基于FPA的多指机械手及其在果实采摘中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多指机械手作为机器人与外界环境互相作用的末端执行部件一直受到研究人员的关注。传统的机械手爪存在抓持动作单一、自由度少及通用性差等缺点,严重制约了机器人的发展与应用。
     在果实生产中,收获采摘作业约占整个作业量的40%。随着人口的老龄化和农业劳动力的减少,农业生产成本也将随之提高。因此,发展机械化收获技术,研究开发果实采摘机器人,具有重要的现实意义。本文在以往研究的基础上,进一步深入研究了基于FPA的弯曲关节的基本特性,分析了三自由度手指的输出力特性、提出了新型气动柔性多指采摘机械手的设计目标、机械结构和传感检测单元配置、控制算法,通过模块化设计,能够较好地适应不同种类果实的采摘。主要完成的研究工作如下:
     (1)提出了由FPA直接驱动的弯曲关节。从静力学的角度,建立弯曲关节的转角及输出力矩静态模型;以热力学第一定律为理论依据,结合弯曲关节的动力学方程,推导了关节的动态模型。对弯曲关节进行了静态特性测试实验,实验结果与仿真结果基本一致;关节转角开环阶跃响应时间大约是1s,关节输出力的开环阶跃响应时间大约是0.5s;采用前馈补偿及PI反馈控制可使关节转角实现精确控制。
     (2)提出了基于专家控制器的柔性手指指端抓持模型。基于气动柔性弯曲关节设计了一种三自由度手指,采用D-H法建立了三自由度手指的运动学方程及力雅可比矩阵;在分析手指受力状况的基础上,建立了指端输出力与各个关节FPA内腔气压值之间的映射关系,实验结果与指端输出力模型基本吻合。建立了气动柔性弯曲关节的刚度模型,进行了实验研究,其结果与仿真曲线基本一致;进一步分析了三自由度手指指端刚度,并进行了仿真研究。介绍了一种基于关节柔性的手指指端抓持模型,针对不同类型的干扰力,分析了手指指端抓持的稳定性,提出了基于专家控制器的柔性指端抓持控制,并完成了相应的实验研究,取得了良好的控制效果。
     (3)提出了一种手指指节正压力可控的包络抓持模型。分析了目标物体受力状况,按照手指指节与目标物体之间的各个接触力大小尽量均匀的原则,对目标物体受力进行了优化。建立了关于手指指节接触点所受到的正压力及摩擦力与关节FPA输出力之间的力学模型。使用两个触力传感器,应用杠杆原理建立了接触点正压力及其作用点的测量模型。提出了指节接触点正压力的双闭环控制策略,设置了补偿器对摩擦力进行实时补偿,对压力反馈信号进行微分处理,用以消除压力检测信号中所包含的高频噪声。搭建了实验平台,实验结果表明:手指正压力动态响应时间为约1s,误差稳定在±0.5N范围。
     (4)分别测定了黄瓜和苹果的抗压特性、果实表面与硅胶表面之间的摩擦系数和果柄切断阻力等特性。
     (5)详细阐述了多指采摘机械手的设计目标、机械结构、传感单元、控制单元和切割器。提出了两类不同精度等级的多指采摘机械手,分别为标定多指采摘机械手和实用多指采摘机械手。标定多指采摘机械手配备了关节位置传感器、多维指端力传感器、指节触力传感器及压力比例阀;实际采摘作业时使用实用多指采摘机械手,它只对各个关节FPA中的压力值进行闭环反馈控制。用力学分析的方法建立了黄瓜和苹果的抓持模型,分析了气动驱动器中的气压值与抓持能力之间的关系。研制了可用于黄瓜采摘的机械手,采摘效果良好,黄瓜抓持成功率为90%,黄瓜果柄割断成功率为100%,采摘时间约为3s。
     本文研究的新型气动采摘多指机械手,采用课题组自主研发的气动柔性驱动器FPA直接驱动,具有结构简单,便于控制,易于小型化等特点,具有良好的柔性,同时不缺乏刚度。适合应用在一些柔性要求相对较高,对响应速度要求相对较低的场合,如农业采摘机器人,手指康复机器人等。
As executing manipulator for robot to interact with outside environment, themulti-fingered robot hands have been paid much attention. Earlier conventional mechanicalhand is of simple structure, fewer degrees of freedom DOFs, poor adaptability and othershortcomings, which restricts the development and application of robots.
