支架置入术后VEGF表达与血管正性重构的关系以及不同支架对VEGF、MAC表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     冠状动脉介入治疗目前已成为治疗冠心病最常用的一项治疗手段,而介入手术后可能出现的不良后果,如支架内再狭窄、支架内血栓、晚期支架贴壁不良以及冠状动脉瘤形成等情况,以及其引起的心血管不良事件,更是引起了医学界的高度重视。其中由于晚期支架贴壁不良(late stent malapposition, LSM)以及冠脉瘤(coronary artery aneurysm, CAA)形成的发生率较低,目前对于LSM及CAA的发生机制仍未明晾,有研究指出LSM以及CAA可能为一病变的连续过程,且可能与血管局部出现正性重构(vascular positive remodeling, VPR)有关,而目前针对支架置入术后可能出现血管重构方面的相关研究仍然不多。血管内皮生长因子(vascular endothelial growth factor, VEGF)是目前所发现的唯一一个血管内皮细胞特异性有丝分裂原,在许多血管病变以及肿瘤性疾病中参与了血管重构的过程,但VEGF是否参与了支架术后的血管重构尚不清楚。另外,有研究发现LSM与CAA在置入药物洗脱支架者的发生率高于置入裸支架者,可能与支架上药物的抑制细胞增殖作用有关,也可能为其载药涂层的存在导致血管壁炎症有关,但其具体原因仍然尚未明确。
     目的:本研究旨在研究VEGF与支架置入术后发生血管正性重构的关系,并通过比较不同类型支架置入后血管壁表达VEGF及巨噬细胞抗体(MAC)的差异,探讨支架类型影响血管发生正性重构趋势的机制。
     材料与方法:健康雄性新西兰大白兔60只,通过高脂饮食8周以及球囊拉伤的方法建立动脉粥样硬化模型后,随机分为4组,分别于随机一侧髂动脉植入裸支架(bare metal stent, BMS)、永久涂层西罗莫司药物支架(durable polymer sirolimus-eluting stent, DPS)、生物可吸收涂层西罗莫司药物支架(biodegradablepolymer sirolimus-eluting stent, BDS)以及无涂层西罗莫司药物支架(polymer-free sirolimus-eluting stent, PFS)。于支架置入术前、术后即刻以及术后8周行血管内超声(intravenous ultrasound, IVUS)了解血管重构的情况。于术后8周处死动物,取材支架置入段髂动脉,利用免疫组织化学方法检测髂动脉血管壁血管内皮生长因子(VEGF)与巨噬细胞抗体(MAC)的表达。
     结果:
     1)在术后8周,实验中53只动物中有17只出现了支架置入术后血管正性重构(VPR)。对比VPR者与非正性重构(NVPR)者其血管壁的VEGF表达有明显差异(VPR:28.53±6.66%; NVPR:19.74±3.57%; P<0.05)。分别在各支架组内对比同组VPR与NVPR的VEGF表达均有统计学差异(BMS组:27.75±10.74%比17.81±2.01%,DPS组:40.25±2.77%比20.62±4.28%,BDS组:35.04±3.52%比21.20±4.14%,PFS组:19.66±4.07%比16.25±1.72%;均为P<0.05)。经IVUS测得的术后即刻与随访时的血管外弹力膜面积差值(△血管外弹力膜面积,△EEM-CSA)与VEGF表达呈正相关的关系(r=0.65,P<0.05)。
     2)本实验中各支架组的VPR发生率分别为BMS组25.0%,DES组34.15%(DPS组42.86%,BDS组30.77%,PFS 28.57%),其中DPS组及BDS组分别各有1只出现了晚期支架贴壁不良,各组之间的VPR发生率比较无明显意义(P>0.05)。但对比各个支架组的△EEM-CSA, DPS组(0.86±0.38mm2)及BDS组(0.67±0.41mm2)分别与BMS组(-0.51±0.54 mm2)及PFS组(0.05±0.27 mm2)对比均有明显差异(P<0.05);而DPS组与BDS组之间以及BMS组与PFS组之间的△EEM-CSA对比均无明显统计学意义(P>0.05)。对比各组出现VPR者的△EEM-CSA,亦以DPS-VPR组(2.47±0.35)2及BDS-VPR组(2.59±0.37)mm2分别与BMS-VPR组(0.96±0.45)mm2与PFS-VPR组(1.63±0.24)mm2对比有明显差异(P<0.05), DPS-VPR组与BDS-VPR组之间对比及BMS-VPR组与PFS-VPR组之间对比均无明显差异(P>0.05)。
     3)对比各支架组的VEGF表达,DPS组(30.45±9.57%)及BDS组(25.74±5.35%)分别与BMS组(21.11±4.32%)及PFS组(19.66±4.07%)对比皆有明显差异(P<0.05),而DPS组与BDS组之间以及BMS组与PFS组之间对比无明显差异(P>0.05)。对比各组出现VPR者的VEGF表达,DPS-VPR组(40.25±2.77%)及BDS-VPR组(35.04±3.52%)分别与BMS-VPR组(27.75±10.74%)及PFS-VPR组(19.66±4.07%)对比均有明显差异(P<0.05),当中DPS-VPR组与BDS-VPR组之间对比亦有统计学差异(P<0.05),而BMS-VPR组与PFS-VPR组之间对比无明显差异(P>0.05)。
