酪氨酸羟化酶基因多态性与精神疾病关联性及法医学和人类遗传学意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着“人类基因组计划”(human genome project,HGP)的完成,人类已了解自己基因组的全部核苷酸序列,在全面寻找功能基因的同时,“人类基因组计划”的另一个重要目标是阐明在特定基因组区域内的序列差异。单核苷酸多态性(Single nucleotide polymorphisms,SNPs),作为基因组中最普遍的序列差异,在生物医学、遗传学等诸多领域,如复杂性疾病病因研究、药物敏感性研究以及人群进化史研究中发挥着重要的作用。
     酪氨酸羟化酶(Tyrosine hydroxylase,TH)作为体内的一种重要神经递质儿茶酚胺合成的限速酶,由于mRNA编码的核酸序列的差异,TH基因表现出基因的多态性。近年来TH的基因多态性在法医学研究领域中受到了广泛的关注。首先精神疾病作为在司法精神病学研究中占首位的鉴定案例,众多的学者们从不同的角度对其遗传特征进行了广泛的研究,研究结果表明精神疾病的发生具有一定的遗传性,这种遗传性可能与TH基因的突变密切相关。其次有学者提出TH基因多态性在一定程度上反映了个体的差异度,因此这种基因多态性有可能在法医学个人识别和亲子鉴定上具有潜在的应用前景。但以往由于实验手段的限制,尚缺乏对TH基因进行全面系统的分析。目前随着一些高灵敏度、高通量的基因分型技术的日趋成熟,采用新的方法以基因组为模板广泛分析TH基因的突变成为可能,这无疑将会为该基因在今后法医学的应用及疾病的相关性研究等方面提供无法比拟的先决条件。
     目的
     本研究采用DNA测序和实时荧光定量PCR(Realtime PCR)技术,选择存在于人类TH基因外显子3和内含子9上的两个SNP位点进行调查,针对辽宁地区的精神病患者及部分家系,通过分析与精神疾病密切相关的脑神经递质TH基因的多态性,并与正常群体进行比较,探讨这一易感基因与精神疾病的相关性以及其在人类遗传学中的意义。同时通过对TH基因位点SNP的高通量系统分析,计算获得的有关法医学应用参数,为其在法医学中的应用奠定基础。
     材料与方法
     1、样品
     1.1中国北方汉族127例无血缘关系健康个体静脉抗凝血由中国医科大学法医学院法医血清学教研室提供。
     1.2 173例尼泊尔国藏族人DNA样品由日本国久留米大学医学部法医人类遗传学教室友好提供。
     1.3 130例日本福冈地区健康日本人DNA样品由日本国久留米大学医学部法医人类遗传学教室友好提供。
     1.4 133例居住在中国北方的患有精神疾病的血液样品,以及7例患有精神疾患的家系血液样品均由辽宁开原精神病医院提供。
     1.5 73例居住在中国北方的抑郁症患者的DNA样品由中国医科大学心理学教研室友好提供。
     2实验方法
     2.1模板DNA制备采用酚/氯仿法抽提DNA。
     2.2 PCR扩增目的DNA片段:
     G334A引物序列:F:5'-CAGCGCGGCTCCAGCCCGT-3',R:5'-AGTCCCGGGCGGACAGCAGGC-3';
     C5162G引物序列:F:5'-CAGTGCACCCAGTATATCCG-3',R:5'-CCGTCGCACCCCCCACCCTC-3'。
     2.3 DNA测序:测序PCR反应应用BigDye Terminator v3.1 Cycle SequencingKit和ABI 3130全自动序列测定分析仪。测序用引物序列:TH-exon10-L:5'-CAGCATGGGCACGTGCCCCA-3',TH-exon9-U:5'-CGCGTGGCCCCTTGCAGAGC-3'。
     2.4统计学处理方法
     由试验所得的数据依照参考文献计算出基因型频率、等位基因频率和杂合度,同时与实际调查所获得的基因型频率之间进行检验,验证是否符Hardy-Weinberg定律。以上数据均利用SPSS统计软件包进行计算分析。
     结果
     1、人类TH基因突变的命名
     本研究在分析人NT 009237的基因组Contig的同时,确定出了TH的基因组结构。研究结果显示所分析鉴定的两个突变点分别定位于外显子3中的第7个碱基对(G/A)和内含子9中的第8个碱基对(C/G),依据美国立生物技术信息中心对SNP的命名方法,分别命名为G334A(Thr314Met)和rs12419447(C/G)或C5162G。
     2、G334A和C5162G两位点的群体学分布数据
     在G334A位点,三个调查的群体中均存在CC、CT和TT三种基因型。两种常见的等位基因频率为C=日本人>中国北方汉族>尼泊尔藏族(即0.269>0.214>0.205),T=尼泊尔藏族>中国北方汉族>日本人(即0.795>0.786>0.731)。在C5162G位点,三个调查的群体中均存在CC和CG两种基因型,但均没有检出GG基因型,说明后一种基因型在东亚及靠近东亚的群体中可能相当罕见。两种常见的等位基因频率为C=日本人>中国北方汉族>尼泊尔藏族(即0.977>0.961>0.922),G=尼泊尔藏族>中国北方汉族>日本人(即0.078>0.039>0.023)。
     3、G334A和C5162G两位点数据的法医学意义
     个人识别机率(Probability of discrimination power,DP)在G334A位点上为日本人>中国北方汉族>尼泊尔藏族(即0.5593>0.5012>0.4916);非父排除率(Excluding probability of paternity,EPP)为日本人>中国北方汉族>尼泊尔藏族(即0.1580>0.1399>0.1364);杂合度(Heterozygosity,H)为中国北方汉族>日本人>尼泊尔藏族(即0.3629>0.3538>0.3509)。在C5162G位点上DP值为尼泊尔藏族>中国北方汉族>日本人(即0.2633>0.1455>0.0878);EPP值为尼泊尔藏族>中国北方汉族>日本人(即0.0667>0.0361>0.0220);H值为尼泊尔藏族>中国北方汉族>日本人(即0.1561>0.0787>0.0462)。
     4、G334A位点在精神疾病和抑郁症患者中的分布
     中国北方地区精神疾患群体G334A位点的基因频率分布为:C=0.133,T=0.867;忧郁症群体的基因频率分布为:C=0.116,T=0.884。
     5、C5162G位点在精神疾病和抑郁症患者中的分布
     中国北方地区精神疾患群体C5162G位点的基因频率分布为:C=0.962,G=0.038;忧郁症群体C5162G位点的基因频率分布为:C=0.959,G=0.041。
     6、人类TH基因SNP在患精神疾病家系中的基因型分布
