支架置入术后血管正性重构相关机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     置入部位支架贴壁不良(stent malapposition, SM)是指在支架置入术后,至少有1处或以上的支架梁与动脉管壁内膜未能完全贴合(非覆盖于边支的支架),而且在支架梁后存在血流。晚期获得性支架贴壁不良(late-acquired stent malapposition, LASM)是指在支架置入术后即刻贴壁良好,随访发现贴壁不良。药物洗脱支架(drug-eluting stent, DES)术后LASM发生率明显高于裸金属支架(bare-metal stents, BMS),为0%-25%(平均约10%~12%)比0~6%(平均约4%)。研究显示无论在DES还是BMS的LASM的发生中,局部血管正性重构,即血管外弹力膜面积(external elastic membrane area, EEMA)的增加起了主要作用。但是目前关于支架术后血管正性重构的机制仍不明确。
     研究目的
     1.通过建立兔髂动脉粥样硬化模型后行支架置入术,研究BMS和DES不同支架组术后血管正性重构发生率及程度的差别;
     2.研究支架术后血管组织的炎症反应、血管平滑肌细胞(vascular smooth muscle cell, VSMC)增殖与凋亡、基质金属蛋白酶(matrix metalloproteinase, MMPs)与基质金属蛋白酶组织抑制剂(tissue inhibitor of metalloproteinase, TIMPs)变化与血管正性重构的关联,探讨支架置入术后血管正性重构的相关因素,以期揭示LASM的可能发生机制。
     材料和方法
     雄性新西兰大白兔60只,高脂饮食1周,施行双侧髂动脉球囊导管损伤术,术后高脂饮食饲养8周后,行髂动脉造影,并予以支架置入术,及给予术前、术后即刻血管内超声(intravascular ultrasound, IVUS)检查,在动脉粥样硬化病变部位分别置入BMS(商品名Mustang,微创公司),涂层不可降解雷帕霉素洗脱支架(permanent polymer sirolimus-eluting stent, PPSES,商品名Firebird,微创公司),涂层可降解雷帕霉素洗脱支架(biodegradable polymer sirolimus-elutingstent,BPSES,商品名Excel,吉威公司)、无涂层雷帕霉素洗脱支架(polymer-free sirolimus-eluting stent, PFSES,吉威公司)。术后给予普通饮食,并喂食阿司匹林25mg QD+氯吡格雷12.5mg QD联合抗血小板至8周。至终点存活动物53只,其中BMS组12只,PPSES组14只,BPSES组13只、PFSES组14只。支架植入术后8周复查髂动脉造影及血管内超声检查,比较随访与术后即刻EEMA变化,定义随访/术后即刻EEMA为重构比值,以重构比值>1.05为血管正性重构组(vascular positive remodeling, VPR),重构比值<0.95为负性重构,重构比值≥0.95且≤1.05为无重构,负性重构及无重构均归入非正性重构组(vascular non-positive remodeling, NPR)。并取髂动脉血管标本行组织形态学测量、Verhoeff-Van Geison染色、病理积分、炎症反应程度及免疫组织化学方法检测增殖细胞核抗原(proliferating cell nuclear antigen, PCNA)、基质金属蛋白酶-2(matrix metalloproteinase-2, MMP-2)、基质金属蛋白酶组织抑制剂-2 (tissue inhibitor of metalloproteinase-2, TIMP-2)表达、脱氧核糖核苷酸末端转移酶介导的原位末端标记法(terminal deoxynucleotidyl transferase-mediate dUTP-biotin nick end labeling assay, TUNEL)方法检测细胞凋亡情况,分析上述指标与血管正性重构关系。
     研究结果
     (一)各支架组出现血管正性重构发生率分别为:BMS组25.00%(3/12), PPSES组42.86%(6/14), BPSES组30.77%(4/13), PFSES组28.57%(4/14),各组发生率差异无统计学意义。随访-术后即刻EEMA变化(△EEMA)分别为-0.51±0.54mm2、0.86±0.38mm2、0.67±0.41mm2、0.05±0.27 mm2, PPSES组、BPSES组相比BMS组血管正性重构程度增加,PFSES组与BMS组、PPSES组比BPSES组相比之间差异均无统计学意义。VPR组中,BMS组、PPSES组、BPSES组、PFSES组△EEMA分别为:0.96±0.45mm2、2.47±0.35mm2、2.59±0.57mm2、1.23±0.24mm2, PPSES组、BPSES组比BMS组血管正性重构程度增加,PFSES组与BMS组、PPSES组比BPSES组相比之间差异均无统计学意义。共有2个支架处出现LASM,其中1个支架为PPSES,其EEMA、△EEMA、LSM面积分别为13.03mm2、2.92mm2、4.30mm2;另1个支架为BPSES,其EEMA、△EEMA、LSM面积分别为13.86mm2、3.32 mm2、2.20mm2。
     (二)各支架组弹力-胶原纤维、炎症反应、细胞增殖/凋亡、MMPs/TIMPs指标比较
     1.各支架组弹力、胶原纤维均未见明显断裂、降解表现。
     2. BMS、PPSES、BPSES、PFSES组炎症面积分别为:0.03±0.03 mm2、0.14±0.11 mm2、0.05±0.04 mm2、0.00±0.00 mm2;炎症细胞密度分别为:2.87±1.22×103个/mm2、7.49±5.85×103个/mm2、4.38±4.05×103个/mm2、0.00±0.00×103个/mm2; PPSES组比其他三组炎症面积及炎症细胞密度均增加。
     3. BMS、PPSES、BPSES、PFSES组细胞增殖指数(proliferation index, PI)分别为:61.35±8.98%、29.50±5.47%、28.59±7.05%、16.85±5.30%; BMS组比PPSES组、BPSES组、PFSES组均高;DES组中,PPSES组、BPSES组比PFSES组PI高。
     4. BMS、PPSES、BPSES、PFSES组凋亡细胞指数(apoptosis index, AI)分别为:14.16±3.48%、24.50±3.17%、24.69±2.58%、60.20±2.40%,PPSES组、BPSES组、PFSES组分别较BMS组AI增高;DES组中, PFSES组与PPSES组、BPSES组比较AI也较高。
     5. BMS、PPSES、BPSES、PFSES组MMP-2平均光密度值分别为:0.16±0.07、0.15±0.21、0.13±0.01、0.07±0.03、PFSES组平均光密度值均较其他三组明显减少,其余三组两两比较无明显差异。
     6. BMS、PPSES、BPSES、PFSES组TIMP-2平均光密度值各组两两比较差异无统计学意义。
     (三)各支架组内VPR组与NPR组炎症反应、细胞增殖/凋亡、MMPs/TIMPs指标比较
     1. PPSES组、BPSES组的VPR组比其对应的NPR组炎症面积及炎症细胞密度均增加;余两组VPR组比其对应的NPR组无明显差异。
     2.PPSES组的VPR组比NPR组PI明显降低,BPSES组、PFSES组的VPR组比其对应NPR组PI有所升高,BMS组VPR组比NPR组PI无明显差异。
     3. PPSES组、BPSES组、PFSES组的VPR组比NPR组AI明显升高,且以PPSES组差异最为明显。BMS组VPR组比NPR组AI差异无统计学意义。
     4. PPSES组、BPSES组的VPR组比NPR组MMP-2表达均明显升高;BMS组、PFSES组的VPR组与NPR组两者比较均无明显差异。
     5. PPSES组的VPR组比NPR组TIMP-2表达增加,BMS组、BPSES组、PFSES组的VPR组与NPR组比较无明显差异。
     (四)各支架组AEEMA与细胞凋亡、MMPs指标相关分析
     1.细胞凋亡指数(AI)与△EEMA具有正相关关系,相关系数r=0.275,P<0.05;
     2.MMP-2平均光密度与△EEMA具有正相关关系,相关系数r=0.550,P<0.05。
     研究结论
     1.支架置入术后,有涂层(包括涂层可降解及涂层不可降解)雷帕霉素洗脱支架血管正性重构程度比无涂层雷帕霉素洗脱支架和裸金属支架显著。
     2.支架置入术后血管正性重构过程与血管平滑肌细胞凋亡和MMP-2表达上调机制相关,血管平滑肌细胞凋亡/增殖失衡与雷帕霉素促凋亡作用和支架聚合物涂层局部炎症反应二者有关,MMPs/TIMPs失衡与支架聚合物涂层局部炎症反应有关。
Background