     4)对比各支架组的MAC表达,以PFS组(18.99±2.45%)与其余3组对比均有明显差异(P<0.05);DPS组(44.21±9.01%)与BDS组(32.99±3.52%)对比亦有明显差异(P<0.05);而BMS组(35.30±7.79%)分别与DPS组及BDS组对比均无明显差异(P>0.05)。各支架组同组内VPR与NVPR对比其MAC表达均无明显差异,但各组均可见VPR者有表达增高的趋势(0.05     结论:
     (1)在出现正性重构的血管壁中可发现明显升高的VEGF表达,且VEGF表达与血管的△EEM-CSA呈正相关,提示VEGF参与了支架置入术后血管重构的过程。
     (2)DPS组和BDS组可见更明显的△EEM-CSA及血管壁VEGF表达增高,同时发现该两组血管壁的MAC的表达增高,提示支架的载药涂层可引起血管壁明显的炎症反应,且炎症可能促使血管壁的VEGF表达增加,使该两组有更明显发生血管正性重构的趋势。
Background:
     Percutaneous coronary intervention (PCI) has become a common treatment of coronary artery diseases. The adverse effects brought with PCI, such as stent restenosis, stent thrombus, late stent malapposition (LSM) and coronary artery aneurysm (CAA), are arousing great attention. The mechanism of LSM and CAA still remains unknown due to the low incidence. Previous studies demonstrated that vascular positive remodeling (VPR) played an important role in the formation of LSM and CAA. Vascular Endothelial Growth Factor (VEGF), which is the only specific mitogenic factor for vascular endothelial cells, is reported to be participated in many vascular remodeling in vascular diseases and tumors. But whether VEGF is also involved in the vascular remodeling after PCI is not clear.
     Objective:
     The aim of this study is to investigate the role of VEGF in vascular positive remodeling after stent-implantation. And differences of the expression of VEGF and macrophage antibody (MAC) between different types of stent-implantation are also analyzed to investigate the effect of different stents in the process of vascular positive remodeling.
     Method:
     60 healthy New Zealand rabbits were fed with high fat diet and endured balloon injury in both iliac arteries in order to achieve the atherosclerosis model. They were randomly divided into 4 groups and were implanted with base metal stents (BMS), durable polymer sirolimus eluting stents (DPS), biodegradable polymer sirolimus eluting stents (BDS) and polymer-free sirolimus eluting stents (PFS) in either iliac artery. We studied the intravenous ultrasound (IVUS) at 3 different time points (before stent-implantation, instant after stent-implantation and 8 weeks after stent-implantation) and analysis whether there was vascular positive remodeling. The animals were sacrificed 8 weeks after stent-implantation to obtained iliac artery tissues, the morphologic changes and expressions of VEGF and MAC were observed.