     TH基因G334A位点,6名子代个体及5例双亲均为T/T基因型;另两例组合中,父亲也为T/T基因型,而母亲为C/T基因型,两名子代的基因型为C/T。C5162G位点,7名子代个体及6例双亲均为C/C基因型;另一例组合中,父亲也为C/C基因型,而母亲为C/G基因型,子代的基因型为C/G。
     7、家系的疾病表现及与TH基因SNP的相关性
     7名患病子代个体的父亲无精神疾病史,而所有母亲均先前被诊断为精神病患者,对应的TH基因G334A和C5162G两位点的基因型在6名先证者均为T/T-C/C组合,只有1名先证者的两位点基因型组合为T/T-C/G;患有精神疾患的母亲中5人的两位点基因型组合也为T/T-C/C,另两人分别为C/T-C/C和C/T-C/G基因型组合。
     结论
     1、本研究利用互联网资源及相关报道数据阐述了人类TH基因的基因组结构,详细给出了外显子及内含子序列碱基数目,并对有关TH基因中的SNP提出了一种命名法。
     2、首次报道了人类TH基因外显子3中的G334A和内含子9中的C5162G二位点在中国北方汉族、尼泊尔地区藏族和日本福冈地区日本人三个群体中的等位基因频率分布,为其在法医学个人识别和亲子鉴定中的应用提供了有必需的基础数据。
     3、应用TaqMan荧光实时定量PCR技术报道了人类TH基因外显子3中的G334A和内含子9中的C5162G两基因座在精神疾患及抑郁症两个群体中的等位基因频率分布,为遗传流行病学的研究提供了重要的基础数据。
     4、本研究对G334A和C5162G两基因座基因型与精神疾病家系表型进行了比较,发现先证者的两个基因座大多表现出与亲代患有精神疾病的个体同样的基因型。
     5、比较正常人群与精神疾患和忧郁症群体的G334A和C5162G两基因座基因型频率的分布,发现G334A基因座基因型的分布在正常人群与精神疾患和忧郁症群体之间皆存在显著差异;而C5162G基因座基因型的分布正常人群与精神疾患和忧郁症群体之间无显著差异。
Preface
     Since we have finished the human gene project(HGP),we have known about all the gene order.We are studying the functional gene,as well as finding the differences among the specific gene order.Single nucleotide polymorphisms(SNPs) as the most comon differences play an important part in the research of disease,medicine,and evolution.
     Tyrosine hydroxylase(TH) as an important rate limiting enzyme in the human body.It had a gene polymorphism caused by the differences among mRNA coding. More attention has been paid to the TH polymorphism for forensic research in these years.It has been proved that the mental disorders had some heritage by many research. And the heritage had some connections with the TH polymorphism.Some other researchers thought that the TH polymorphism was different among the different people,so there may be an important signification in telling different people.It may be useful to individual identification and paternity test.For the limiting of the technology, we have no systemic research results.With the development of technology,TH polymorphism research had become more and more popular.
     Objective
     The aim of this study is to evaluate the relationship between the TH gene and mental disorder by comparing the two TH gene SNP points(extron 3 and intron 9) of patients with mental disorder and those of human without mental disorder.And the significance of TH gene polymorphology in human genetic and in forensic medicine is also discussed.
     Materials and Methods
     1、specimen
     1.1 Normal contract group:127 cases all come from blood donors in Shenyang blood center with no Schizophrenia or Schizophrenia family history or suicide disease. They are all Han nationality.
     1.2 173 tibetans' blood from Nepal offered by JAPAN university.
     1.3 130 normal japaneses' blood offered by JAPAN university.
     1.4 133 cases with chizophrenia or Schizophrenia,and 7 Schizophrenia family history offered by Kaiyuan madhouse.
     1.5 73 cases with depression offered by china medical university.