     The work of picking fruit mainly depends on manpower. The picking work is a mosttime-consuming and laborious production process. In order to improve the efficiency ofpicking fruit the mechanization should be attached importance to. With farms population isobviously reduced and aging population has been gradually become a common trend in theworld, development of fruit picking robot is of enormous economic potential and broadmarket prospects. Found on the previous research, bending joint driven by flexible pneumaticactuator FPA is studied profoundly in this paper. The3-DOF finger based on FPA and themulti-fingered hand for fruit picking are proposed. The main research work in this paper is asfollows:
     (1) Bending joint driven by FPA directly is proposed. Based on statics and elasticity, thestatic model about angle and output force of the bending joint is obtained. According to thefirst law of thermodynamics, combined with the joint’s dynamic equation, the dynamic modelof the bending joint is established. Experiments are carried out to verify the static model. It isconcluded from theoretical and experimental results that the experimental curve matches withthe simulated curve. Experimental results show that the angle step response time of the joint isabout1s, and the force step response time of the joint is about0.5s. The accurate angle can begot based on PI feedback control and feed forward compensation.
     (2) Finger-tip grasping model based on3-DOF fingers is proposed. A3-DOF fingerbased on bending joint is design. Using D-H method, kinematics equation and Jacobin matrixof the finger are educed. The statics of the finger is analyzed, and then static model aboutfingertip force and the values of the pressured air in the three FPAs is built. Experiments arecarried out to verify the static model, and it is concluded from theoretical and experimentalresults that the experimental force value matches with the simulated force value basically. Stiffness model about the bending joint is established. Experiments of the stiffness about thebending joint are carried out, and the theoretical and experimental results show that theexperimental curve matches with the simulated curve. Stiffness about the fingertip is alsoanalyzed. This paper presents a new flexible fingertip grasping mode. In view of differenttype of disturbing forces, stability of the fingertip grasping is analyzed, and the fingertip graspbased on expert controller is proposed. Experiment was done to verify the control algorithm.
     (3) Envelop grasping model based on3-DOF fingers is proposed. Based on the principleof equalization, the interaction forces between the object and knuckle is optimized. The staticmodel about the values of the pressured air in FPAs and the positive pressure on knuckle orcorrelative friction force is built. The measure model about the positive pressure and itsposition, based on leverage principle depending on two touch-force sensors, is obtained.Using a series dual loops control method and the compensator about friction force, thepositive pressure can be controlled precisely. In order to filtrate the high-frequency noise, thefeedback signal of the pressured air in FPA is processed by differential analysis. Theexperimental results show that dynamic response time of the positive pressure is about1s andthe steady-state deviation is less than±0.5N.
     (4) The compressibility characteristic of cucumber and apple, the cutting characteristic ofcucumber peduncle and apple peduncle, the friction coefficient between cucumber coat andsilica gel, the friction coefficient between apple coat and silica gel have been testedrespectively.
     (5) Design objective, mechanical structure, sensor system and control system ofmulti-fingered robot hand for picking are illustrated in detail. The calibration multi-fingeredrobot hand and the practicable multi-fingered robot hand are proposed, which have differentprecision ratings. The calibration multi-fingered robot hand is equipped with joint anglesensors,5-component force/torque sensor, touch force sensors and proportional pressure valve,and the practicable multi-fingered robot hand is only equipped with proportional pressurevalve which can be used in loop control on the value of the pressured air in FPA. The holdingmodels of cucumber and apple are established with mechanical analysis method, therelationships between the pressure value of compressed air in the FPA and picking capacityare analyzed. A picking robot hand for cucumber is developed. The effect of cucumberpicking using this hand is well, and the success ratio of picking cucumber is90percent. Thesuccess ratio of cutting cucumber peduncle is100percent, and the time of picking a cucumberis about3s.