     Result:
     1) Vascular positive remodeling (VPR) was found in 17 vessel segments among all 53 segments at 8 weeks after stent-implantation. Vessel segments with VPR showed increased expression of VEGF compared with those with NVPR(VPR: 28.53±6.66%; NVPR:19.74±3.57%; P<0.05). And this variance existed in all groups(BMS:27.75±10.74% vs.17.81±2.01%, DPS:40.25±2.77% vs. 20.62±4.28%, BDS:35.04±3.52% vs.21.20±4.14%, PFS:19.66±4.07% vs. 16.25±1.72%; P<0.05). There was a positive correlation between the expression of VEGF and the△EEM-CSA (the difference between EEM-CSA of instant after stent-implanatation and 8 weeks later)
     2) The incidence of VPR among different stents in our study was BMS 25%, DES 34.15%(DPS 42.86%, BDS 30.77%, PFS 28.57%), including 2 cases of late stent malapposition occurred with DPS and BDS respectively. Incidences of VPR among these 4 groups were no statistical difference (P>0.05). However, significant increased△EEM-CSA were observed in Group DPS and Group BDS(DPS:0.86±0.38mm2, BDS:0.67±0.41mm2, P<0.05) but no statistical differences were observed between these two groups or between Group BMS and Group PFS (BMS:-0.51±0.54mm2, PFS:0.05±0.27mm2, P>0.05).△EEM-CSA in Group DPS-VPR and Group BDS-VPR were still apparently increased (DPS-VPR: 2.47±0.35mm2, BDS-VPR:2.59±0.37mm2, P<0.05), while no statistical differences were observed between Group DPS-VPR and Group BDS-VPR or between Group BMS-VPR and Group PFS-VPR (BMS-VPR:0.96±0.45mm2, PFS-VPR: 1.63±0.24mm2, P>0.05).
     3) The expression of VEGF in Group DPS and Group BDS (DPS:30.45±9.57%, BDS: 25.74±5.35) were higher than Group BMS (21.11±4.32%) and Group PFS (19.66±4.07%) (P<0.05), and no statistical differences were noted between Group BMS and Group PFS or between Group DPS and Group BDS(P>0.05). Among all the vessel segments with VPR, VEGF expression was increased in Group DPS-VPR and Group BDS-VPR (DPS-VPR:40.25±2.77%, BDS-VPR:35.04±3.52%) (P<0.05), statistical differences were observed between Group DPS-VPR and Group BDS-VPR but not between Group BMS-VPR and Group PFS-VPR (BMS-VPR:27.75±10.74%, PFS-VPR 19.66±4.07%) (P>0.05).
     4) The expression of MAC was apparently weaker in Group PFS (18.99±2.45%) than other groups(P<0.05), and statistical difference was also noted between Group DPS (44.21±9.01%) and Group BDS (25.49±2.03%), but not noted between Group BMS (35.30±7.79%) with Group DPS or with Group BDS (P>0.05). All groups of the vessel segment with VPR both expressed higher MAC than those with NVPR but there were no statistical differences (P>0.05).
     Conclusion:
     1) Expression of VEGF which significantly increased on the vessel segments with VPR, was positively correlated with△EEM-CSA. The result implied the role of VEGF in the vascular remodeling process.
     2) Enhanced△EEM-CSA and higher expression of VEGF and MAC were observed in Group DPS and Group BDS. Incidence of VPR may increase with these those types of stents due to the polymers which cause apparent inflammation and increase the expression of VEGF.
引文
1. Guo N, Maehara A, Mintz GS, et al. Incidence, Mechanisms, Predictors, and Clinical Impact of Acute and Late Stent Malapposition After Primary Intervention in Patients With Acute Myocardial Infarction An Intravascular Ultrasound Substudy of the Harmonizing Outcomes With Revascularization and Stents in Acute Myocardial Infarction (HORIZONS-AMI) Trial [J]. Circulation,2010,122(11):1077-1084.
    2. Zhang F, Qian J Y, Ge J B. Late stent malapposition and marked positive vessel remodeling after sirolimus-eluting coronary stent implantation [J]. Chinese Mdeical Jouranal,2006,119 (4):349-350.1
    3.贾新未 霍勇 朱国英.血管成形术后血管重塑动态变化的实验研究[J].中华心血管病杂志,1997,25(2):132-134.