     The late-acquired stent malapposition (LASM) is an finding which has separation of at least 1 stent strut from the arterial wall intima that does not overlap a side-branch, with evidence of blood flow (speckling) behind the strut, where the immediate postimplantation intravascular ultrasound (IVUS) revealed complete apposition of the stent to the vessel wall. LASM may occur both after drug-eluting stent (DES) and bare-metal stent (BMS) implantation. The incidence of LASM is significantly higher in DES compared with BMS (0%~25% vs.0~6%, respectively). It has proved that the main cause of LASM is regional positive remodeling, which means a regional increase in external elastic membrane area (EEMA). However, the mechanism of regional positive remodeling after stent implantation still remains unknown.
     Objective
     1. To study the incidence and degree of vascular positive remodeling after BMS or DES implantation via performing iliac arterial stent implantation in atherosclerotic rabbit models.
     2. To observe the inflammatory reaction, vascular smooth muscle cell (VSMC) apoptosis and proliferation, matrix metalloproteinase (MMPs) and tissue inhibitor of metalloproteinase (TIMPs) expression of vascular tissue after BMS and DES implantation, investigate those indicators in their relation to vascular positive remodeling, in hope to reveal the mechanism of vascular positive remodeling and LASM.
     Methods
     60 male New Zealand rabbits fed on high fat diet for 1 week and then had bilateral iliac artery balloon catheter injury. Immediately following the operation, all subjects were maintained on high fat diet for 8 weeks and then had iliac arterial stent implantation. IVUS was applied pre-operatively and post-operatively. One types of 4 stents, including BMS, permanent polymer sirolimus-eluting stent (PPSES), biodegradable polymer sirolimus-eluting stent (BPSES) and polymer-free sirolimus-eluting stent (PFSES), was implanted at the detected atherosclerotic stenotic lesions in an animal subject. Post-operatively, all subjects received both ordinary diet and a dual antiplatelet therapy of aspirin and clopidogrel for 8 weeks. At the end of the experiment, the total of 53 survived animals is composed of 12 in BMS,14 in PPSES,13 in BPSES and 14 in PFSES. Iliac arterial angiography and IVUS as follow ups were conducted on all survived animal subjects. The ratio of follow-up EEMA to post-stent implantation was defined as remodeling ratio, which with a value beyond 1.05 is categorized into the vascular positive remodeling (VPR) group. Any remodeling ratio value lower than 0.95 was catagorized into the vascular negative remodeling group. Any remodeling ratio value in between 0.95 and 1.05 was considered no remodeling. The negative remodeling group and the group considered as no modeling were combined into the vascular non-positive group (NPR).
     Meanwhile, histomorphometry measurement, Verhoeff-Van Geison staining, pathological scores, and inflammatory reaction on a specimen of iliac artery, and immunohistochemistry to detect proliferating cell nuclear antigen (PCNA), matrix metalloproteinase-2 (MMP-2), and tissue inhibitor of metalloproteinase-2 (TIMP-2) expression, and terminal deoxynucleotidyl transferase-mediate dUTP-biotin nick end labeling assay (TUNEL) to detect cell apoptosis were all analyzed in relation to vascular positive remodeling.
     Results
     The incidence of vascular positive remodeling was 25.00%(3/12) in BMS group, 42.86%(6/14) in PPSES group,30.77%(4/13) in BPSES group, and 28.57%(4/14) in PFSES group. There was no statistical significance among the 4 groups. The follow-up EEMA minus post-stent implantation (△EEMA) was-0.51±0.54mm2, 0.86±0.38mm2,0.67±0.41mm2,0.05±0.27 mm2, respectively. As compared with BMS group, PPSES group and BPSES group demonstrated significantly larger△EEMA, while PFSES group had no significant difference. The difference between PPSES group and BPSES group was not significant differently. For the VPR groups,△EEMA was 0.96±0.45mm2、2.47±0.35mm2.2.59±0.57mm2、1.23±0.24 mm2 in BMS group, PPSES group, BPSES group, PFSES group, respectively. As compared with BMS group, PPSES group and BPSES group presented significantly larger△EEMA, while PFSES group had no significant difference. The difference between PPSES group and BPSES group was not significant differently. LASM occurred in 2 stents, one was PPSES; the other was BPSES. The EEMA, AEEMA, LSM cross section area of PPSES was 13.03mm2,2.92mm2,4.30mm2, respectively; while the EEMA,△EEMA, LSM cross section area of BPSES was 13.86mm2,3.32mm2,2.20mm2, respectively.