     2、methods
     2.1 Template DNA is made by hydroxybenzene/chloroform method from venous anti -thrombin DNA.
     2.2 Use PCR to amplify the target DNA fragment:
     Inducer sequence of G334A:F:5'-CAGCGCGGCTCCAGCCCGT-3',R:5'-AGT -CCCGGGCGGACAGCAGGC-3';Inducer sequence of C5162G:F:5'-CAGTGCA -CCCAGTATATCCG-3',R:5'-CCGTCGCACCCCCCACCCTC-3'。
     2.3 DNA sequencing:we use BigDye Terminator v.3.1 Cycle Sequencing Kit and ABI 3130 automatic sequencing machine.primer are TH-exon10-L: 5'-CAGCATGGG- CACGTGCCCCA-3',TH-exon9-U: 5'-CGCGTGGCCCCTTGCAGAGC-3'.
     2.4 Statistic analysis:Record all individual classification result;calculate each allele and gene type frequency;perform Hardy-Weinberg balance test..Using spss software.
     Results
     1、Naming of gene mutation of human TH.
     We have make the order of TH gene,which named G334A(Thr314Met) and rs12419447(C/G) or C5162G.
     2、G334A and C5162G distribution data.
     We found CC,CT,and TT in all three groups.Most common allele frequency is C=Japanese>north chinese>tibetan in nepal(0.269>0.214>0.205);T=tibetan in nepal>north chinese>Japanese(0.795>0.786>0.731).In C5162G there are CC and CG,but no GG,which proves that the GG is very rare.Most common allele frequency is C=Japanese>north chinese>tibetan in nepal(0.977>0.961>0.922);G=tibetan in nepal>north chinese>Japanese(0.078>0.039>0.023).
     3、G334A and C5162G signifitance in forensic medicine.
     Probability of discrimination power(DP):Japanese>north chinese>tibetan in nepal(0.5593>0.5012>0.4916);Excluding probability of paternity(EPP):Japanese>north chinese>tibetan in nepal(0.1580>0.1399>0.1364);Heterozygosity,H:north chinese>Japanese>tibetan in nepal(0.3629>0.3538>0.3509).In C5162G,DP:tibetan in nepal>north chinese>Japanese(0.2633>0.1455>0.0878);EPP:tibetan in nepal>north chinese>Japanese(0.0667>0.0361>0.0220);H:tibetan in nepal>north chinese>Japanese(0.1561>0.0787>0.0462).
     4、G334A distribution In north china:C=0.133,T=0.867 in Schizoph- renia,and C=0.116,T=0.884 in depression.
     5、C5162G distribution:C=0.962,G=0.038 in Schizophrenia,and C=0.959,G=0.041 in depression.
     6、SNPs of TH in the Schizophrenia family.
     For G334A spot,6 filial generations and 5 parents are all T/T gene type,and in the other two cases,father is T/T,mother is C/T,both filial generations are C/T;for C5162G spot,7 filial generations and 6 parents are all C/C gene type,and in the other case,father is C/C,mother is C/G,filial generation is C/G.
     7、The relationship between familial disease and the SNPs of TH.
     Any of the fathers is the families had no Schizophrenia history,and all the mothers had Schizophrenia history.In G334A and C5162G spots of the TH only one is T/T-C/G,the other 6 cases are T/T-C/C.The five mothers with Schizophrenia is T/T-C/C,and the other two cases is C/T-C/C and C/T-C/G.
     Conclusion
     1、Depending on the data from the internet,we discript the gene order of TH of human being,and a name method.
     2、First report G334A and C5162G.Describe the gene type distribution in north chinese,Japanese,and tibetan in nepal.
     3、Depending on the TaqMan real time PCR technology,we determinate G334A and C5162G gene distribution in Schizophrenia and depression,which will be very useful to genetic research.
     4、Compare G334A and C5162G in the mental disease.We find that prohand usually is the same gene type with the parents with the mental disease.
     5、Compare G334A and C5162G between normal people and the patients with mental disease.Finding that in G334A there are significant difference between normal people and patients with mental disease,and there are no significant difference in C5162G.
引文
1 Nagatsu T, Levitt M, Udenfriend S. Tyrosine Hydroxylase. The Initial Step in Norepi -nephrine Biosynthesis. J Biol Chem. 1964; 239: 2910-2917.
    2 Kumer SC, Vrana KE, Intricate regulation of tyrosine hydroxylase activity and gene expression. J Neurochem. 1996;67: 443-462.
    3 Knappskog PM, Flatmark T, Mallet J, et al. Recessively inherited L-DOPA- respo -nsive dystonia caused by a point mutation (Q381K) in the tyrosine hydroxylase gene. Hum Mol Genet. 1995; 4: 1209-1212.
    4 Ludecke B, Dworniczak B, Bartholome K. A point mutation in the tyrosine hydroxylase gene associated with Segawa's syndrome. Hum Genet. 1995; 95: 123-125.
    
    5 Grima B, Lamouroux A, Blanot F, et al., Complete coding sequence of rat tyrosine hydroxylase mRNA. Proc Natl Acad Sci .1985; 82:617-621.
    6 Grima B, Lamouroux A, Boni C, et al. A single human gene encoding multiple tyrosine hydroxylases with different predicted functional characteristics. Nature. 1987; 326:707-711.
    7 Dumas S, Le Hir H, Bodeau-Pean S, et al. New species of human tyrosine hydrox -ylase mRNA are produced in variable amounts in adrenal medulla and are overexpressed in progressive supranuclear palsy. J Neurochem 1996; 67:19-25.