    4.韩晓枫 张威 赵益明 高脂饲料加球囊扩张动脉粥样硬化兔腹主动脉模型的建立临床和实验医学杂志[J].2006,5(11):1679-1680.
    5.陈文明.血管内皮生长因子的生物学及其在临床的初步应用[J].基础医学与临床,2003,23(5):471-477.
    6. Battegay E J. Angiogenesis:mechanistic insight, neovascular diseases, and therapeutic prospects[J]. J Mol Med,1995,73:333-346.
    7. Dvorak H F, Brown L F, Detmar M, et al. Vascular permeability factor/ vascular endothelial growth, microvascular hyperpermeability, and angiogenesis[J]. Am J Pathol,1995,146:1029-1039.
    8. Shweiki D, Itin A, Soffer D, et al. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesiss [J]. Science,1992,359:843-845.
    9. Plate K ,H, Breier G, Weich H A, et al. Vascular endothelial growth factor is a potential tumor angiogenesis factor in human gliomas in vivo. [J] Nature,1992,359:845-848.
    10.张曼,张海荣,康小玲.球囊拉伤兔髂动脉内膜的组织形态变化的研究[J].中国组织化学与细胞化学杂志,1998,7(3):352-355.
    11.Shibata M, Suzuki H, Nakatani M, et al.The involvement of vascular endothelial growth factor and flt-1 in the process of neointimal proliferation in pig coronary arteries following stent implantation[J]. Histochemistry and Cell Biology,2001,116 (6):471-481.
    12. Masuda H, Zhuang Y J, Singh T M, et al. Adaptive remodeling of internal elastic lamina and endothelial lining during flow-induced arterial enlargement [J]. Arterioscler Thromb Vasc Biol,1999,19:2298-2307.
    13. Ohno T, Igarashi H, Inoue K, et al. Serum vascular endothelial growth factor: a new predictive indicator for the occurrence of coronary artery lesions in Kawasaki disease[J]. Eur J Pediatr,2000,159:424-429.
    14. Terai M, Yasukawa K, Narumoto S, et al. Vascular endothelial growth factor in acute Kawasaki disease[J]. Am J Cardiol,1999,83:337-339.
    15. Maeno N, Takei S, Masuda K, et al. Increased serum levels of vascular endothelial growth factor in Kawasaki disease[J]. Pediatr Res,1998,44: 596-599.
    16. Kobayashi M, Matsubara J, Matsushita M, et al. Expression of angiogenesis and angiogenic factors in human aortic vascular disease[J]. J Surg Res, 2002,106(2):239-245.
    17.Marinica S, Quintino P, Giuseppe G. L. Biondi-Zoccai, et al. New insights into molecular mechanisms of diffuse coronary ectasiae:A possible role for VEGF[J]. International Journal of Cardiology,2006,106 (3):307-312.
    18.NISHIBE T, DARDIK A, KONDO Y, et al. Expression and localization of vascular endothelial growth factor in normal abdominal aorta and abdominal aortic aneurysm[J]. International angiology,2010,29 (3):260-265.
    19. Choke E, Thompson M M, Dawson J. Abdominal Aortic Aneurysm Rupture Is Associated With Increased Medial Neovascularization and Overexpression of Proangiogenic Cytokines[J]. Arterioscler. Thromb. Vasc. Biol,2006,26: 2077-2082.
    20.汪俊元,王安才,吴明.血管内皮生长因子与自发性高血压大鼠血管重构的关系[J].心脑血管病防治,2008,8(1):21-24.
    21.Nichols L, Lagana S, Parwani A. Coronary artery aneurysm:a review and hypothesis regarding etiology[J]. Arch Pathol Lab Med,2008,132:823-828.
    22. White J V, Scovell S D. Etiology of abdominal aortic aneurysms:the structural basis for aneurysm formation[A]. In:Calligoro K D, Dougherty M J, Hollier L H. eds. Diagnosis and treatment of aortic and peripheral arterial aneurysms[M]. Philadelphia, PA:Saunders,1999:3-12.
    23. Dorafshar A H, Angle N, Bryer-Ash M, et al. Vascular endothelial growth factor inhibits mitogen-induced vascular smooth muscle cell proliferation[J]. J Surg Res,2003,114(2):179-186.