     A new type of multi-fingered robot hand for picking, which is directly driven by FPA developed by our research team, is proposed in this paper. This robot hand has characteristicsof simple structure, easy control, and easy miniaturization and so on. It has better passiveflexibility, and without lack of stiffness. It is suitable for application situation that requiresrelatively high flexibility and low response speed of the fingers, such asagricultural harvesting robot, finger rehabilitation robot and so on.
引文
[1]蔡自兴.机器人学[M].北京:清华大学出版社,2000.
    [2]王田苗.工业机器人发展思考[J].机器人技术与应用,2004,(2):1-4.
    [3]姜力,蔡鹤皋,刘宏.新型集成化仿人手指及其动力学分析[J].机械工程学报,2004,40(4):139-143.
    [4] Dechev N, Cleghorn W L, Naumann S. Multiple finger, passive adaptive grasp prosthetic hand [J].Mechanism and Machine Theory,2001,36(10):1157-1173.
    [5]姜力.具有力感知功能的机器人灵巧手手指及控制的研究[D].哈尔滨:哈尔滨工业大学,2001.
    [6] Zhang Libin, Wang Zhiheng, Yang Qinghua, et al. Development and simulation of ZJUT Handbased on flexible pneumatic actuator FPA [A]. Proceedings of IEEE International Conference onMechatronics and Automation [C]. Changchun: IEEE Press, August9-12,2009:1634-1639.
    [7]周明镇,孙艾玲.动物的发展与人类起源[M].北京:科学出版社,1978,3.
    [8] Lim Mee-Seub, Oh Sang-Rok, Son Jaebum. A Human-Like Real-Time Grasp Synthesis Method forHumanoid Robot Hands [J], Robotics and Autonomous Systems,2000,30:261–271.
    [9] Ilhwan Kim, Nobuaki Nakazawa, Hikaru Inooka, Control of A Robot Hand Emulating Human’sHand-over Motion [J], Mechatronics,2002,12:55-69.
    [10]张立彬,杨庆华,阮健,等.气动关节人工手的研究[J].农业工程学报,2003,19(1):84-86.
    [11] Yung Hwan Yun, Hong Jun Eoh, Janghyeon Cho. A Two-Dimensional Dynamic Finger Modelingfor the Analysis of Repetitive Finger Flexion and Extension [J], International Journal of IndustrialErgonomics,2002,29:231-248.
    [12] Mohamed Zribi, Jun Chen and Magdis. Mahmoud, Coordination and Control of Multi-fingeredRobot [J],1999,24:125-149.
    [13]姜力,刘宏,高晓辉,等.机器人灵巧手五维指尖力/力矩传感器的研究[J].机器人,2000,22(7):730-733.
    [14] Salisbury J K, Craig J. Force control and kinematics issue [J]. The International Journal of RoboticsResearch,1982,1(1):4-17.
    [15] Salisbury J K, Roth B. Kinematics and force analysis of articulated mechanical hands [J]. Journal ofMechanisms, Transmissions and Actuation in Design,1983,105(1):35-41.
    [16] Jacobsen S, Wood J, Knutti D, BIGGERS K B. Utah/MIT dexterous hand: work in progress [J]. TheInternational Journal of Robotics Research,1984,3(4):21-50.
    [17] D.G. Caldwell, G.A. Medrano-Cerda and M.J. Goodwin, Braided Pneumatic Actuator Control of aMulti-Jointed Manipulator [A]. IEEE Int. Conf on Systems, Man and Cybernetics Proceedings, LeTouquet, France,1993:423–428.
    [18] Ching-Ping Chou, Black Hannaford. Static and Dynamic Characteristics of McKibben PneumaticArtificial Muscles [A]. IEEE Conf. on Robotics and Automation, San Diego, USA, May1994,281-286.
    [19] Ching-Ping Chou, Black Hannaford. Measurement and Modeling of McKibben Pneumatic ArtificialMuscles [J]. IEEE Transaction on Robotics and Automation,1996,12(1):90-102.
    [20] Boblan. I, Bannasch. R, Schwenk. H, et al. A Human-Like Robot Hand and Arm with FluidicMuscles: Biologically Inspired Construction And Functionality [J], Embodied Artificial Intelligence,2004,3139:160-179.