     The rupture and degradation of elastic and collagen fibers was not observed in each group. The inflammatory area was 0.03±0.03 mm2,0.14±0.11 mm2,0.05±0.04 mm2,0.00±0.00 mm2 in BMS group, PPSES group, BPSES group, PFSES group, respectively; The number of inflammatory cells per inflammatory area was 2.87±1.22×103/mm2,7.49±5.85×103/mm2,4.38±4.05×103/mm2,0.00q0.00×103/mm2, respectively. As compared with BMS, BPSES and PFSES group, PPSES presented larger inflammatory area and more inflammatory cells. The proliferation index (PI) was 61.35±8.98%,29.50±5.47%,28.59±7.05%,16.85±5.30% in BMS group, PPSES group, BPSES group and PFSES group, respectively. PPSES, BPSES and PFSES group demonstrated lower PI value as compared with BMS group; PPSES and BPSES group demonstrated higher PI as compared with PFSES group. The apoptosis index (AI) was 14.16±3.48%,24.50±3.17%,24.69±2.58%,60.20±2.40% in BMS group, PPSES group, BPSES group and PFSES group, respectively. PPSES, BPSES and PFSES group presented higher AI value as compared with BMS group; PPSES and BPSES group presented lower PI as compared with PFSES group. The average optical density (AOD) of MMP-2 was 0.16±0.07,0.15±0.21,0.13±0.01,0.07±0.03 in BMS group, PPSES group, BPSES group and PFSES group, respectively. PFSES group demonstrated lower AOD value of MMP-2 as compared with the other 3 groups. There was no significant difference in AOD of TIMP-2 among all the groups.
     The VPR group in both PPSES and BPSES presented larger inflammatory area and more number of inflammatory cells per inflammatory area than their NPR rival groups. The VPR group in PPSES demonstrated lower PI value than its NPR rival group, while the VPR group in both BPSES and PFSES group demonstrated higher PI than their NPR rival groups. The VPR group in PPSES, BPSES and PFSES group demonstrated higher AI than their NPR rival groups, especially in the PPSES group. The VPR group in PPSES and BPSES group presented lower MMP-2 expression than their NPR rival groups. The VPR group in PPSES group presented increased TIMP-2 expression than its NPR rival group.
     There was statistically positive correlation between AI and△EEMA(r=0.275, P<0.05), so was between AOD of MMP-2 and△EEMA (r=0.550, P<0.05)
     Conclusions
     1. The degree of vascular positive remodeling was more prominent in SES with polymer coating than SES without polymer coating after stent implantation.
     2. The course of vascular positive remodeling was associated with VSMC apoptosis and increased MMP-2 expression after stent implantation. VSMC apoptosis/ proliferation imbalance was related to the effect of rapamycin and local inflammatory reaction induced by polymer coating, MMPs/TIMPs imbalance was related to the local inflammatory reaction induced by polymer coating.
引文
[1]Shah VM, Mintz GS, Apple S, et al. Background incidence of late malapposition after bare-metal stent implantation. Circulation,2002,106:1753-55
    [2]Syed M, Lesch M. Coronary artery aneurysm:a review. ProgCardiovasc Dis.1997, 40:77-84
    [3]Hassan AK, Bergheanu SC, Stijnen T, et al. Late stent malapposition risk is higher after drug-eluting stent compared with bare-metal stent implantation and associates with late stent thrombosis. Eur Heart J,2010,31:1172-80
    [4]Hoffmann R, Morice MC, Moses JW, et al. Impact of late incomplete stent apposition after sirolimus-eluting stent implantation on 4-year clinical events: intravascular ultrasound analysis from the multicentre, randomised, RAVEL, E-SIRIUS and SIRIUS trials. Heart,2008,94:322-28
    [5]Sanchez-Recalde A, Moreno R, Barreales L, et al. Risk of late-acquired incomplete stent apposition after drug-eluting stent versus bare-metal stent. A meta-analysis from 12 randomized trials. J Invasive Cardiol,2008,20:417-22
    [6]Jimenez-Quevedo P, Sabate M, Angiolillo DJ, et al. Vascular effects of sirolimus-eluting versus bare-metal stents in diabetic patients:three-dimensional ultrasound results of the diabetes and sirolimus-eluting stent (DIABETES) trial. J Am Coll Cardiol,2006,47:2127-29
    [7]Mintz GS, Shah VM, Weissman NJ. Regional remodeling as the cause of late stent malapposition. Circulation,2003,107:2660-63
    [8]Miyazawa A, Tsujino I, Ako J, et al. Characterization of late incomplete stent apposition:a comparison among bare-metal stents, intracoronary radiation and sirolimus-eluting stents. J Invasive Cardiol,2007,19:515-18
    [9]Ako J, Morino Y, Honda Y, et al. Late incomplete apposition after sirolimus-eluting stent implantation. A serial intravascular ultrasound analysis. J Am Coll Cardiol,2005,46:1002-5
    [10]Qian JY, Zhang F, Wu H, et al. Comparison of intravascular ultrasonic imaging with versus without incomplete stent apposition at follow-up after drug-eluting stent implantation. Int J Cardiovasc Imaging,2008,24:133-9
    [11]Mintz GS, Nissen SE, Anderson WD, et al. American College of Cardiology Clinical Expert Consensus Document on Standards for Acquisition, Measurement and Reporting of Intravascular Ultrasound Studies (IVUS). A report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol,2001,37:1478-92
    [12]Di Mario C, Gorge G, Peters R, et al. Clinical application and image interpretation in intracoronary ultrasound. Study Group on Intracoronary Imaging of the Working Group of Coronary Circulation and of the Subgroup on Intravascular Ultrasound of the Working Group of Echocardiography of the European Society of Cardiology. Eur Heart J,1998,19:207-29
    [13]Schwartz RS, Huber KC, Murphy JG, et al. Restenosis and the proportional neointimal response to coronary artery injury:Results in a porcine model. J Am Coll Cardiol,1992,19:267-274
    [14]Kornowski R, Hong MK, Tio FO, et al. In-stent restenosis:contributions of inflammatory responses and arterial injury to neointimal hyperplasia. J Am Coll Cardiol,1998,31:224-30
    [15]Carter AJ, Aggarwal M, Kopia GA, et al. Long-term effects of polymer-based, slow-release,sirolimus-eluting stents in a porcine coronary model. Cardiovasc Res, 2004,63:617-24
    [16]Jabara R, Chronos N, Tondato F, et al. Toxic vessel reaction to an absorbable polymer-based paclitaxel-eluting stent in pig coronary arteries. J Invasive Cardiol, 2006,18:383-90
    [17]Sigwart U, Puel J, Mirkovitch V, et al. Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty. N Engl J Med,1987,316:701-6
    [18]Hoffmann R, Mintz GS, Dussaillant GR, et al. Patterns and mechanisms of in-stent restenosis. A serial intravascular ultrasound study. Circulation,1996, 94:1247-54
    [19]Hillebrands JL, Klatter FA, Van den Hurk BM, et al. Origin of neointimal endothelium and alpha-actin-positive smooth muscle cells in transplant arteriosclerosis. J Clin Invest,2001,107:1411-22
    [20]Stone GW, Ellis SG, Cox DA, et al. A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease. N Engl J Med,2004,350:221-31
    [21]Stone GW, Moses JW, Ellis SG, et al. Safety and efficacy of sirolimus-and paclitaxel-eluting coronary stents. N Engl J Med,2007,356:998-1008
    [22]Finn AV, Nakazawa G, Joner M, et al. Vascular responses to drug eluting stents: importance of delayed healing. Arterioscler Thromb Vase Biol.2007,27:1500-10
    [23]高润霖.关于“药物支架和涂层支架”的名词解释.中华心血管病杂志,2003,3:805
    [24]Suzuki T, Kopia G, Hayashi S, et al. Stent-based delivery of sirolimus reducesneointimal formation in a porcine coronary model. Circulation,2001, 104:1188-93
    [25]Drachman DE, Edelman ER, Seifert P, et al. Neointimal thickening after stent delivery of paclitaxel:hange in composition and arrest of growth over six months. J Am Coll Cardiol,2000,36:2325-32.