    24. Virmani R, Guagliumi G, Farb A, et al. Localized hypersensitivity and late coronary thrombosis secondary to a sirolimus-eluting stent:should we be cautious? [J] Circulation,2004,109:701-705.
    25. Satta J, Mennander A, Soini Y, et al. Increased medial TUNEL-positive staining associated with apoptotic bodies is linked to smooth muscle cell diminution during evolution of abdominal aortic aneurysms [J]. Ann Vasc Surg, 2002,16:462-466.
    26. Miyazawa A, Tsujino I, Ako J, et al. Characterization of late incomplete stent apposition:a comparison among bare-metal stents, intracoronary radiation and sirolimus-eluting stents[J]. J Invasive Cardiol,2007, 19(12):515-518.
    27. Ako J, Morino Y, Honda Y, et al. Late incomplete apposition after sirolimus-eluting stent implantation. A serial intravascular ultrasound analysis[J]. J Am Coll Cardiol,2005,46:1002-1005.
    28. Qian J Y, Zhang F, Wu H, et al. Comparison of intravascular ultrasonic imaging with versus without incomplete stent apposition at follow-up after drug-eluting stent implantation [J]. Int J Cardiovasc Imaging,2008,24(2): 133-139.
    29. Hassan A K, Bergheanu S C, Sti jnen T, et al. Late stent malapposition risk is higher after drug-eluting stent compared with bare-metal stent implantation and associates with late stent thrombosisi[J]. European Heart Journal,2010,31(10):1172-1180.
    30. Hoffmann R, Morice M C, Moses J W, et al. Impact of late incomplete stent apposition after sirolimus-eluting stent implantation on 4-year clinical events:intravascular ultrasound ananlysis from the multicentre, randomised, RAVEL, E-SIRIUS and SIRIUS trials[J]. Heart,2008,94(3): 322-328.
    31. Sanchez-Recalde A, Moreno R, Barreales L, et al. Risk of late-acquired incomplete stent apposition after drug-eluting stent versus bare-metal stent[J].A meta-analysis from 12 randomized trials. J Invasive Cardiol, 2008,20(8):417-422.
    32. Jimenez-Quevedo P, Sabate M, Angiolillo D J, et al. Vascular effects of sirolimus-eluting versus bare-metal stents in diabetic patients: three-dimensional ultrasound results of the diabetes and sirolimus-eluting stent (DIABETES) trial[J]. J Am Coll Cardiol,2006,47:2127-2129.
    33. Colombo A, Drzewiecki J, Banning A, et al. Randomized study to assess the effectiveness of slow-and moderate-release polymer-based paclitaxel-eluting stents for coronary artery lesions[J]. Circulation,2003,108:788-794.
    34. Stone G W, Ellis S G, Cannon L, et al. Comparison of a polymer-based paclitaxel-eluting stent with a bare metal stent in patients with complex coronary artery disease:a randomized controlled trial[J]. JAMA,2005, 294:1215-1223.
    35. Dawkins K D, Grube E, Guagliumi G, et al. Clinical efficacy of polymer-based paclitaxel-eluting stents in the treatment of complex, long coronary artery lesions from a multicenter, randomized trial:support for the use of drug-eluting stents in contemporary clinical practice[J]. Circulation,2005; 112:3306-3313.
    36. Hong M K, Mintz G S, Lee C W, et al. Late stent malapposition after drug-eluting stent imBDSntation:an intravascular ultrasound analysis with long-term follow-up[J]. Circulation,2006,113(3):414-419
    37. Subramaniam KG, Akhunji Z. Case report Drug eluting stent induced coronary artery aneurysm repair by exclusion. Where are we headed? [J] European Journal of Cardio-Thoracic Surgery,2009,36(1):203-205.
    38. Joner M, Finn A V, Farb A, et al. Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk [J]. J Am Coll Cardiol,2006,48:193-202.
    39. Van der Giessen W J, Lincoff A M, Schwartz R S, et al. Marked inflammatory sequelae to implantation of biodegradable and nonbiodegradable polymers in porcine coronary arteries[J]. Circulation,1996,94:1690-1697.
    40. Finn A V, Nakazawa G, Joner M, et al. Vascular responses to drugeluting stents:importance of delayed healing[J]. Arterioscler Thromb Vase Biol, 2007,27:1500-1510.