    [21] http://www.shadow.org.uk/
    [22] Noritsugu T, Tshuji Y, Ito K. Improvement of control performance of pneumatic rubber artificialmuscle manipulator by using electroreological fluid damper [A]. Proceedings of the IEEEInternational Conference on Systems, Man and Cybernetics,1999, IV:788-793.
    [23]王祖温,隋立明,包钢.气动肌肉驱动关节的输入整形研究[J].机械工程学报,2005,41(1):66-70.
    [24]田社平,丁国清,林良明,等.人工肌肉自适应预测控制[J].仪器仪表学报,2001,22(3):86-87.
    [25]田社平,丁国清,颜德田,等.人工肌肉系统神经网络建模与控制[J].中国生物医学工程学报,2003,22(4):300-308.
    [26]刘荣,宗光华.人工肌肉驱动特性研究[J].高技术通讯,1998.6:34-38.
    [27]黄雨,范伟,彭光正.气动人工肌肉关节驱动特性实验研究[J].北京理工大学学报,2003,23(3):310-312.
    [28]黄雨,范伟,彭光正.气动人工肌肉驱动关节PID位置控制研究[J].液压与气动,2003.4:13-15.
    [29] K. Suzumori, S. Iikura, H. Tanaka. Flexible Microactuator for Miniature Robots [A]. Proc. IEEEMicro Electro Mechanical Systems Conf., Nara, Japan,1991,204-209.
    [30] Koichi Suzumori, Shoichi Likura, hiroshisa Tanaka. Development of Flexible Microactuator and ItsApplications to Robotic Mechanisms [A]. Proceedings of the1991IEEE International Conferenceon Robotics and Automation, Sacramento, California, April1991,1622-1627.
    [31] Koichi Suzumori, Toshihiro Maeda, Hiroshi Watanabe, et al. Fiberless Flexible MicroactuatorDesigned by Finite-Element Method [J]. IEEE/ASME Transactions on Mechatronics,1997,2(4):281-286.
    [32] Koichi Suzumori, Satoshi Endo, Takefumi Kanda. Optimal Design of Bending Pneumatic RubberActuator Based on Non-linear Finite Element Analysis [A].12th IFToMM World Congress France,2007.
    [33]于莲芝,颜国正,王瑞祥.用于呼吸道直接监测的柔性微机器人系统[J].机器人,2006,28(3):269-274.
    [34] Toshiro Noritsugu, Mitsuhiko Kubota, Sadaharu Yoshimatsu, Development of Pneumatic RotarySoft Actuator Made of Silicone Rubber [J], Journal of Robotics and Mechatronics,2001,13(1):17-22.
    [35] S.schulz, C.pylatiuk, G.Bretthauer. A New Ultralight Anthropomorphic Hand [A]. Proceedings of the2001IEEE International Conference on Robotics&Automation, Seoul, Corea, May2001
    [36]章军,须文波,范本隽.板弹簧柔性手指关节弯曲的模型研究[J].机械设计与研究2005,21(1):53-55.
    [37]章军,须文波.一种气-液复合驱动柔性关节的建模与动态仿真[J].中国机械工程,2006,17(15):1567-1571.
    [38]江南大学.板弹簧骨架液气动式柔性弯曲关节:中国,1618580[P].2005-05-25.
    [39] Harrell, R. C., Adsit, P. D., Pool, T. A.. The Florida robotic grove-lab [M]. Transactions of theASAE1990,33(2):391-399.
    [40] d'Esnon, A.G. Robotic Harvesting of Apples. Agri-Mation1[M]. ASAE,1985:210-214.
    [41]马履中,杨文亮,王成军,等.苹果采摘机器人末端执行器的结构设计与试验[J].农机化研究,2009,12:65-67.
    [42] Kondo N, Ting K C. Robotics for bio-production systems[M]. ASAE Publisher,1998.
    [43]杨庆华,金寅德,钱少明,等.基于气动柔性苹果采摘末端执行器研究[J].农业机械学报,2010,41(9):154-158.
    [44] Kondo N, Monta M, Fujiura T. Fruit harvesting robot in Japan [J]. Adv. Space Res.1996,18(1/2):181-184.