    [26]Sousa JE, Serruys PW, Costa MA. New frontiers in cardiology:drug-eluting stents:Part Ⅰ. Circulation,2003,107:2274-9
    [27]Vezina C, Kudelski A, Sehgal SN. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo),1975,28:721-6
    [28]Singh K, Sun S, Vezina C. Rapamycin (AY-22,989), a new antifungal antibiotic. IV. Mechanism of action. J Antibiot (Tokyo),1979,32:630-45.
    [29]Groth CG, Backman L, Morales JM, et al. Sirolimus (rapamycin)-based therapy in human renal transplantation:similar efficacy and different toxicity compared with cyclosporine. Sirolimus European Renal Transplant Study Group. Transplantation, 1999,67:1036-42
    [30]Cao W, Mohacsi P, Shorthouse R, et al. Effects of rapamycin on growth factor-stimulated vascular smooth muscle cell DNA synthesis. Inhibition of basic fibroblast growth factor and platelet-derived growth factor action and antagonism of rapamycin by FK506. Transplantation,1995,59:390-5
    [31]Chang JY, Sehgal SN, Bansbach CC. FK506 and rapamycin novel pharmacological probes of the immune response.Trends Pharmacol Sci,1991,12: 218-23
    [32]Marx SO, Jayarman T, Go LO, et al. Rapamycin-FKBP inhibits cellcycle regulators of proliferation in vascular smooth muscle cells. Circ Res,1995,76:412-7.
    [33]Poon M, Marx SO, Gallo R, et al. Rapamycin inhibits vascular smooth muscle cell migration. J Clin Invest,1996,98:2777-83
    [34]Poston RS, Billingham M, Hoyt EG, et al. Rapamycin reverses chronic graft vascular disease in a novel cardiac allograft model. Circulation,1999,100:67-74
    [35]Gallo R, Padurean A, Jayaraman T, et al. Inhibition of intimal thickening after balloon angioplasty in porcine coronary arteries by targeting regulators of the cell cycle. Circulation,1999,99:2164-70
    [36]Klugherz BD, Llanos G, Lieuallen W, et al. Twenty-eight-day efficacy and phamacokinetics of the sirolimus-eluting stent. Coron Artery Dis,2002,13:183-8
    [37]Adkins JR, Castresana MR, Wang Z, et al. Rapamycin inhibits release of tumor necrosis factor-alpha from human vascular smooth muscle cells. Am Surg,2004,70: 384-7
    [38]Nuhrenberg TG, Voisard R, Fablisch F, et al. Rapamycin attenuates vascular wall inflammation and progenitor cell promoters after angioplasty. FASEB J,2005, 19:246-8
    [39]Braun-Dullaeus RC, Ziegler. A, Bohle RM, et al. Quantification of the cell-cycle inhibitors p27(Kipl) and p21(Cipl) in human atherectomy specimens:primary stenosis versus restenosis. J Lab Clin Med,2003,141:179-89
    [40]Rowinsky EK, Donehower RC. Paclitaxel (taxol). N Engl J Med,1995, 332:1004-14
    [41]Schiff PB, Fant J, Horweitz SB. Promotion of microtubule assembly in vitro by taxol. Nature,1979,277:665-7
    [42]Sousa JE, Costa MA, Abizaid A, et al. Lack of neointimal proliferation after implantation of sirolimus-coated stents in human coronary arteries. Circulation,2001, 103:192-5
    [43]Sousa JE, Costa MA, Abizaid AC, et al. Sustained suppression of neointimal proliferation by sirolimus-eluting stents:one-year angiographic and intravascular ultrasound follow-up. Circulation,2001,104:2007-11
    [44]Morice MC, Serruys PW, Sousa JE, et al. A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. The revel trial. N Engl J Med,2002,346:1773-80
    [45]Moses JW, Leon MB, Popma JJ, et al. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N Engl J Med,2003, 349:1315-23
    [46]Schofer J, Schliiter M, Gershlick AH, et al. Sirolimus-eluting stents for treatment of patients with long atherosclerotic lesions in small coronary arteries:double-blind, randomised controlled trial (E-SIRIUS). Lancet,2003,362:1093-9
    [47]Schampaert E, Cohen EA, Schliiter M, et al. The Canadian study of the sirolimus-eluting stent in the treatment of patients with long de novo lesions in small native coronary arteries (C-SIRIUS). J Am Coll Cardiol,2004.43:1110-5
    [48]Urban P, Gershlick AH, Guagliumi G, et al. Safety of coronary sirolimus-eluting stents in daily clinical practice:one-year follow-up of the e-Cypher registry. Circulation,2006,113:1434-41
    [49]Grube E, Silber S, Hauptmann KE, et al. TAXUS I:six-and twelve-month results from a randomized, double-blind trial on a slow-release paclitaxel-eluting stent for de novo coronary lesions. Circulation,2003,107:38-42
    [50]Colombo A, Drzewiecki J, Banning A, et al. Randomized study to assess the effectiveness of slow-and moderate-release polymer-based paclitaxel-eluting stents for coronary artery lesions. Circulation,2003,108:788-94
    [51]Grube E, Serruydp W. Safety and performance of Paclitaxel eluting stent for the treatment of in-stent restenosis:preliminary results of the TAXUS Ⅲ. J am Coll Cardiol.2002,39:58A
    [52]Stone GW, Ellis SG, Cox DA, et al. A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease. N Engl J Med,2004,350:221-31
    [53]Stone GW, Ellis SG, Cannon L, et al. Comparison of a polymer-based paclitaxel-eluting stent with a bare metal stent in patients with complex coronary artery disease:a randomized controlled trial. JAMA,2005,294:1215-23
    [54]Dawkins KD, Grube E, Guagliumi G, et al. Clinical efficacy of polymer-based paclitaxel-eluting stents in the treatment of complex, long coronary artery lesions from a multicenter, randomized trial:support for the use of drug-eluting stents in contemporary clinical practice. Circulation,2005,112:3306-13
    [55]Hong MK, Mintz GS, Lee CW, et al. Paclitaxel coating reduces in-stent intimal hyperplasia in human coronary arteries:a serial volumetric intravascular ultrasound analysis from the asian paclitacel-eluting stoat clinical trial (ASPECT). Circulation, 2003,107:517-20
    [56]Liistro F, Stankovic G, Di Mario C, et al. First clinical experience with a paclitaxel derivate-eluting polymer stent system implantation for in-stent restenosis: immediate and long-term clinical and angiographic outcome. Circulation,2002, 105:1883-6
    [57]Spaulding C, Daemen J, Boersma E, et al. A pooled analysis of data comparing sirolimus-eluting stents with bare-metal stents. N Engl J Med,2007,356:989-97