    41.Virmani R, Liistro F, Stankovic G, et al. Mechanism of late in-stent restenosis after implantation of a paclitaxel derivate-eluting polymer stent system in humans[J]. Circulation,2002,106:2649-2651.
    42. Bavry AA, Chiu JH, Jefferson BK, et al. Development of coronary aneurysm after drug-eluting stent implantation [J]. Ann Intern Med. 2007:146:230-232.
    43.Ivan E, Khatri J J, Johnson C, et al. Expansive arterial remodeling is associated with increased neointimal macrophage foam cell content:the murine model of macrophage-rich carotid artery lesions[J]. Circulation,2002,105(22):2686-2691.
    44.Nuki Y. Roles of macrophages in flow-induced outward vascular remodel ing[J]. J Cereb Blood Flow Metab,2009,29:495.
    45.Shiomi M, Yamada S, Matsukawa A, et al. Invasion of atheromatous plaques into tunica media causes coronary outward remodeling in WHHLMI rabbits [J]. Atherosclerosis,2008,198(2):287-293.
    46. Tanaka H, Sukhova G K, Swanson S J, et al. Sustained activation of vascular cells and leukocytes in the rabbit aorta after balloon injury[J]. Circulation,1993,88:1788-1803.
    47. Brasen J H, Kivela A, Roser K, et al. Angiogenesis, vascular endothelial growth factor and platelet-derived growth factor-BB expression, iron deposition, and oxidation-specific epitopes in stented human coronary arteries[J]. Arterioscler Thromb Vasc Biol,2001,21:1720-1726.
    48. Karas S P, Gravanis M B, Santoian E C, et al. Coronary intimal proliferation after balloon injury and stenting in swine:an animal model of restenosis[J]. J Am Coll Cardiol,1992,20:467-474.
    49. Carter A J, Laird J R, Farb A, et al. Morphologic characteristics of lesion formation and time course of smooth muscle cell proliferation in a porcine proliferative restenosis model [J]. J Am Coll Cardiol,1994,24:1398-1405.
    50.赵红丽,李潞,王帅.国产可降解雷帕霉素药物洗脱支架置入的疗效评价:与金属裸支架比较[J].中国组织工程研究与临床康复,2011,15(3):487-450.
    51.Grube E, Sonoda S, Ikeno F, et al. Six-and twelve-month results from first human experience using everolimus-eluting stents with bioabsorbable polymer[J]. Circulation,2004,109 (18):2168-2171.
    1. Berkalp B, Kervancioglu C, Oral D. Coronary artery aneurysm formation after balloon angioplasty and stent implantation. Int J Cardiol,1999,69:65-70.
    2. Maehara A, Mintz GS, Ahmed JM, et al. An intravascular ultrasound classification of angiographic coronary artery aneurysms. [J] Am J Cardiol 2001,88 (10):365-370.
    3.严卫,王齐冰,王翔飞.冠状动脉内药物洗脱支架置入术后局部动脉瘤形成一例.中国介入心脏病学杂志2006年8月第14卷第4期254-255.
    4.韩文生,信栓力,赵秀峰.冠状动脉支架植入术后冠状动脉瘤形成1例. 《临床荟萃》 2007年8月5日第22卷第15期 1127
    5. Bal ET, Thijs Plokker HW, van den Berg EMJ, Ernst SMPG, Mast EG, Tjon Joe Gin RM, Ascoop CAPL. Predictability and prognosis of PTCA-induced coronary artery aneurysms. Cathet Cardiovasc Diagn 1991,22:85-88.
    6. Bell MR, Garratt KN, Bresnahan JF, Edwards WD, Holmes DR. Relation of deep arterial resection and coronary artery aneurysms after directional coronary atherectomy. JAm Coll Cardiol 1992,20:1474-1481.
    7. Morice MC, Serruys PW, Sousa JE, et al. A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N Engl J Med.2002,346:1773-1780.
    8. Serruys PW, Degertekin M, Tanabe K, et al. Intravascular ultrasound findings in the multicenter, randomized, double-blind RAVEL (RAndomized study with the sirolimus-eluting VElocity balloon-expandable stent in the treatment of patients with de novo native coronary artery Lesions) trial. Circulation.2002,106(7):798-803.
