. Meyer. Investigations on valve trainnoise in multi-valve engines[J]. SAE,1991,911062,1472-1480.
    [52] Flocker, Forrest W. Addressing Cam Wear and Follower Jump in Single-DwellCam-Follower Systems With an Adjustable Modified Trapezoidal AccelerationCam Profile[J]. Journal of Engineering for Gas Turbines and Power,2009,131,1-8.
    [53]余守宪,赵雁.加加速度(加速度的时间变化率)—冲击、乘座舒适性、缓和曲线[J].物理与工程,2001,11,(3),7-12.
    [54]张同庄.跃度连续型凸轮运动规律研究[J].北京理工大学学报,1993,13,(4),500-503.
    [55]李景湧.有限元法[M].北京:北京邮电大学出版社,1998:256-257,286-289.
    [56] Susendar Muthukumar, Reginald Desroches. A Hertz contact model withnon-linear damping for pounding simulation[J]. EARTHQUAKE ENGINEERING ANDSTRUCTURAL DYNAMICS,2006,35,811-829.
    [57] M Kushwaha, H Rahnejat. Transient elastohydrodynamic lubrication of finiteline conjunction of cam to follower concentrated contact[J]. JOURNAL OFPHYSICS D: APPLIED PHYSICS,2002,35,2872-2890.
    [58] J.A.Greenwood, J.H. Tripp. The Contact of Two Nominally Flat RoughSurfaces[J]. Proc. Instn Mech Engrs,1970,185,625-633.
    [59] Mircea Teodorescu, Dinu Taraza and Naeim A. Henein, Walter Bryzik.Simplified Elasto-Hydrodynamic Friction Model of the Cam-TappetContact[J]. SAE,2003,2003-01-0985.
    [60] M Teodorescu, D Taraza. Combined multi-body dynamics and experimentalinvestigation for determination of the cam–flat tappet contactcondition[J]. Proceedings of the Institution of Mechanical Engineers, PartK: Journal of Multi-body Dynamics,2004,218,133-142.
    [61] Riaz A. Mufti, Martin Priest. Experimental and Theoretical Study ofInstantaneous Engine Valve Train Friction[J]. ASME, Journal of Tribology,2003,125,628-637.
    [62] Lisheng Yang, Akemi Ito, Hideo Negishi. A Valve Train Friction andLubrication Analysis Model and Its Application in a Cam/Tappet WearStudy[J]. SAE,1996,962030,9.
    [63] Siyoul Jang, Kyoungkuhn Park. Dynamic EHL Film Thickness in Cam andFollower Contacts of Various Valve Lifts[J]. SAE,2000,2000-01-1789,8.
    [64] Xiaoming Liu, Zhi-Kui Ling. Contact force analysis in an OHCFinger-follower-type Cam-valve System with Different Dynamic Models.[A],In ASME Design Engineering Technical Conference[C], Atlanta, GA,1998.
    [65] W.-J. Kim, H.-S. Jeon, Y.-S. Park. Contact Force Prediction andExperimental Verification on an OHC Finger-follower-type Cam.valveSystem[J]. Experimental Mechanics,1991,150-156.
    [66] Chingyao Chan, Albert P. Pisano. Dynamic Model of a Fluctuating Rocker-ArmRatio Cam System[J]. Transactions of the ASME,1987,109,(9),356-365.
    [67] Wensyang Hsu, A. P. Pisano. Modeling of a Finger-Follower Cam System WithVerification in Contact Forces[J]. Transactions of the ASME,1996,118,(3),132-137.
    [68]管荣法译, M. P.柯斯特著.凸轮机构的振动[M].合肥:安徽科学技术出版社,1992:43-45.
    [69]陆佑方,冯冠民,王彬,齐朝晖.柔性多体系统动力学一理论和应用力学的一个活跃领域[J].力学与实践,1994,16,(2),1-9.
    [70]方建士,章定国.刚体-柔性梁系统的撞击动力学分析[J].南京理工大学学报,2006,30,(4),404-413.
    [71]方建士,李宝玉,章定国.大范围运动柔性梁的连续力法撞击动力学分析[J].南京理工大学学报,2008,32,(6),661-665.
    [72]章定国,余纪邦.作大范围运动的柔性梁的动力学分析[J].振动工程学报,2006,19,(4),475-480.
    [73]章定国,肖建强.空间运动体上梁的动力学建模和仿真[J].南京理工大学学报2004,28,(6),580-584.
    [74]余纪邦,章定国.考虑“动力刚化”的刚柔藕合多体系统动力学建模的子系统法[J].南京理工大学学报,2006,30,(4),410-413.
    [75]章定国,朱志远.一类刚柔耦合系统的动力刚化分析[J].南京理工大学学报,2006,30,(1),21-25.
    [76]齐朝晖.多体系统动力学[M].科学出版社,2008:133.
    [77] B. Mehri, A. Davar and O. Rahmani. Dynamic Green Function Solution of BeamsUnder a Moving Load with Different Boundary Conditions[J]. MechanicalEngineering,2009,16,(3),273-279.
    [78] Abu-Hilal, M. Dynamic response of a double Euler–Bernoulli beam due toa moving constant load[J]. Journal of Sound and Vibration,2006,297,477-491.
    [79] Lu Sun, Feiquan Luo. Steady-State Dynamic Response of a Bernoulli-EulerBeam on a Viscoelastic Foundation Subject to a Platoon of Moving DynamicLoads[J]. Journal of Vibration and Acoustics,2008,130,(OCTOBER2008).
    [80] Akinpelu, Folake Oyedigba. The Response of Viscously DampedEuler-Bernoulli Beam to Uniform Partially Distributed Moving Loads[J].Applied Mathematics,2012,(2012,3),199-204.
