半干式喷动床烟气脱硫装置及其脱硫性能的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文综述了各种烟气脱硫方法及其装置的优缺点,提出了一种新型的半干式喷动床烟气脱硫装置,并对其喷动特性及脱硫性能进行了研究,提出了适用于本实验系统的最小喷动速度公式,研究了固体颗粒的喷动高度、床层压降与表观气速、颗粒粒径大小及床层高度之间的关系,并利用消石灰浆液做脱硫剂,研究了Ca/S、颗粒粒径大小及加入量对脱硫效率的影响。结果表明,喷动床操作压降与床层高度成正比,与颗粒粒径成反比,表观气速对喷动床操作压降的影响不大;喷动高度与表观气速成正比,与颗粒粒径、床层高度成反比;脱硫率与颗粒加入量之间有一最佳值(粒径为1.0mm时,颗粒加入量为1000g~1400g;粒径为2.0mm时,颗粒加入量为800g);Ca/S对脱硫率影响十分明显:在Ca/S为1.2~1.4时,脱硫率可达80%以上。
In this paper, the advantage and disadvantage of various FGD methods and equipment were summarized, and a new equipment of semi-dry FGD for the spouted bed was proposed. The characteristics of its spouting and desulfurization were studied, and the formula of minimum spouted velocity was putted forward. The relations among the spouting height, the pressure decrease of the bed and the flow rate, the diameter of the particles, the height of the spouted bed were studied. At the same time, Ca(OH)2 slurry was used as SO2 sorbent. The influences of the Ca/S molar ratio and the diameter, the mass of the particles on the desulfurization efficiency were analyzed. The result indicated that the operation pressure drop for the spouted bed was proportional to the height of the spouted bed and varied inversely with the diameter of the particles; the flow rate had little influence on the operation pressure drop. The spouting height was proportional to the flow rate and varied inversely with the diameter of particles and the height of the spouted bed. There was a best value between the desulfurization efficiency and the mass of the particles. Ca/S molar ratio had an obvious effect on the desulfurization efficiency. The desulfurization efficiency could reach 80% under the condition of the Ca/S molar ratio=l .2~ 1.4.
引文
[1] 祝京旭,洪江.喷动床发展与现状.化学反应工程与工艺,1997,13(2):207~222
    [2] 李文曲,叶京生,朱贵凤.喷动床干燥工艺综述.化工装备技术,2000,21(3):10~14
    [3] 金涌,祝京旭,汪展文,等.流态化工程原理.北京:清华大学出版社,2001.360~390
    [4] 王国胜,王红心,薛惠芳,等.导向管充气喷动床的流动与传热特性研究.沈刚化工学院学报,1998,12(1):8~14
    [5] 潘永康.现代干燥技术.北京:化学工业出版社,1998.262~269,279~282
    [6] 郭啓民·岩田寭明·加藤邦夫.粉粒流动层半乾式高效率脱硫装置开発。化学工学论文集,1996,22(6):1400~1407
    [7] 顾念祖.燃煤电厂脱硫的现状分析和防治对策.热能动力工程,2000,15(86):92~115
    [8] 顾念祖,张子馨.工业锅炉烟气脱硫的迫切性及控制对策.北京节能,1999,4:15~17
    [9] 顾念祖,顾峻,张子馨.中小型锅炉脱硫的必要性及发展趋向.工业锅炉,1999,58(2):2~4
    [10] 韦章兵,姜旭峰,吴艳丽.燃煤SO_2、NO_2污染和防治及同时脱硫脱硝技术.洁净煤技术,1997,3(2):49~51
    [11] 涂俊杰.我国燃煤的污染现状及治理对策.环境污染与防治,1999,21(3):18~20
    [12] 吴银彪,夏治强.我国中、小型工业锅炉的烟气脱硫.中国环保产业CEPI,1997,12:13~14
    [13] 韩效钊,朱艳芳,许民才.烟道气脱硫概述.安徽化工,1998,95(5):40~42
    [14] 罗运柏.烟气脱硫三相流化床反应器的数学模拟与预测放大.天津大学研究生学位论文.