    [58]Stone GW, Moses JW, Ellis SG, et al. Safety and efficacy of sirollmus-and paelitaxel-eluting coronary stents. N Engl J Med,2007,356:998-1008
    [59]Lagerqvist B, James SK, Stenestrand U, et al. Long-term outcomes with drug-eluting stents versus bare-metal stents in Sweden. N Engl J Med,2007, 356:1009-19
    [60]Mauri L, Hsieh WH, Massaro JM, et al. Stent thrombosis in randomized clinical trials of drug-eluting stents. N Engl J Med,2007,356:1020-9
    [61]Kastrati A, Mehilli J, Pache J, et al. Analysis of 14 trials comparing sirolimus-eluting stents with bare-metal stents. N Engl J Med,2007,356:1030-9
    [62]Camenzind E, Steg PG, Wijns W. Stent thrombosis late after implantation of first-generation drug-eluting stents:a cause for concern. Circulation,2007, 115:1440-55
    [63]Virmani R, Guagliumi G, Farb A, et al. Localized hypersensitivity and late coronary thrombosis secondary to a sirolimus-eluting stent:should we be cautious? Circulation,2004,109:701-5
    [64]Van der Giessen WJ, Lincoff AM, Schwartz RS, et al. Marked inflammatory sequelae to implantation of biodegradable and nonbiodegradable polymers in porcine coronary arteries. Circulation,1996,94:1690-7
    [65]Serruys E, Morice M, Sousa J, et al. The RAVEL study:a randomized study with the sirolimus coated Bx velocity balloon-expandable stent in the treatment of patients with de novo native coronary artery lesion. Eur Heart J,2001,22(abstract s uppl):484
    [66]Nishioka T, Luo H, Eigler NL, et al. Contribution of inadequate compensatory enlargement of human artery stenosis. J Am Coll Cardiol,1996,27:1571-6
    [67]Mintz GS, Kent KM, Pichard AD, et al. Contribution of inadequate arterial remodeling to the development of focal coronary artery stenosis. An intravascular ultrasound study. Circulation,1998,97:1424-5
    [68]Ward MR, Pasterkamp G, Yeung AC, et al. Arterial remodeling:Mechanisms and clinical implications. Circulation,2000,102:1186-91
    [69]Vamava AM, Mills PG, Davies MJ. Relationship between coronary artery remodeling and plaque vulnerability. Circulation,2002,105:939-43
    [70]Pasterkamp G, Galis ZS, de Kleijn DP. Expansive arterial remodeling:location, location, location. Arterioscler Thromb Vas Biol,2004,24:650-7
    [71]Pasterkamp G, Fitzgerald PF, de-Kleijn DP. Atherosclerotic expansive remodeled plaques a wolf in sheep's clothing. J Vas Res,2002,39:514-23
    [72]Dangns G, Mintz GS, Mehran R, et al. Preintervention arterial remodeling as an independent predictor of target-lesion revascularization after nonstent coronary intervention-an analysis of 777 lesions with intravascular ultrasound imaging. Circulation,1999,99:3149-54
    [73]Hong MK, Mintz GS, Lee CW, et al. Late stent malapposition after drug-eluting stent implantation:an intravascular ultrasound analysis with long-term follow-up. Circulation,2006,113:414-9
    [74]Steller H. Mechanisms and genes of cellular suicide. Science,1995,267:1445-9
    [75]Darzynkiewicz Z, Juan G, Li X, et al. Cytometry in cell necrobiology:analysis of apoptosis and accidental cell death (necrosis). Cytometry,1997,27:1-20
    [76]Gondon D, Reidy MA, Benditt EP, et al. Cellprolifration in human coronary arteries. Proc Natl Acad Sci,1990,87:4600-4
    [77]Soren Bjorkerud, Barbro Bjokerud. Apoptosis is abundant in human atherosclerotic lesions, especially in inflammatory contribute to the accumulations of gruel and plaque instability. Am J Pathol,1996,149:367-77
    [78]Han DK, Haudenschild CC, Hong MK, et al. Evidence for apoptosis in human atherogenesis and in a rat vascular injury model. Am J Pathol,1995,147:267-77
    [79]Hillebrands JL, Klatter FA, Rozing J, et al. Origin of vascular smooth muscle cells and the role of circulating stem cells in transplant arteriosclerosis. Arterioscler Thromb Vase Biol,2003,23:380-87
    [80]Kockx M, De Meyer G. Apoptosis in human atherosclerosis and restenosis. Circulation,1996,93:394-5
    [81]Kang PM, Izumo S. Apoptosis in heart failure:is there light at the end of the tunnel (TUNEL)? J Card Fail,2000,6:43-6
    [82]Kockx MM, De Meyer GRY, Muhring J, Jacob W, et al. Apoptosis and related proteins in different stages of human atherosclerotic plaques. Circulation,1998,97: 2307-15
    [83]Pollman MJ, Yamada T, Horiuchi M, et al. Vasoactive substances regulate vascular smooth muscle cell apoptosis. Countervailing influences of nitric oxide and angiotensin Ⅱ. Circ Res,1996,79:748-56
    [84]Bjorkerud B, Bjorkerud S. Contrary effects of lightly and strongly oxidized LDL with potent promotion of growth versus apoptosis on arterial smooth muscle cells, macrophages, and fibroblasts. Arterioscler Thromb Vasc Biol,1996,16:416-24
    [85]Kataoka H, Kume N, Miyamoto S, et al. Oxidized LDL modulates Bax/Bcl-2 through the lectinlike Ox-LDL receptor-1 in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol, 2001,21:955-60
    [86]Sukhanov S, Hua Song Y, Delafontaine P. et al. Global analysis of differentially expressed genes in oxidized LDL-treated human aortic smooth muscle cells. Biochem Biophys Res Commun,2003,306:443-9
    [87]Marx SO, Jayaraman T, Go LO, et al. Rapamycin-FKBP inhibits cell cycle regulators of proliferation in vascular smooth muscle cells. Circ Res,1995,76:412-7
    [88]Ruygrok PN, Muller DW, Serruys PW. Rapamycin in cardiovascular medicine. Intern Med J,2003,33:103-9
    [89]Amstad PA, Liu H, Ichimiya M, et al. BCL-2 is involved in preventing oxidant-induced cell death and in decreasing oxygen radical production. Redox Rep, 2001,6:351-62
    [90]Wassef M, Baxter BT, Chisholm RL, et al. Pathogenesis of abdominal aortic aneurysms:a multidisciplinary research program supported by the National Heart, Lung, and Blood Institute. J Vase Surg,2001,34:730-8
    [91]Galis ZS, Sukhova GK, Lark MW, et al. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest,1994,94:2493-503
    [92]Schroeder A P, Falk E. Pathophysiology and inflammatory aspects of plaque rupture. Cardiol Clin,1996,14:211-20
    [93]Jin W. The studies of roles and mechanism of transforming growth factor-beta 1 in the progressing of atherosclerosis. Chin Phamacol Bull,2003,19:650-3