    [45] Monta, M., Kondo, N., Ting, K.C. Ting. End-effectors for tomato harvesting robot[J]. ArtificialIntelligence for Intelligence for Biology and Agriculture,1998:11-25.
    [46] Monta, M., Kondo, N., Ting, K.C. Harvesting end-effector for inverted single truss tomatoproduction systems. Journal of the Japanese Society of Agricultural Machinery,1998,60(6):97-104.
    [47] MONTA MITSUJI, NAMBA KAZUHIKO, NISHI TAKAO. Tele-robotics for Agriculture-TomatoHarvesting Experiment [J]. Proceedings of The Second International Symposium on Machinery andMechatronics for Agriculture and Bio-systems Engineering,2004.
    [48]刘继展,李萍萍,李智国.番茄采摘机器人末端执行器的硬件设计[J].农业机械学报,2008,39(3):109-112.
    [49] N. Kondo, Y. Nishitsuji, P. P. Ling,et a1Visual Feedback Guided Robotic Cherry TomatoHarvesting [M]. Transactions of the ASAE.1996,39(6):2331-2338.
    [50]张凯良,杨丽,张铁中.草莓收获机器人末端执行器的设计[J].农机化研究,2009,4:54-56.
    [51] Van Henten,E.J, Van,Tuijl B.A.J, Hemming,J.G. Field test of an autonomous cucumber picking robot[J]. Biosystems Engineering,2003,86(3):305-313.
    [52] Arima,S.,N.Kondo. Cucumber harvesting robot and plant training system. Journal of Robotics andMechatronics,1999,11(3):208-212.
    [53] Kondo, N., T. Nishi, M. Monta, et al. Studies on Image Recognition Algorithm of CucumberPlant[A]. Proceedings of the Food Processing Automation Conference,1994:478-486.
    [54] Reed J.N., Miles S.J., Butler J., et al. Automatic Mushroom Harvester Development [J]. Journal ofAgricultural Engineering Research,2001,78(1):15-23.
    [55] Reed, J. N., He, W.&Tillett, D.. Picking Mushrooms by Robot [J]. Proceedings of InternationalSymposium on Automation and Robotics in Bioproduction and Processing,1995:27-34.
    [56] Reed J N, Tillett R D. Initial experiments in robotic mushroom harvesting [J]. Mechatronics,1994,4,265-279.
    [57] Reed J N, Miles S J, Butler J, Baldwin M (1997). A robotic mushroom harvesting system formushrooms [A]. Bio Robotics '97International Workshop on Robotics and Automated Machineryfor Bio-Productions,1997,1-6.
    [58]周云山,李强,李红英,等.计算机视觉在蘑菇采摘机器上的应用[J].农业工程学报,1995,11(4):27-32.
    [59] Hayashi S, Ganno K, Lshii Y, et al. Robotic harvesting, system for eggplants [J]. JARQ,2002,36(3):163-168.
    [60]刘长林,张铁中,杨丽.茄子采摘机器人末端执行器设计[J].农机化研究,2008,12:62-64.
    [61] Murakami N, Inoue K, Otsuka K, et al. Selective harvesting robot of cabbage[C]. Proceedings ofinternational symposium of automation and robotics in bioproduction and processing, JSAM,1995,2:24-31.
    [62] Edan, Y., Miles, G.E. Design of an agricultural robot for harvesting melons [M]. Transactions of theASAE,1993,36(2):593-603.
    [63] Edan, Y., Miles, G.E., Flash, T.. Robotic melon harvester [J]. Service Robot1996,2(1):10-15.
    [64]陆怀民.林木球果采集机器人设计与试验[J].农业机械学报,2001,32(6):52-54.
    [65]周兵,何晶.模拟手枸杞采摘机设计[J].农业工程学报,2010,39(增刊):13-16.
    [66]鲍官军.气动柔性驱动器FPA的特性及其在多指灵巧手设计中的应用研究[D].杭州:浙江工业大学,2006.
    [67] Yang Qinghua, Zhang Libin, Bao Guanjun,et al. Research on novel flexible pneumatic actuator FPA[C]. Proceedings of IEEE Conference on Robotics, Automation and Mechatronics, Singapore,2004:385-389.