    9. Stabile E, Escolar E, Weigold G, Weissman NJ, Satler LF, Pichard AD, et al. Marked malapposition and aneurysm formation after sirolimus-eluting coronary stent implantation. Circulation 2004;110:e47—8.
    10. Katsumi Inoue, Kazuaki Mitsudo, Masakiyo Nobuyoshi. Medial necrosis due to sirolimus-eluting stent implantation in human coronary artery. Journal of Cardiology (2008) 51,60-64.
    11. T. Okamura et al. Late giant coronary aneurysm associated with a fracture of sirolimus eluting stent:A case report. Journal of Cardiology (2008) 51,74-79
    12. Rab ST, King III SB, Roubin GS, Carlin S, Hearn JA, Douglas JS. Coronary aneurysms after stent placement:a suggestion of altered vessel wall healing in the presence of anti-inflammatory agents. J Am Coll Cardiol 1991; 18,1524-8.
    13. Joner M, Finn AV, Farb A, Mont EK, Kolodgie FD, Ladich E, Kutys R, Skorija K, Gold HK, Virmani R. Pathology of drug-eluting stents in humans:delayed healing and late thrombotic risk. J Am Coll Cardiol.2006,48:193-202.
    14. Joost D, Patrick W. S. Drug-Eluting Stent Update 2007 Part II:Unsettled Issues. Circulation 2007;116:961-968
    15. Guba M, von Breitenbuch P, Steinbauer M, Koehl G, Flegel S, Hornung M, Bruns CJ, Zuelke C, FarkasS, Anthuber M, Jauch KW, Geissler EK. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nature Medicine 2002;8:128-135.
    16. Wim J. van der Giessen, Sjoerd H. Hofma, Bas M. van Dalen et al. Indication of long-term endothelial dysfunction after sirolimus-eluting stent implantation. European Heart Journal,2006,27:166-170.
    17. Bruns CJ, Koehl GE, Guba M, Yezhelyev M, Steinbauer M, Seeliger H, Schwend A, Hoehn A, Jauch KW, Geissler EK. Rapamycin-induced endothelial cell death and tumor vessel thrombosis potentiate cytotoxic therapy against pancreatic cancer. Clin Cancer Res 2004,10:2109-2119.
    18. Guba M, von Breitenbuch P, Steinbauer M, Koehl G, Flegel S, Hornung M, Bruns CJ, Zuelke C, Farkas S, Anthuber M, Jauch KW, Geissler EK. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med 2002;8:128-135.
    19. David C, Richard C, et al. Spontaneous Resolution of Coronary Artery Pseudoaneurysm. Tex Heart Inst J 2008,35(2):189-192.
    20. MINTZ G S, SHAH V M, WEISSMAN N J. Regional remodeling as the cause of late malapposition [J]. Circulation,2003,107:2660-2663.
    21. VIRMANI R, GUAGL IUMI G, FARB A, et al. Localized hypersensitivity and late coronary thrombosis secondary to a sirolimus2eluting stent,:Should We Be Cautious? [J] Circulation,2004,109:701-705.
    22. Bavry AA, Chiu JH, Jefferson BK, et al. Development of coronary aneurysm after drug-eluting stent implantation. Ann Intern Med.2007,146:230-232.
    23. Larry N, Stephen L, Anil P. Coronary Artery Aneurysm A Review and Hypothesis Regarding Etiology. Arch Pathol Lab Med 2008, Vol 132,823-828.
    24.宋现涛,苑飞,吕树铮.西罗莫司洗脱支架术后一年冠状动脉内光学相干断层成像发现冠状动脉瘤一例.中国介入心脏病学杂志,2008,16(5):283-285.
    25. VOIGTLNDER T, RUPPRECHT H J, ST HRP, et al. Development of a coronary aneurysm 6months after stent implantation assessed by intra coronary ultrasound[J]. Am Heart J,1996,131:833-834.