    [81] Abduljabbar, M. A. Foda and Z. A DYNAMIC GREEN FUNCTION FORMULATION FORTHE RESPONSE OF A BEAM STRUCTURE TO A MOVING MASS[J]. Journal of Sound andVibration,1998,210,(3),295-306.
    [82] Esen, smail. DYNAMIC RESPONSE OF A BEAM DUE TO AN ACCELERATING MOVING MASSUSING MOVING FINITE ELEMENT APPROXIMATION[J]. Mathematical andComputational Applications,2011,16,(1),171-182.
    [83] Meher, Sudhansu. Dynamic Response of a Beam Structure to a Moving Mass UsingGreen's Function[D]. Rourkela: National Institute of TechnologyDepartment of Mechanical Engineering2012.
    [84] Rajib Ul Alam Uzzal, Rama B. Bhat Andwaiz Ahmed. Dynamic response of a beamsubjected to moving load and moving mass supported by Pasternakfoundation[J]. Shock and Vibration,2012,19,(2012),205-220.
    [85] Fard, Mehrdad P. Modelling and Control of Mechanical Flexible Systems[D].Norwegian University of Science and Technology Department of EngineeringCybernetics2001.
    [86] Lee, Jongmin. Dynamic modeling and experimental verification of a valvetrain including lubrication and firction[D]. University of Michigan1993.
    [87] Saeid Bashash, Amin Salehi-Khojin, Nader Jalili. Forced Vibration Analysisof Flexible Euler-Bernoulli Beams with Geometrical Discontinuities[A], In2008American Control Conference[C], Westin Seattle Hotel, Seattle,Washington, USA, June11-13,2008;4029-4034.
    [88] Atef Ata, Thi Myo. Optimal trajectory planning and obstacle avoidance forflexible manipulators using generalized pattern search[J]. World Journalof Modelling and Simulation,2008,4,163-171.
    [89] Alessandro De Luca, Bruno Siciliano. Inversion-Based Nonlinear Control ofRobot Arms with Flexible Links[J]. JOURNAL OF GUIDANCE CONTROL ANDDYNAMICS,1993,16,(6),7.
    [90] K. Alnefaie, H. Diken and A. Alghamdi. Residual Vibration of a RotatingFlexible Beam Subject to Prescribed Motion[J]. JKAU: Eng. Sci.,2009,20,(2),97-107.
    [91] Juan Fernando Peza Solís,Gerardo Silva Navarro, Rafael Castro Linares.Modeling and Tip Position Control of a Flexible Link Robot: ExperimentalResults[J]. Computación y Sistemas,2009,12,(4),421-435.
    [92] Tzes, A. P., Yurkovich, S., Langer, F. D.. A Method for Solution of theEuler-Bernoulli Beam Equation in Flexible-Link Robotic Systems[A], In1989;557-560.
    [93] Tokhi, M. O., Azad, A. K. M., Poerwanto, H. Scefmas. An Environment forDynamic Characterization and Control of Flexible Robot Manipulators[J].Int. J. Engng Ed,1999,15,(3),14.
    [94] Mohd Hashim, S. Z., Tokhi, M. O.. Genetic Modelling and Simulation ofFlexible Structures[J]. Studies in Informatics and Control,2004,13,(4),253-264.
    [95] K. S. Thankane, T. Sty. Finite Difference Method for Beam Equation withFree Ends Using Mathematica[J]. Southern Africa Journal of Pure and AppliedMathematics,2009,4,61-78.
    [96] Verka Prolovi, Zoran Boni. Finite Difference Method Application inDesign of Foundation Girder of Variable Cross-Section Loaded on Ends[J].Architecture and Civil Engineering,2008,6,179-185.
    [97]Kiusalaas, Jaan. Numerical Methods in Engineering with Matlab[M]. New York:Cambridge University Press,2005.
    [98]Xiao Lin著,杨云川等译.固体应力波的数值解法[M].北京:国防工业出版社,2008.
    [99]王勖成.有限单元法[M].清华大学出版社,2002:479-481.
    [100]徐孝诚,尹立中.关于结构高频响应分析中有限元网格划分的细化标准[J].振动与冲击,2002,21,(1),52-48.
    [101]韩增尧.有限元频响分析中网格划分技术标准[J].强度与环境,2003,30,(1),18-22.
    [102]曹树谦,张文德,萧龙翔.振动结构模态分析-理论、实验与应用[M].天津:天津大学出版社,2001:2-3.
    [103]尹建民,王德海等. X6135柴油机曲轴强度的三维有限元研究[J].内燃机工程,1997,18,(2),71-77.
    [104]付泽民,李延平等. Ansys环境中柴油机曲轴静动特性的有限元分析[J].柴油机,2006,28,(1),34-38.
    [105]Araujo Fc, Mansur Wj, Carrer Jam. Boundary element acoustics:Fundamentalsand computer codes[M]. London: Computational Mechanics,2000:159-216.
    [106]郭敦仁.数学物理方法[M].北京:高等教育出版社,1993:370-377.
    [107]W. J. Mansur, C.A. Brebbia Formulation of the boundary element method fortransient problems governed by the scalar wave equation[J]. AppliedMathematical Modelling,1982,1981,6,307-342.
    [108]杨德全,赵忠生.边界元理论及应用[M].北京理工大学出版社,2002:55.
    [109]余爱萍,张重超,骆振黄.瞬态声振耦合问题的边界元分析及实验研究[J].固体力学学报,1991,12,(1),13-22.
    [110]LMS Virtual.Lab手册[M].
    [111]余成波,何怀波,石晓辉.内燃机振动控制与应用[M].北京:国防工业出版社,1996:183-185.