    8 Kobayashi K, Kiuchi K, Ishii A, et al. Expression of four types of human tyrosine hydroxylase in COS cells. FEBS Lett, 1988; 238: 431-434.
    9 Hoffmann GF, Assmann B, Brautigam C, et al. Tyrosine hydroxylase deficiency causes progressive encephalopathy and dopa-nonresponsive dystonia. Ann Neurol. 2003; 54: S56-65.
    10 Kobayashi K, Nagatsu T. Molecular genetics of tyrosine 3-monooxygenase and inherited diseases. Biochem Biophys Res Commun. 2005; 338: 267-270.
    11 Ludecke B, Knappskog PM, Clayton PT, et al. Recessively inherited L-DOPA-responsive parkinsonism in infancy caused by a point mutation (L205P) in the tyrosine hydroxylase gene. Hum Mol Genet. 1996. 5:1023-1028.
    12 van den Heuvel LP,Luiten B,Smeitink JA,et al.A common point mutation in the tyrosine hydroxylase gene in autosomal recessive L-DOPA-responsive dystonia in the Dutch population.Hum Genet.1998;102:644-646.
    13 Wevers RA,de Rijk-van Andel JF,Brautigam C,et al.A review of biochemical and molecular genetic aspects of tyrosine hydroxylase deficiency including a novel mutation(291delC).J Inherit Metab Dis.1999;22:364-373.
    14 Craig SP,Buckle VJ,Lamouroux A,et al.Localization of the human tyrosine hydroxylase gene to 11p15:gene duplication and evolution of metabolic pathways.Cytogenet Cell Genet.1986;42:29-32.
    15 Kobayashi K,Kaneda N,Ichinose H,et al.Structure of the human tyrosine hydroxylase gene:alternative splicing from a single gene accounts for generation of four mRNA types.J Biochem(Tokyo).1988;103:907-912.
    16 Meloni R,Biguet NF,Mallet J.Post-genomic era and gene discovery for psychiatric diseases:there is a new art of the trade? The example of the HUMTH01 microsatellite in the Tyrosine Hydroxylase gene.Mol Neurobiol.2002;26:389-403.
    17 Puers C,Hammond HA,Jin L,et al.Identification of repeat sequence heterogeneity at the polymorphic short tandem repeat locus HUMTH01[AATG]n and reassignment of alleles in population analysis by using a locus-specific allelic ladder.Am J Hum Genet.1993;53:953-958.
    18 Antonarakis SE.Recommendations for a nomenclature system for human gene mutations.Nomenclature Working Group.Hum Mutat.1998;11:1-3.
    19 Ichinose H,Ohye T,Fujita K,et al.Increased heterogeneity of tyrosine hydroxylase in humans.Biochem Biophys Res Commun.1993;195:158-165.
    20 Nagatsu T.Tyrosine hydroxylase:human isoforms,structure and regulation in physiology and pathology.Essays Biochem.1995;30:15-35.
    21 Wong FL,Wang MK,Boo NY,et al.Rapid detection of the UGT1A1 single nucleotide polymorphism G211A using real-time PCR with Taqman minor groove binder probes.J Clin Lab Anal.2007;21:167-172.
    22 侯一平.法医物证学.第2版.北京:人民卫生出版社,2004.19-21.
    23 贾静涛. 法医血型血清学. 沈阳: 辽宁科学技术出版社, 1988.9-10.
    24 Lv L, Kerzic P, Lin G, et al. The TNF-alpha 238A polymorphism is associated with susceptibility to persistent bone marrow dysplasia following chronic exposure to benzene. Leuk Res. 2007; 31: 1479-1485.
    25 Shastry BS. SNPs in disease gene mapping, medicinal drug development and evolution. J Hum Genet. 2007; 52:871-880.
    26 ZhangS, Van Pelt CK, Huang X, et al. Detection of single nucleotide polymorphisms using electrospray ionization mass Spectrometry: validation of a one-well assay and quantitative pooling studies. J Mass Spectrom. 2002; 37: 1039-1050.
    27 Tripathi RK, Hearing VJ, Urabe K, et al. Mutational mapping of the catalytic activities of human tyrosinase. J Biol Chem. 1992; 267: 23707-23712.
    28 Nagatsu T, Ichinose H. Comparative studies on the structure of human tyrosine hydroxylase with those of the enzyme of various mammals. Comp Biochem Physiol C. 1991; 98: 203-210.
    29 Kaneda N, Kobayashi K, Ichinose H, et al. Isolation of a novel cDNA clone for human tyrosine hydroxylase: alternative RNA splicing produces four kinds of mRNA from a single gene. Biochem Biophys Res Commun. 1987; 146: 971-975.
    30 Ludecke B, Bartholome K. Frequent sequence variant in the human tyrosine hydro xylase gene. Hum Genet. 1995; 95: 716.
    31 Swaans RJ, Rondot P, Renier WO, et al. Four novel mutations in the tyrosine hydro -xylase gene in patients with infantile parkinsonism. Ann Hum Genet. 2000; 64:25-31.
    32 Iliadi AC, Ioannou PC, Traeger-Synodinos J, et al. High-throughput microtiter well-based bioluminometric genotyping of two single-nucleotide polymorphisms in the toll-like receptor-4 gene. Anal Biochem. 2008; 376:235-241.