    [68]张立彬,杨庆华,鲍官军,等.一种气动柔性驱动器[P].中国,200510049589.5.2005-9-21.
    [69]杨庆华,张立彬,阮健.气动弯曲关节的特性研究[J].工程设计学报,2002,9(3):159-161.
    [70]杨庆华,张立彬,鲍官军,等.气动柔性弯曲关节的特性及其神经PID控制算法研究[J].农业工程学报,2004,20(4):88-91.
    [71] Shaoming Qian, Libin Zhang, Qinghua Yang,et al. Research on output force of flexible pneumaticbending joint[C].10th Intl. Conf. on Control, Automation, Robotics and Vision Hanoi, Vietnam,17–20December2008:144-148.
    [72] Shaoming Qian, Libin Zhang, Qinghua Yang,et al. Research on Adaptive Multi-contract GraspingModel of Flexible Pneumatic Finger[C]. Proceedings of the2009IEEE International Conference onMechatronics and Robotics, August9-12,Changchun:2823-2827.
    [73]王予谦,张慧慧,周强.三自由度人工肌肉驱动器的有限元静力学研究((a=0°的条件下)[J].北京工业大学学报,1999,25(1):15-19.
    [74]隋立明,王祖温,包钢.气动肌肉的刚度特性分析[J].中国机械工程,2004,15(3):242-244.
    [75] Raibert M H, Craig J. Hybrid position/force control of manipulator [J]. ASME Journal of DynamicSystems, Measurement and Control,1981,103(2):126-133.
    [76] Xiao D, Ghosh B K, Xi N, et al. Sensor-Based Hybrid Position/Force Control of a RobotManipulator in an Uncalibrated Environment [J]. IEEE Trans Control Syst Technol,2000,8(4):635-645.
    [77] Hogan N. Impedance control: An approach to manipulation, Part I-III [J]. Transactions of theASME Journal of Dynamic Systems. Measurement and Control,1985,107(1):1-24.
    [78] Chan S P, Yao Bin, Gao W B, et al. Robust impedance control of robot manipulators [J].International Journal of Robotics and Automation,1991,6(4):220-227.
    [79]李继婷,任大伟,张玉茹.机械手主从操作中的人手运动跟踪与识别[J].北京航空航天大学学报,2007,33(5):618-621.
    [80]李继婷,张玉茹,张启先.人手抓持识别与机械手的抓持规划[J].机器人,2002,24(6):530-534.
    [81]李继婷,张玉茹,郭卫东.机器人多指手灵巧抓持规划[J].机器人,2003,25(5):409-413.
    [82]王滨,姜力,刘宏. HIT/DLR多指手稳定抓取的控制策略[J].华中科技大学学报(自然科学版),2007,35(12):68-71.
    [83]熊有伦,熊蔡华.机器人多指抓取的研究进展与展望[J].华中科技大学学报(自然科学版),2004,32(增刊):5-10.
    [84]姜世平,陈莹.基于人工神经网络的机械设计过程专家系统知识库的设计与实现[J].中国机械工程,2002,13(12):1034-1037.
    [85]朱援祥,张小飞,孙秦明,等.基于知识库的焊接裂纹诊断专家系统[J].焊接学报,2001,22(3):59-62.
    [86]曲爱丽,陶凯,王冬梅,等.髋关节假体专家系统中力学评价方法的实现[J].上海交通大学学报,2006,40(8):1452-1456.
    [87]韩秋实,许宝杰,王红军,等.旋转机械故障诊断监测专家系统中的时间序列模式识别技术研究[J].机械工程学报,2002,38(3):104-107.
    [88]杨西侠,林家恒.基于专家系统的自校正模糊控制器[J].测控技术,2000,19(11):42-44.
    [89] Napier.J.R. The Prehensile Movements of the Human Hand [J]. Journal of Bone and Joint Surgery,1956,38(4):902-913.
    [90] Liu, H, lberali, T., Bekey, G.A. The Multidimensional Quality of Task Requirement for DexterousRobot Hand Control [A], Proc IEEE Conf. on Robotics nad Automation,1989,452-456.