    [94]Prelich G,Tan CK, KosturaM, et al. Functional identity of Proliferating cell nuclear antigen and a DNA polymerase-delta auxiliary Protein. Nature,1987,326: 517-610
    [95]Visakoupi T. Proliferative activity determined by DNA flow cytometry and proliferating cell nuclear antigen (PCNA) immunohistochemistry as a prognostic factor in prostatic carcinoma. J Pathol,1992,168:7-14
    [96]Braun-Dullaeus RC, Mann MJ, Sedding DG, et al. Cell cycle-dependent regulation of smooth muscle cell activation. Arterioscler Thromb Vasc Biol,2004, 24:845-50
    [97]Palombo D, Maione M, Cifiello BI, et al. Matrix metalloproteinases. Their role in degenerative chronic diseases of abdominal aorta. J Cardiovasc Surg (Torino),1999, 40:257-60
    [98]Davis V, Persidskaia R, Baca-Regen L, et al. Matrix metalloproteinase-2 production and its binding to the matrix are increased in abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol,1998.18:1625-33
    [99]Tamarina NA, McMillan WD, Shively VP, et al. Expression of matrix metalloproteinases and their inhibitors in aneurysms and normal aorta. Surgery,1997, 122:264-72
    [100]Brauer PR. MMPs-role in cardiovascular development and disease. Front Biosci, 2006,11:447-78
    [101]Kobayashi T, Hattori S, Shinkai H, et al. Matrix metalloproteinases-2 and-9 are secreted from human fibroblasts. Acta Derm Venereol,2003,83:105-7
    [102]Yu WH, Yu S, Meng Q, et al. TIMP-3 binds to sulfated glycosaminoglycans of the extracellular matrix. J Biol Chem,2000,275:31226-32
    [103]Anand-Apte B, Bao L, Smith R, et al. A review of tissue inhibitor of metalloproteinases-3 (TIMP-3) and experimental analysis of its effect on primary. Biochem Cell Biol,1996,74:853-62
    [104]Rivard A, Andres V. Vascular smooth muscle cell proliferation in the pathogenesis of atherosclerotic cardiovascular diseases. Histol Histopathol,2000,15: 557-71
    [105]Willis Al, Pierre-Paul D, Sumpio BE, et al. Vascular smooth muscle cell migration:current research and clinical implications. Vase Endovascular Surg,2004, 38:11-23
    [106]Newby AC. Molecular and cell biology of native coronary and vein-graft atherosclerosis:regulation of plaque stability and vessel-wall remodelling by growth factors and cell-extracellular matrix interactions. Coron Artery Dis,1997,8:213-24
    [107]Henney AM, Wakeley PR, Davies MJ, et al. Localization of stromelysin gene expression in atherosclerotic plaques by in situ hybridization. Proc Natl Acad Sci USA,1991,88:8154-8
    [108]Li Z, Li L, Zielke HR, et al. Increased expression of 72-kd type IV collagenase (MMP-2) in human aortic atherosclerotic lesions. Am J Pathol,1996,148:121-8
    [109]Brown DL, Hibbs MS, Kearney M, et al. Identification of 92-kD gelatinase in human coronary atherosclerotic lesions. Association of active enzyme synthesis with unstable angina. Circulation,1995,91:2125-31
    [110]Zaltsman AB, Newby AC. Increased secretion of gelatinases A and B from the aortas of cholesterol fed rabbits:relationship to lesion severity. Atherosclerosis,1997, 130:61-70
    [111]Loftus IM, Naylor AR, Bell PR, et al. Matrix metalloproteinases and atherosclerotic plaque instability. Br J Surg,2002,89:680-94
    [112]Galis ZS, Khatri JJ. Matrix metalloproteinases in vascular remodeling and atherogenesis:the good, the bad, and the ugly. Circ Res,2002,90:251-62
    [113]Hou G, Mulholland D, Gronska MA, et al. Type VIII collagen stimulates smooth muscle cell migration and matrix metalloproteinase synthesis after arterial injury. Am J Pathol,2000,156:467-76
    [114]Falk E. Stable versus unstable atherosclerosis:clinical aspects. Am Heart J, 1999,138(5 Pt2):S421-5
    [115]Bode W, Maskos K. Structural basis of the matrix metalloproteinases and their physiological inhibitors, the tissue inhibitors of metalloproteinases. Biol Chem,2003, 384:863-72
    [116]Hoashi T, Kadono T, Kikuchi K, et al. Differential growth regulation in human melanoma cell lines by TIMP-1 and TIMP-2. Biochem Biophys Res Commun,2001, 288:371-9
    [117]Cheng L, Mantile G, Pauly R, et al. Adenovirus-mediated gene transfer of the human tissue inhibitor of metalloproteinase-2 blocks vascular smooth muscle cell invasiveness in vitro and modulates neointimal development in vivo. Circulation, 1998,98:2195-201
    [118]Zhang D, Bar-Eli M, Meloche S, et al. Dual regulation of MMP-2 expression by the type 1 insulin-like growth factor receptor:the phosphatidylinositol 3-kinase/Akt and Raf/ERK pathways transmit opposing signals. J Biol Chem,2004,279:19683-90
    [119]Murphy GJ, Bicknell GR, Nicholson ML. Rapamycin inhibits vascular remodeling in an experimental model of allograft vasculopathy and attenuates associated changes in fibrosis-associated gene expression. J Heart Lung Transplant, 2003,22:533-41
    [120]Waller JR, Brook NR, Bicknell GR, et al. Differential effects of modern immunosuppressive agents on the development of intimal hyperplasia. Transpl Int, 2004,17:9-14
    [121]Naoum JJ, Woodside KJ, Zhang S, et al. Effects of rapamycin on the arterial inflammatory response in atherosclerotic plaques in Apo-E knockout mice. Transplant Proc,2005,37:1880-4
    [122]Mach F, Schonbeck V, Fabunmi RP, et al. T lymphocytes induce endothelial cell matrix metalloproteinase expression by a CD40 L-dependent mechanism:Implication for tubule formation. Am J Pathol,1999,154:229-37
    [123]Mauviel A. Cytokine regulation of metalloproteinase gene express. J Cell Biochem,1993,53:288-95
    [124]Saren P, Welgus HG, Kovanen PT. TNF-alpha and IL-lbeta selectively induce expression of 92-kDa gelatinase by human macrophages. J Immunol,1996, 157:4159-65
    [125]Galis ZS, Muszynski M, Sukhova GK, et al. Cytokine-stimulated human vascular smooth muscle cells synthesize a complement of enzymes required for extracellular matrix digestion. Circ Res,1994,75:181-9
    [126]Lesauskaite V,Epistolato MC, Castagnini M, et al. Expression of matrix metalloproteinases, their tissue inhibitors, and osteopontin in the wall of thoracic and abdominal aortas with dilatative pathology. Hum Pathol,2006,37:1076-84