    33 Ota M, Fukushima H, Kulski JK, et al. Single nucleotide polymorphism detection by polymerase chain reaction-restriction fragment length polymorphism. Nat Protoc.2007; 2: 2857-2864.
    34 Van Tassell CP, Smith TP, Matukumalli LK, et al. SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries. Nat Methods. 2008; 5: 247-252.
    35 Haberstick BC, Smolen A. Genotyping of three single nucleotide polymorphisms following whole genome preamplification of DNA collected from buccal cells. Behav Genet. 2004; 34: 541-547.
    36 Tindall EA, Speight G, Petersen DC, et al. Novel Plexor SNP genotyping technology: comparisons with TaqMan and homogenous MassEXTEND MALDI-TOF mass Spectrometry. Hum Mutat. 2007; 28: 922-927.
    37 Lee YC, Morgenstern H, Greenland S, et al. A case-control study of the association of the polymorphisms and haplotypes of DNA ligase I with lung and upper-aerodigestive-tract cancers. Int J Cancer. 2008; 122: 1630-1638.
    38 Borodina TA, Lehrach H, Soldatov AV. Ligation detection reaction-TaqMan proce -dure for single nucleotide polymorphism detection on genomic DNA. Anal Biochem. 2004; 333: 309-319.
    39 Rickert AM, Borodina TA, Kuhn EJ, et al. Refinement of single-nucleotide polymer -phism genotyping methods on human genomic DNA: amplifluor allele-specific polymerase chain reaction versus ligation detection reaction-TaqMan. Anal Biochem. 2004; 330:288-297.
    40 Bottiger AK, Nilsson TK. Pyrosequencing assay for genotyping of the Transcob -alamin II 776C>G polymorphism. Scand J Clin Lab Invest. 2007; 67: 247-251.
    41 Schymick JC, Scholz SW, Fung HC, et al. Genome-wide genotyping in amyotrophic lateral sclerosis and neurologically normal controls: first stage analysis and public release of data. Lancet Neurol. 2007; 6: 322-328.
    42 Tebbutt SJ, He JQ, Burkett KM, et al. Microarray genotyping resource to determine population stratification in genetic association studies of complex disease. Biotechniques. 2004; 37:977-985.
    43 Macgregor S, Zhao ZZ, Henders A, et al. Highly cost-efficient genome-wide associa tion studies using DNA pools and dense SNP arrays. Nucleic Acids Res. 2008; 36:e35.
    44 Panitz F, Stengaard H, Hornsh(?)j H, et al. SNP mining porcine ESTs with MAVIANT, a novel tool for SNP evaluation and annotation. Bioinformatics. 2007; 23: 1387-1391.
    45 Nijman IJ, Kuipers S, Verheul M, et al. A genome-wide SNP panel for mapping and association studies in the rat. BMC Genomics. 2008; 9: 95.
    46 Hiratsuka M, Tsukamoto N, Konno Y, et al. Forensic assessment of 16 single nucleotide polymorphisms analyzed by hybridization probe assay. Tohoku J Exp Med. 2005; 207:255-261.
    47 Sanchez JJ, Phillips C, B(?)rsting C, et al. A multiplex assay with 52 single nucleotide polymorphisms for human identification. Electrophoresis. 2006; 27:1713-1724.
    48 Landegren U, Nilsson M, Kwok PY. Reading bits of genetic information: methods for single-nucleotide polymorphism analysis. Genome Res. 1998; 8: 769-776.
    49 Miller RD, Kwok PY. The birth and death of human single-nucleotide polymorphisms: new experimental evidence and implications for human history and medicine. Hum Mol Genet. 2001; 10:2195-2198.
    50 Liang J, Zhang Y, Chen Y, et al. Common polymorphisms in the CACNA1H gene associated with childhood absence epilepsy in Chinese Han population. Ann Hum Genet. 2007;71: 325-335.
    51 Weiss KM, Terwilliger JD. How many diseases does it take to map a gene with SNPs? Nat Genet. 2000;26:151-157.
    52 Smyth C, Kalsi G, Curtis D, et al. Two-locus admixture linkage analysis of bipolar and unipolar affective disorder supports the presence of susceptibility loci on chromosomes 11p15 and 21q22. Genomics. 1997; 39:271-278.
    53 Thibaut F, Ribeyre JM, Dourmap N, et al. Association of DNA polymorphism in the first intron of the tyrosine hydroxylase gene with disturbances of the catecholaminergic system in schizophrenia. Schizophr Res. 1997; 23: 259-264.
    54 Palmour RM. Genetic models for the study of aggressive behavior. Prog Neuropsy chopharmacol Biol Psychiatry. 1983;7: 513-517.
    55 Owen MJ, Cardno AG, O'Donovan MC. Psychiatric genetics: back to the future. Mol Psychiatry. 2000;5: 22-31.
    56 Owen MJ,Holmans P,McGuffin P.Association studies in psychiatric genetics.Mol Psychiatry.1997;2:270-273.
    57 van den Bree MB,Owen MJ.The future of psychiatric genetics.Ann Med.2003;35:122-134.
    58 Sambrook J.Molecular cloning,A laboratory manual.3rd.New York:Cold Spring Harbor Laboratory Press,2001.
    59 Abdolmaleky HM,Smith CL,Zhou JR,et al.Epigenetic alterations of the dopami -nergic system in major psychiatric disorders.Methods Mol Biol.2008;448:187-212.