    [15] 欧阳琦.浅谈烟气脱硫技术.工业安全与防尘,2000,7:31~32
    [16] 孟凡华.我国SO_2污染现状及治理技术应用情况.见:中国国家环境保护总局.二氧化硫污染治理技术汇编.北京:中国国家环境保护总局,1999年.171~175
    [17] 吴中标.实用环境工程手册.北京:化学工业出版社,2001:323~355
    [18] 张凡,张伟,杨霓云,等.半干半湿法烟气脱硫技术研究.环境科学研究,2000,13(1):60~64
    [19] 程诺伟,于益雷.几种主要脱硫技术的分析对比.广东电力,1998,11(4):20~22
    [20] 王志轩,潘荔.“两控区”火电厂二氧化硫污染控制问题的探讨.中国电力,1999,32(7):57~60
    [21] 雷震东,熊祖鸿,吴创之,等.多组分粒子流化床半湿式烟气脱硫基础研究.工程热物理学报,1998,19(3):387~391
    [22] 黄震,吴颖海,王文梁,等.循环流化床烟气脱硫技术及其实验研究.热能动力工程,1998,13(74):88~90
    [23] 徐夕仁,马春元,李京等.烟气流化床脱硫除尘器净化特性研究.环境工程,1999,17(1):38~40
    [24] 谭忠超,项光明,陈昌和等.循环流化床排烟脱硫模型.环境科学,1999,20(3):21~25
    [25] 胡将军.三相流化床烟气脱硫试验.污染防治技术,1997,10(2):155~160
    [26] 王淑勤,高香林,胡满银等.湍球塔石灰湿式烟气脱硫的试验研究.电力情报,1997,3:27~29
    
    
    [27] 王祖武,李绍萁,胡将军等.1万m~3/h三相流化床烟气脱硫中间试验初步研究.环境工程,1999,12(6):20~24
    [28] 唐恒,缪应祺.烟气脱硫技术的现状和发展.江苏理工大学学报,1999,20(1):44~47
    [29] 沈迪新,杨晓葵.中、日、美三国烟气脱硫技术的发展和现状.环境科学进展,1993,1(3):12~24
    [30] 何京东,松书宇,孙镇等.我国煤炭中硫的分布及脱硫发展方向.国外金属矿选矿,1999,5:30~33
    [31] 刘立峰,张富新.燃煤电厂烟气脱硫新进展.闽西职业大学学报,2000,2:21~23
    [32] 王绍堂,宋秀杰,丁庭华.中国21世纪的绿色科技.环境科学,1999,20(5):109~111
    [33] 张坤民,孙荣庆.中国环境污染治理投资现状及发展趋势分析.中国环境科学,1999,19(2):97~117
    [34] 马汉泽.我国的环保产业状况及其对策.环境科学动态,1999,1:16~17
    [35] 王兰新.烟气脱硫脱硝的进展.化学研究与应用,1997,9(4):413~419
    [36] 李平,卢冠忠,肖文德,面向21世纪的烟气脱硫脱氮一体化:正艺。化学世界,2000,7:343~362
    [37] 时钧,汪家鼎,余国琮,等.化学工程手册.第二版.北京:化学工业出版社,1996.21—18~20
    [38] 天津大学化工技术基础实验教研室编.化工基础实验技术.第一版.天津大学出版,1989:89~91
    [39] 樊宝国,项光明,祁海鹰等.常温循环流化床烟气脱硫技术的研究.能源技术,2000,2:73~77
    [40] C.HEIL and M.TELS. Pressure Distribution in Spout-Fluid Bed Reactors. The CANADIAN JOURNAL OF CHEMICAL ENGINEERING, VOLUME 61,JUNE 1983:333~341
    [41] A.MARKOWSKI and W. KAMINSKI. Hydrodynamic Chracteristics of Jet-Spouted Beds. The CANADIAN JOURNAL OF CHEMICAL ENGINEERING, VOLUME 61,JUNE 1983:377~381
    [42] H.LITTMAN and M.H.MORGAN,Ⅲ. A General Correlation for the Minimum Spouting Velocity. The CANADIAN JOURNAL OF CHEMICAL ENGINEERING, VOLUME 61,JUNE 1983:269~273
    [43] 化工原理(上).天津大学化工原理教研室编.第二版.天津科学技术出版社出版,1987:52~56
    [44] 徐士良.C常用算法程序集.清华大学出版社,1994:397~400
    [45] Bridwater J. Spouted Beds. Chapter 6 in Fluidization (2nded), Davidson JF, Clift R, Harrison Deds. London: Academic Press: 1985,201~224
    [46] Dolidovich A F, Efremtsev VS. Hydrodynamics and Heat Transfer of Spouted Beds with a Two-Component (Gas-solid) dispersing Medium, Can J Chem Eng., 1983,61 (3):398~405