    [127]Johnston KW. Nonruptured abdominal aortic aneurysm:six-year follow-up results from the multicenter prospective Canandian aneurysm study. J Vase Surg,1994, 20:163-70
    [128]Newman KM, Jean-Claude J, Li H, et al. Cellular localization of matrix metalloproteinases in the abdominal aortic aneurysm wall. J Vase Surg,1994, 20:814-20
    [129]Longo GM, Xiong W, Greiner TC, et al. Matrix metalloproteinases 2 and 9 work in concert to produce aortic aneurysms. J Clin Invest,2002,110:625-32
    [130]Cheung PY, Sawicki G, Wozniak M, et al. Matrix metalloproteinase-2 contributes to ischemia-reperfusion injury in the heart. Circulation,2000,101:1833-9
    [131]Geng YJ, Libby P. Progression of atheroma:a struggle between death and procreation. Arterioscler Thromb Vasc Biol,2002,22:1370-80
    [132]Michel JB. Anoikis in the cardiovascular system:known and unknown extracellular mediators. Arterioscler Thromb Vase Biol,2003,23:2146-54
    [133]Heeneman S, Cleutjens JP, Faber BC, et al. The dynamic extracellular matrix: intervention strategies during heart failure and atherosclerosis. J Pathol,2003,200: 516-25
    [134]Lindstedt KA, Leskinen MJ, Kovanen PT. Proteolysis of the pericellular matrix: a novel element determining cell survival and death in the pathogenesis of plaque erosion and rupture. Arterioscler Thromb Vase Biol,2004,24:1350-8
    [135]Ross RS, Borg TK. Integrins and the myocardium. Circ Res,2001,88:1112-9
    [136]Romanic AM, White RF, Arleth AJ, et al. Matrix metalloproteinase expression increases after cerebral focal ischemia in rats:inhibition of matrix metalloproteinase-9 reduces infarct size. Stroke.1998,29:1020-30
    [137]Yamaguchi T, Yokokawa M, Suzuki M,et al. Factors influencing mortality in the rat elastase-induced-aneurysm model. J Surg Res,2000,94:81-3
    [138]Elmore JR, Keister BF, Franklin DP, et al. Expression of matrix metalloproteinases and TIMPs in human abdominal aortic aneurysms. Ann Vasc Surg, 1998,12:221-8
    [139]Ikonomidis JS, Jones JA, Barbour JR, et al. Expression of matrix metalloproteinases and endogenous inhibitors within ascending aortic aneurysms of patients with bicuspid or tricuspid aortic valves. J Thorac Cardiovasc Surg,2007, 133:1028-36
    [140]Chung AW, Au Yeung K, Sandor GG, et al. Loss of elastic fiber integrity and reduction of vascular smooth muscle contraction resulting from the upregulated activities of matrix metalloproteinase-2 and-9 in the thoracic aortic aneurysm in Marfan syndrome. Circ Res,2007,101:512-22
    [141]Schmoker JD, McPartland KJ, Fellinger EK, et al. Matrix metalloproteinase and tissue inhibitor expression in atherosclerotic and nonatherosclerotic thoracic aortic aneurysms. J Thorac Cardiovasc Surg,2007,133:155-61
    [142]Cook S, Wenaweser P, Togni M, et al. Incomplete stent apposition and very late stent thrombosis after drug-eluting stent implantation. Circulation,2007,115:2426-34
    [143]Qian JY, Zhang F, Fan B, et al. A more than 2-year follow-up of incomplete apposition after drug-eluting stent implantation. Chin Med J (Engl),2008,121: 498-502
    [144]Ueno K, Kawamura A, Mintz GS, et al. Progression of late stent malapposition beyond 2 years after sirolimus-eluting stent implantation. J Am Coll Cardiol Intv, 2009,2:1288-9
    [145]Hong MK, Mintz GS, Lee CW, et al. Late stent malapposition after drug-eluting stent implantation:an intravascular ultrasound analysis with long-term follow-up. Circulation,2006,113:414-9
    [146]Zhang RY, Du R, Zhu ZB, et al. Acute coronary syndrome is an independent risk factor for late incomplete stent apposition after sirolimus-eluting stent implantation. Chin Med J(Engl),2008,121:2504-8
    [147]Hong MK, Mintz GS, Lee CW, et al. Impact of late drug-eluting stent malapposition on 3-year clinical events. J Am Coll Cardiol,2007,50:1515-6
    [148]Waksman R. Late thrombosis after radiation:sitting on a time bomb. Circulation,1999,100:780-2
    [149]Joner M, Finn AV, Farb A, et al. Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J Am Coll Cardiol,2006,48:193-202
    [1]Shah VM, Mintz GS, Apple S, et al. Background incidence of late malapposition after bare-metal stent implantation. Circulation,2002,106:1753-1755
    [2]Tanigawa J, Barlis P, Di Mario C. Intravascular optical coherence tomography: optimisation of image acquisition and quantitative assessment of stent strut apposition. Euro Intervention,2007,3:128-136
    [3]马长生,聂绍平.药物洗脱支架时代的血运重建策略//胡大一,马长生.心脏病学实践2004规范化治疗.1版.北京:人民卫生出版社,2004:334
    [4]Hassan AK, Bergheanu SC, Stijnen T, et al. Late stent malapposition risk is higher after drug-eluting stent compared with bare-metal stent implantation and associates with late stent thrombosis. Eur Heart J,2010,31:1172-1180
    [5]Hoffmann R, Morice MC, Moses JW, et al. Impact of late incomplete stent apposition after sirolimus-eluting stent implantation on 4-year clinical events: intravascular ultrasound analysis from the multicentre, randomised,RAVEL,E-SIRIUS and SIRIUS trials. Heart,2008,94:322-328
    [6]Sanchez-Recalde A, Moreno R, Barreales L, et al. Risk of late-acquired incomplete stent apposition after drug-eluting stent versus bare-metal stent. A meta-analysis from 12 randomized trials. J Invasive Cardiol,2008,20:417-422
    [7]Jimenez-Quevedo P, Sabate M, Angiolillo DJ, et al. Vascular effects of sirolimus-eluting versus bare-metal stents in diabetic patients:three-dimensional ultrasound results of the diabetes and sirolimus-eluting stent (DIABETES) trial. J Am Coll Cardiol,2006,47:2127-2129
    [8]Tanigawa J, Barlis P, Dimopoulos K, et al. The influence of strut thickness and cell design on immediate apposition of drug-eluting stents assessed by optical coherence tomography. Int J Cardiol,2009,134:180-188
    [9]Ozaki Y, Okumura M, Ismail TF, et al. The fate of incomplete stent apposition with drug-eluting stents:an optical coherence tomography-based natural history study. Eur Heart J,2010,31:1470-1476
    [10]Barlis P, Regar E, Serruys PW, et al. An optical coherence tomography study of a biodegradable vs. durable polymer-coated limus-eluting stent:a LEADERS trial sub-study. Eur Heart J,2010,31:165-176.