    60 Wiegartz P,Seidenberg M,Woodard A,et al.Co-morbid psychiatric disorder in chronic epilepsy:recognition and etiology of depression.Neurology.1999;53:S3-8.
    61 Pardon MC,Gould GG,Garcia A,et al.Stress reactivity of the brain noradrenergic system in three rat strains differing in their neuroendocrine and behavioral responses to stress:implications for susceptibility to stress-related neuropsychiatric disorders.Neuroscience.2002;115:229-242.
    62 刘亮,贾福军,李恒芬等.精神分裂症IL-1b、INF-a和酪氨酸羟化酶的基因表达水平.中国免疫学杂志.2006;22:1152-1155.
    63 刘亮,贾福军,李恒芬等.精神分裂症致炎性细胞因子、酪氨酸羟化酶基因表达水平与临床症状的关系.中国心理卫生杂志.2006;20:153-156.
    64 刘亮,贾福军,李恒芬.精神分裂症外周血致炎性细胞因子、酪氨酸羟化酶基因表达水平.临床精神医学杂志.2007:17:223-225.
    65 Burgert E,Crocq MA,Bausch E,et al.No association between the tyrosine hydrox- ylase microsatellite marker HUMTH01 and schizophrenia or bipolar Ⅰdisorder.Psychiatr Genet.1998;8:45-48.
    66 Payton A,Holmes J,Barrett JH,et al.Examining for association between candidate gene polymorphisms in the dopamine pathway and attention-deficit hyperactivity disorder:a family-based study.Am J Med Genet.2001;105: 464-470.
    67 周爱儒.生物化学.第6版.北京:人民卫生出版社,2007.52-54.
    68 Qi Shuguang,An Baofu,Dong Xiaohui,et al.Genetic mode of suicidal behavior in patients with bipolar depressive disorder.Chinese Journal of Clinical Rehabilitation.2006;10:37-39.
    69 Egeland JA.A genetic study of manic-depressive disorder among the old order Amish of Pennsylvania.Pharmacopsychiatry.1988;21:74-75.
    70 张璐,王保捷,丁梅等.CCK受体基因多态性及与部分精神疾病症状的相关性.中国法医学杂志.2007;22:39-42.
    71 Abbar M,Courtet P,Bellivier F,et al.Suicide attempts and the tryptophan hydroxylase gene.Mol Psychiatry.2001;6:268-273.
    72 Iga J,Ueno S,Yamauchi K,et al.The Val66Met polymorphism of the brain-derived neurotrophic factor gene is associated with psychotic feature and suicidal behavior in Japanese major depressive patients.Am J Med Genet B Neuropsychiatr Genet.2007;144:1003-1006.
    73 Yoshida K,Higuchi H,Takahashi H,et al.Influence of the tyrosine hydroxylase val81met polymorphism and catechol-O-methyltransferase val158met polymorphism on the antidepressant effect of milnacipran.Hum Psychopharmacol.2008;23:121-128.
    74 Serretti A,Macciardi F,Verga M,et al.Tyrosine hydroxylase gene associated with depressive symptomatology in mood disorder.Am J Med Genet.1998;81:127-130.
    75 Mallet J,Meloni R,Laurent C.Catecholamine metabolism and psychiatric or behavioral disorders.Curr Opin Genet Dev.1994;4:419-426.
    76 Miller HL,Delgado PL,Salomon RM,et al.Clinical and biochemical effects of catecholamine depletion on antidepressant-induced remission of depression.Arch Gen Psychiatry.1996;53:117-128.
    77 成金罗,沈默宇,周玲等.125个家族高发性2型糖尿病的危险因素研究.中华流行病学杂志.2004;25:162-164.
    78 祁曙光,安宝富,董小惠等. 双相抑郁症患者自杀行为的遗传方式. 中国临床康复. 2006; 10: 37-39.
    
    79 Allen-Brady K, Miller J, Matsunami N, et al. A high-density SNP genome-wide linkage scan in a large autism extended pedigree. Mol Psychiatry.2008.
    80 Kehrer-Sawatzki H, Cooper DN. Understanding the recent evolution of the human genome: insights from human-chimpanzee genome comparisons. Hum Mutat. 2007;28:99-130.
    81 Feng Y, Chen CJ, Su LH, et al. Evolution and pathogenesis of Staphylococcus aureus: lessons learned from genotyping and comparative genomics. FEMS Microbiol Rev. 2008; 32:23-37.
    82 Haubold B, Wiehe T. Comparative genomics: methods and applications. Naturwis -senschaften. 2004; 91: 405-421.
    83 Pang H, Koda Y, Soejima M, et al. Polymorphism of the human ABO-Secretor locus (FUT2) in four populations in Asia: indication of distinct Asian subpopulations. Ann Hum Genet. 2001; 65: 429-437.
    84 Hammer MF, Chamberlain VF, Kearney VF, et al. Population structure of Y chromosome SNP haplogroups in the United States and forensic implications for constructing Y chromosome STR databases. Forensic Sci Int. 2006; 164: 45-55.
    85 Boyer S, Montagutelli X, Gomes D, et al. Recent evolutionary origin of the expression of the glial fibrillary acidic protein (GFAP) in lens epithelial cells. A molecular and genetic analysis of various mouse species. Brain Res Mol Brain Res.1991;10:159-166.