    26. Bal ET, Plokker HWT, van den Berg EMJ, Ernst SMPG, Mast EG, Gin RMTJ, Ascoop CAPL. Predictability and prognosis of PTCAinduced coronary artery aneurysms. Catheter Cardiovasc Diagn 1991;22,85-88.
    27. Vassanelli C, Turri M, Morando G, Menegatti G, Zardini P. Coronary arterial aneurysms after percutaneous transluminal coronary angioplasty—a not uncommon finding at selective follow up angiography. Int J Cardiol 1989;22, 151-156.
    28. Regar E, Klauss V, Henneke KH, Werner F, Theisen K, Mudra H. Coronary aneurysm after bailout stent implantation:diagnosis of a false lumen with intravascular ultrasound. Catheter Cardiovasc Diagn 1997;41,407-410.
    29. Voigtander T, Rupprecht HJ, Stahr P, Nowak B, Kupferwasser I, Meyer J. Development of a coronary aneurysm 6 months after stent implantation assessed by intracoronary ultrasound. Am Heart J 1996; 131,833-834.
    30. SINGH H, SIN GH C, A GGARWAL N, et al. Mycotic aneurysm of lef t anterior descending artery after sirolimus-eluting stent implantation:A case report[J]. Cathet Cardiov Intervent,2005,65:282-285.
    1. Slota PA, Fischman DL, Savage MP, Rake R, Goldberg S. Frequency and outcome of development of coronary artery aneurysm after intracoronary stent placement and angioplasty. STRESS Trial Investigators. Am J Cardiol 1997;79(8):1104-6
    2. L IISTRO F, COLOMBO A. Late acute thrombosis after paclitaxel eluting stent implantation[J]. Heart,2001,86:262-264.
    3. DAEMEN J, WENAWESER P, TSUCHIDA K, et al. Early and late coronary stent thrombosis of sirolimus-eluting and paclitaxel-eluting stent s in routine clinical practice:data f rom a large two-institutional cohort study[J]. Lancet,2007,369:667-678.
    4. CHENEAU E, PICHARD A D, STABIL E E, et al. Asymptomatic late stent thrombosis after sirolimus stent implantation[J]. Cardiovasc Radiat Med, 2004,5:57-58.
    5.严卫,王齐冰,王翔飞.冠状动脉内药物洗脱支架置入术后局部动脉瘤形成一例.中国介入心脏病学杂志2006年8月第14卷第4期254-255.
    6. Takahashi K,Mulliken JB.Kozakewich HP, et al. Celluar markers that distinguish the phase of hemagioma during infancy and childhood[J]. J Clin Inveest,1994,93 (6):2357-2362.
    7. Chang J, Most D,Bresnick B, et al. Proliferative hemangiomas:analysis of cytokine gene expression and angiogenesis [J]. Plast Reconstr Surg,1999,103 (1):129.
    8. Berkalp B, Kervancioglu C, Oral D. Coronary artery aneurysm formation after balloon angioplasty and stent implantation. Int J Cardiol,1999,69:65-70.
    9. Guba M, von Breitenbuch P, Steinbauer M, Koehl G, Flegel S, Hornung M, BrunsCJ, Zuelke C, Farkas S, Anthuber M, Jauch KW, Geissler EK. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med 2002;8:128-135
    10. Pendyala, L., Jabara, R., Robinson, K., Chronos, N.,2009. Passive and active polymer coatings for intracoronary stents:novel devices to promote arterial healing. J. Intervent. Cardiol.22,37-48.
    11.Asahara T, Bauters C, Pastore C, et al. Local delivery of vascular endothelial growth factor accelerates reendothelialization and attenuates intimal hyperplasica in balloon injured rat carotid artery[J]. Circulation,1995,91 (1):2793-2801.
    12. Walter DH, Cejna M, Diaz-Sandoval L, et al. Local gene transfer of phVEGF-plasmid by gene-eluting stents:an alternative strategy for inhibition of restenosis. Circulation 2004;110:36-45
    13.陈少萍,顾洪,王永春,等.hVEGF基因防治血管成形术后再狭窄[J].第二军医大学学报,2001,22(5):443-446.
    14.陆程翔,陈炳煌.血管内皮生长因子基因预防冠心病介入治疗术后再狭窄的研究进展[J].心血管病学进展,2005,(01):55-58.