    [11]Mintz GS, Shah VM, Weissman NJ. Regional remodeling as the cause of late stent malapposition. Circulation,2003,107:2660-2663
    [12]Miyazawa A. Tsujino I, Ako J, et al. Characterization of late incomplete stent apposition:a comparison among bare-metal stents, intracoronary radiation and sirolimus-eluting stents. J Invasive Cardiol,2007,19:515-518
    [13]Ako J, Morino Y, Honda Y, et al. Late incomplete apposition after sirolimus-eluting stent implantation. A serial intravascular ultrasound analysis. J Am Coll Cardiol,2005,46:1002-1005
    [14]Qian JY, Zhang F, Wu H, et al. Comparison of intravascular ultrasonic imaging with versus without incomplete stent apposition at follow-up after drug-eluting stent implantation. Int J Cardiovasc Imaging,2008,24:133-139
    [15]Hong MK, Mintz GS, Lee CW, et al. Late stent malapposition after drug-eluting stent implantation:an intravascular ultrasound analysis with long-term follow-up. Circulation,2006,113:414-419
    [16]Siqueira DA, Abizaid AA, Costa JD, et al. Late incomplete apposition after drug-eluting stent implantation:incidence and potential for adverse clinical outcomes. Eur Heart J,2007,28:1304-1309
    [17]Takeuchi H, Morino Y, Fujibayashi D, et al. Frequency and characteristics of incomplete stent apposition during and after sirolimus-eluting stent implantation. J Cardiol,2007,50:111-118
    [18]Weissman NJ, Koglin J, Cox DA, et al. Polymer-based paclitaxel-eluting stents reduce in-stent neointimal tissue proliferation:a serial volumetric intravascular ultrasound analysis from TAXUS-Ⅳ trial. J Am Coll Cardiol,2005,45:1201-1215
    [19]Cook S, Ladich E, Nakazawa G, et al. Correlation of intravascular ultrasound fingdings with histopathological analysis of thrombus aspirates in patients with very late drug-eluting stent thrombosis. Circulation,2009,120:391-399
    [20]Virmani R, Guagliumi G, Farb A, et al. Localized hypersensitivity and late coronary thrombosis secondary to a sirolimus-eluting stent:should we be cautious? Circulation,2004,109:701-705
    [21]Virmani R, Farb A, Guagliumi G, et al. Drug-eluting stents:caution and concerns for long-term outcome. Coron Artery Dis,2004,15:313-318
    [22]张瑞岩,杜润,朱政斌,等.急性冠状动脉综合征患者雷帕霉素洗脱支架晚期贴壁不良及其对临床预后的影响.中华心血管病杂志,2009,37:30-34
    [23]Vander Hoeven BL, Liem SS, Dijkstra J, et al. Stent malapposition after sirolimus-eluting and bare-metal stent implantation in patients with ST-segment elevation myocardial infarction:acute and 9-month intravascular ultrasound result of the MISSION! Intervention Study. J Am Coll Cardiol Intv,2008,1:192-201
    [24]Tanabe K, Serruys PW, Degertekin M, et al. Incomplete stent apposition after implantation of paclitaxel-eluting stents or bare metal stents:insights from the randomized TAXUS-Ⅱ trial. Circulation,2005,111:900-905
    [25]Matsumoto D, Shite J, Shinke T, et al. Neointimal coverage of sirolimus-eluting stents at 6-month follow-up:evaluated by optical coherence tomography. Eur Heart J, 2007,28:961-967
    [26]Degertekin M, Serruys PW, Tanabe K, et al. Long-term follow-up of incomplete stent apposition in patients who received sirolimus-eluting stent for de novo coronary lesions. An intravascular ultrasound analysis. Circulation,2003,108:2747-2745
    [27]Zhang F, Qian JY, Ge JB et al. Very late stent thrombosis in late stent malapposition after sirolimus-eluting stent implantation. Int Heart J,2007,48: 591-596
    [28]Waksman R. Late thrombosis after radiation:sitting on a time bomb. Circulation, 1999,100:780-782
    [29]Joner M, Finn AV, Farb A, et al. Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J Am Coll Cardiol,2006,48:193-202
    [30]Cook S, Wenaweser P, Togni M, et al. Incomplete stent apposition and very late stent thrombosis after drug-eluting stent implantation. Circulation,2007,115: 2426-2434
    [31]Qian JY, Zhang F, Fan B, et al. A more than 2-year follow-up of incomplete apposition after drug-eluting stent implantation. Chin Med J (Engl),2008,121: 498-502
    [32]Ueno K, Kawamura A, Mintz GS, et al. Progression of late stent malapposition beyond 2 years after sirolimus-eluting stent implantation. J Am Coll Cardiol Intv, 2009,2:1288-1289
    [33]Zhang RY, Du R, Zhu ZB, et al. Acute coronary syndrome is an independent risk factor for late incomplete stent apposition after sirolimus-eluting stent implantation. Chin Med J(Engl),2008,121:2504-2508
    [34]Hong MK, Mintz GS, Lee CW, et al. Impact of late drug-eluting stent malapposition on 3-year clinical events. J Am Coll Cardiol,2007,50:1515-1516