    86 Zhang C, Bailey DK, Awad T, et al. A whole genome long-range haplotype (WGLRH) test for detecting imprints of positive selection in human populations. Bioinformatics. 2006; 22:2122-2128.
    87 Harris EE, Meyer D. The molecular signature of selection underlying human adaptations. Am J Phys Anthropol. 2006; Suppl 43: 89-130.
    88 Thomas VM. Product self-management: evolution in recycling and reuse. Environ Sci Technol. 2003;37: 5297-5302.
    89 Boffelli D, McAuliffe J, Ovcharenko D, et al. Phylogenetic shadowing of primate sequences to find functional regions of the human genome. Science. 2003;299:1391-1394.
    90 Koda Y, Tachida H, Pang H, et al. Contrasting patterns of polymorphisms at the ABO-secretor gene (FUT2) and plasma alpha(1,3)fucosyltransferase gene (FUT6) in human populations. Genetics. 2001; 158: 747-756.
    1 Kazuto Kobayashi,Norio Kaneda,Hiroshi,et al.Structure of the human tyrosine hydroxylase gene:alternative splicing from a single gene accounts for generation of four mRNA type.J biochem.1986;103:907-912.
    2 Dauber SC,melendez J,Fitzpatrick PF.Reversing the substrate specificities of phenyl -alanine and tyrosine hydroxylase:aspartate 425 of tyrosine hydroxylase is essential of L-dopa formation.Biochemistry.2000;39:9652-9661.
    3 Nagasu T,Ichinose H.Molecular biology of catecholamine-related enzymes in relati -on to Parkinson's disease.Cell Mol Neurol.1999;19:57.
    4 Craig SP,Buck le VJ,Craig IW,et al.Localization of the human tyro sine hydroxylase gene to ch romo some 11p15.Cytogenet Cell Genet.1986;42:29-32.
    5 Girma B,Lamouroux A,Blanot F,et al.Complete coding sequence of trysine hydroxylase mRNA.Proc Natl Ad Sci.1985;82:617-621.
    6 Grima B,Lamouroux A,Boni C,et al.A single human gene encoding multiple tyrodine hydroxylases with different predicted functional characeristics.Nature.1987;326:707-711
    7 Kobayashi K,Kaneda N,Ichinose H,et al.Isolation of a full-length cDNA clone encoding human tyrosine hydroxylase type 3.Nucleic Acids Res.1987;15:6733
    8 鄢东红.酪氨酸羟化酶与高血压.国外医学·生理、病理科学与临床分册.2000.20:414-417.
    9 Kaneda N,Kobayashi K,Ichinose H,et al.Isolation of novel cDNA clone for human tyrosine hydroxylase : alternative RNA splicing produces four kinds of mRNA from a single gene . Biochem Biophys Res Commun.1987;146:971-975.
    10 Dumas S , Le Hir H , Bodeau Pean S , et al . New species of human tyrosine hudroxylase mRNA are produced in variable amounts in adrenal medulla and are overexpressed in progressive supranuclear palsy . J Neurochem.1996;67:19-25.
    11 Hearing VJ , Jimenez M. Mammalian tyrosinase —the critical regulatory control point in melanocyte pigmentation. Int J Biochem. 1987 ; 19 :1141-1147.
    
    12 Kappock TJ , Caradonna JP. Pterin-dependent amino acid hydroxylases . Chem Rev. 1996;96 :2659-2756.
    13 Michaud Soret I , Andersson KK, Que L Jr. Resonance Raman studies of catecholate and phenolate complexes of recombinant human tyrosine hydroxylase.Biochemistry. 1995; 34 :5504-5510.
    14 Moffat M, Harmon S , Haycock J , et al. L-Dopa and dopamine-producing gene cassettes for gene therapy approaches to Parkinson ' s disease. Exp Neurol.1997;144:69-73.
    
    15 Haavik J , Martinea A , Flatmark T. pH-dependent release of catecholamines from tyrosine hydroxylase and effect of phosphorylation of Ser-40. FEBS Lett.1990;262:363-365.
    16 Kumer SC , Vrana KE. Intricate regulation of tyrosine hydroxylase activity and gene expression. J Neurochem. 1996;67:443-462.
    17 Thomas G, Havvik J , Cohen P. Participation of a stress-activated MAP kinase cascade in the activation of tyrosine hydroxylase in chromaffin cells . Eur J Biochem. 1997;247:1180-1189.
    18 Stachowiak MK, Goc A , Hong JS. Regulation of tyrosine hydroxylase gene express -ion in depolarized non-transformed bovine adrenal medullary cells : second messenger systems and promoter mechanisms . Brain Res Mol Brain Res. 1995;22:309-319.
    19 Gizang-Ginsberg E, Ziff EB. Nerve growth factor regulates tyrosine hydroxylase gene transcription through a nucleoprotein complex that contains c-Fos.Genes Dev. 1990;4:477-91.
    20 Du X,Iacovitti L.Multiple signaling pathways direct the initiation of tyrosine hydroxylase gene expression in cultured brain neurons.Brain Res Mol Brain Res.1997;50:1-8.
    21 Wolff JA,Fisher LJ.Grafting fibroblasts genetically modified to produce L-dopa in a ratmodel of pakinson's disease.Proc Natl Acad Sci USA.1989;86:9011-9014.
    22 Kobayash i K,Kiuch i K,Ish ii A,et al.Expression on four types of human tyro sine hydroxylase in COS cells.FEBS Lett.1988;238:431-434.