    [91] Salisbury.J.K.. Craig.J.J. Articulated Hands: Force Control and Kinematic Issues [J]. Journal ofRobotics Research,1987,1(1):3-17.
    [92] Cutkosky, MR., On Grasp Choice. Grasp Models and the Design of Hands for Manufacturing Tasks[J], IEEE Transactions on Robotics and Automation,1989,5(3):269-279.
    [93] Reuleaux F. Kinematics of machinery [M]. New York: Dover,1963.
    [94] Markenscoff X, Ni L, Papadimitriou C H. The geometry of grasping [J]. The InternationalJournal of Robotics Research,1990,9(1):61-72.
    [95] Mishra B, Schwartz J T, Sharir M. On the existence and synthesis of multifinger positive grips,Algorithmica, Special Issue: Robotics,1987,6(2):72-83.
    [96] Selig A J, Rooney P K. Reuleaux pairs and surfaces that cannot be gripped [J]. The InternationalJournal of Robotics Research,1989,8(5):79-87.
    [97]李剑锋,张玉茹,王新华,等.多指手Power抓持的鲁棒性分析及稳定载荷域计算[J].中国机械工程,2004,15(7):628-631.
    [98] M. Yashima, H. Yamaguchi. Control of whole finger manipulation utilizing frictionless slidingcontact-theory and experiment [J]. Mechanism and Machine Theory,1999,34(8):1255-1269.
    [99] Lionel Birglen, Cle′ment M. Gosselin. Grasp-state plane analysis of two-phalanx underactuatedfingers[J]. Mechanism and Machine Theory,2006,41(7):807–822.
    [100] Masahiro Kondo, Jun Ueda, Tsukasa Ogasawara. Recognition of in-hand manipulation usingcontact state transition for multifingered robot hand control[J]. Robotics and Autonomous Systems,2008,56(1):66–81.
    [101] Jun Ueda, Masahiro Kondo, Tsukasa Ogasawara. The multifingered NAIST hand system forrobot in-hand manipulation [J]. Mechanism and Machine Theory,2010,45(2):224–238.
    [102] http://sensing.honeywell.com/index.cfm/ci_id/154366/la_id/1.htm
    [103] Analog Devives. Datasheet of single supply, rail-to-rail, low cost instrumentation amplifierAD623.
    [104]李家炜,刘宏,蔡鹤皋.多指机器人手协调控制研究进展[J].机器人,2000,22(4):319-328.
    [105] http://www.maxonmotor.com/product_overview_details_maxon_dc_motor.html
    [106] Kawasaki H, Komatsu T, Uchiyama K. Dexterous anthropomorphic robot hand with distributedtactile sensor:Gifu Hand II [J]. IEEE Transaction on Mechatronics,2002,7(3):296-303.
    [107] Tetsuya M, Kawasaki H, Keisuke Y, Jun T, Satoshi I. Anthropomorphic Robot Hand: Gifu HandIII [A]. Proceedings of ICCAS2002[C]. Jeonbuk:2002:1288-1293.
    [108] Gao X H, Jin M H, Jiang L, et al. The DLR/HIT dexterous hand: work in progress [C].Proceedings of IEEE International Conference on Robotics and Automation, Taipei,2003:3164–3168.
    [109] Wei R, Gao X H, Jin M H, et al. FPGA based Hardware Architecture for HIT/DLR Hand [C].Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Edmonton,,2005:3233–3238.
    [110] Kondo M, Ueda J, Ogasawara T. Recognition of in-hand manipulation using contact statetransition for multifingered robot hand control [J]. Robotics and Autonomous Systems,2008,56(1):66–81.
    [111] Ueda J, Kondo M, OGASAWARA T. The multifingered NAIST hand system for robot in-handmanipulation [J]. Mechanism and Machine Theory,2010,45(2):224-238.
    [112] Kargov A, Werner T, Pylatiuk C, et al. Development of a miniaturised hydraulic actuationsystem for artificial hands [J]. Sensors and Actuators,2008,141(2):548-557.
    [113]张付祥.创伤手指康复机械手系统研究[D].哈尔滨:哈尔滨工业大学,2007.
    [114] Auatriamicrosystems. AS504512bit programmable magnetic rotary encoder data sheet.2005:1-24.