    23 刘振国,赵迎春,陈生弟等.酪氨酸羟化酶cDNA移植治疗帕金森病的初步研究.上海第二医科大学学报.1994;14:114-6.
    24 Zhang L,Rao F,Wessel J,et al.Functional allelic heterogeneity and pleiotropy of a repeat polymorphism in tyrosine hydroxylase:prediction of catecholamines and response to stress in twins.Physiol Genomics.2004;19:277-291.
    25 Kobayashi K,Morita S,Sawada H,et al.Targeted disruption of the tyrosine hydroxylase locus results in severe catecholamine depletion and perinatal lethality in mice.J Biol Chem.1995;270:27235-27243.
    26 Van den Heuvel LP,Luiten B,Smeitink JA,et al.A common point mutation in the tyrosine hydroxylase gene in autosomal recessive L-DOPA-responsive dystonia in the Dutch population.Hum Genet.1998;102:644-646.
    27 Berka N,Nunlee-Bland G,Erabhaoui E,et al.IDDM_2 and the polymorphism of the human tyrosine hydroxylase(hTH) gene in African Americans with type-1diabetes.J Natl Med Assoc.2004;96:1042-1046.
    28 Berson JF,Frank DW,Calvo PA,et al.A common temperature-sensitive allelic form of human tyrosinase is retained in the endoplasmic reticulum at the nonpermissive temperature.J Biol Chem.2000,275:12281-12289.
    29 Tan Q,Bellizzi D,Rose G,et al.The influences on human longevity by HUMTHO1.STR polymorphism(Tyrosine Hydroxylase gene).A relative risk approach.Mech Ageing Dev.2002;123:1403-1410.
    30 Spearing MK.Schizophrenia[EB/OL].http://www.nlm.nih.gov/medlineplus/schizophrenia.html,2004-4-9/2004-7-25.
    31 Sullivan PF,Kendler KS,Neale MC.Schizophrenia as a com2plex trait:evidence from a meta-analysis of twin studies.Arch of Gen Psychiatry.2003,60:1187-1192.
    32 Waddington JL.Schizophrenia.Developmental neuro—science and pathobiology.Lance t.1993,341:531-536.
    33 金卫东,王高华.NE与精神分裂症现象学亚型.国外医学精神病学分册.1990;4:211-213.
    34 Craddock N,Lendon C,Cichon S,et al.Chromosome workshop:chromosomes 11,14,and 15.Am J Med Genet Neuropsychiatr Genet.1999;88:244-254.
    35 Gelernter J,Kennedy JL,van Tol HH,et al.The D4 dopamine receptor(DRD4)maps to distal 11p close to HRAS.Genomics.1992;13:208-210.
    36 Xiao H,Rath DS,Merril CR.Tetranucleotide repeat polymorphism at the human tyrosine hydroxylase gene(TH).Nucleic Acid Research.1991;19:37-53.
    37 Kurumaji A,Kuroda T,Yamada K,et al.An association of the polymorphic repeat of tetranucleotide(TCAT) in the first intron of the human tyrosine hydroxylase gene with schizophrenia in a Japanese sample.J Neural Transm.2001;108:489-495.
    38 Beyer KS,Klauck SM,Benner A,et al.Association studies of the HOPA dodecamer duplication variant in different subtypes of autism.Am J Med Genet.2002;114:110-115.
    39 Nakashima A,Hayashi N,Mori K,et al.Positive charge intrinsic to Arg(37)-Arg(38) is critical for dopamine inhibition of the catalytic activity of human tyrosine hydroxylase type 1.FEBS Lett.2000;465:59-63.
    40 Ota M,Nakashima A,Ikemoto K,et al.Exon 3 oftyrosine hydroxylase gene:lack of association with Japanese schizophrenic patients.Mol Psychiatry.2001;6:315-319.
    41 Sommer SS,Lind TJ,Heston LL,et al.Dopamine D4 receptor variants in unrelated schizophrenic cases and controls.Am J Med Genet.1993;48:90-93.
    42 罗星光 江开达.情感性精神障碍的分子遗传学研究进展.四川精神卫 生.2000; 13 (4):275-278.
    43 Chiba M, Suzuki S , Hinokio Y, et al . Tyrosine hydrozylase gene microsatelinte polymorphism associated with insulin resistance in depressive disorder .Metabolism.2000;49:1145-1149.
    44 McEwen BS ,Alves SE ,Bulloch K,et al.Ovarian steroids and the brain : implications for cognition and aging. Neurology. 1997;48: S8-15.
    45 Halbreich U. Role of estrogen in postmenopausal depression.Neurology.1997;48: S16-19.
    46 Perez de CI ,Santos J ,Torres P ,et al. A weak association between TH and DRD2 genes and bipolar affective disorder in a Spanish sample. J Med Genet.1995;32:131.
    47 Ishiguro H, Arinami T, Saito T, et al. Systematic search for variations in the tyrosine hydroxylase gene and their associations with schizophrenia, affective disorders, and alcoholism.Am J Med Genet. 1998;81:388-96.
    48 Oruc L ,Verheyen GR ,Furac I ,et al. Analysis of the tyrosine hydroxylase and dopamine D4 receptor genes in a Croatian sample of bipolar I and unipolar patients. Am J Med Genet. 1997;74:176.