(Bi,Sb)_2(Te,Se)_3系热电材料的制备及性能优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Bi_2Te_3系化合物是室温下热电性能最好的热电材料之一,已在微电子,光电子器件的冷却和恒温、生物芯片、医疗器材及国防特种制冷等多种领域有所应用。块体Bi_2Te_3系化合物的制备通常采用单晶的制备方法,尽管单晶材料的一致取向性使它在某个方向上的性能优于多晶材料,但单晶材料容易沿解理面发生断裂,机械加工性能差,为后续的模块化加工带来了困难,造成了大量不必要的浪费。因此,具有各向同性和微细结构的多晶Bi_2Te_3系材料受到了研究者的青睐,制备多晶材料的粉末冶金方法受到了重视,在保证多晶材料机械性能的同时最大限度的提高其热电性能,成为Bi_2Te_3系热电材料研究的重点。
     本文采用机械合金化(MA)结合不同的成形工艺,包括热压(HP)、等离子体活化烧结(PAS)或等通道转角挤压(ECAE)制备了p型和n型Bi_2Te_3系热电材料,通过X射线衍射(XRD),场发射扫描电子显微分析(FE-SEM),X射线能谱(EDS),差热分析(DTA),透射电子显微分析(TEM),正电子湮灭寿命分析(PAT),红外光谱分析(FTIR),Seebeck系数,电阻率,载流子浓度,迁移率及热导率测试等多种分析检测手段,研究了成形工艺条件,掺杂种类及掺杂量对Bi_2Te_3系合金的微观结构和热电性能的影响。
     通过分析Bi_2Te_3系热电材料的性能优化设计方案及国内外的研究现状、发展趋势,提出了本文的研究目的、意义及研究内容。考察了MA工艺对Bi_2Te_3系化合物合金化过程的影响,优化了合成Bi_2Te_3系热电材料的MA工艺条件。研究了HP和PAS工艺中烧结时间、烧结温度对p型Bi_(0.5)Sb_(1.5)Te_3和n型Bi_2Te_(2.85)Se_(0.15)合金微观结构和热电性能的影响,发现烧结体内晶粒的基本面(0 0 l)沿垂直于压力方向出现择优取向。室温下,p型Bi_(0.5)Sb_(1.5)Te_3和n型Bi_2Te_(2.85)Se_(0.15)的PAS烧结样品的最大热电优值分别为2.85×10-3K-1和1.8×10-3K-1,p型Bi_(0.5)Sb_(1.5)Te_3和n型Bi_2Te_(2.85)Se_(0.15)合金的HP烧结样品最大热电优值分别为2.84×10~(-3)K~(-1)和1.4×10~(-3)K~(-1)。
     考察了HP和PAS工艺中Sb_2Te_3名义成分变化及Te掺杂对p型合金(Bi_2Te_3)1-x(Sb_2Te_3) x微观结构和热电性能的影响,首次在Bi_2Te_3系合金中发现了孪晶亚结构和调幅组织,增强了缺陷对声子的散射效应,降低了合金的晶格热导率。首次采用正电子湮灭谱学分析了成分为Bi_(0.4)Sb_(1.6)Te_3的单晶试样、HP和PAS烧结样品中晶格缺陷浓度的高低,单晶试样的空位浓度要明显低于HP烧结样,PAS烧结样介于两者之间。FTIR分析表明,随Sb_2Te_3含量增加,(Bi_2Te_3)1-x(Sb_2Te_3)x合金的能隙从0.26eV降低到了0.23eV。PAS工艺中,当名义成分为(Bi_2Te_3)0.2(Sb_2Te_3)0.8时得到了最大热电优值,Z=5.26×10~(-3) K~(-1),这是目前所有文献报导的块体Bi_2Te_3系合金中热电性能的最高值。过量Te的掺杂削弱了合金Bi_(0.4)Sb_(1.6)Te_3的热电性能,当掺杂Te量增加到8wt.%时,热电优值Z从未掺杂样的5.26×10-3K-1降低到了4.44×10-3K-1。
     考察了Se、Sb含量变化,AgI、CuBr2掺杂对n型Bi2-xSbxTe2.85Se0.15合金热电性能的影响。当采用0.2wt.%的AgI掺杂时,得到了最大热电优值Z=1.86×10~(-3)K~(-1)。采用ECAE工艺,使p型Bi_(0.4)Sb_(1.6)Te_3和n型Bi_2Te_(2.85)Se_(0.15)合金的基本面(0 0 l)在平行于挤压方向出现了择优取向,n型和p型样品的最高取向因子分别达到了0.28和0.36。择优取向的形成使平行于挤压方向的热电性能要远远高于垂直于挤压方向,343K时p型Bi_(0.4)Sb_(1.6)Te_3和n型Bi_2Te_(2.85)Se_(0.15)合金在平行于挤压方向得到了最大无量纲热电优值ZT,分别为0.979和0.66。
     在微波辅助湿化学法合成Bi_2Te_3纳米片和电弧等离子体沉积合成椭球形Bi_2Te_3纳米粉末基础上,分别考察了Bi_2Te_3纳米片和椭球形Bi_2Te_3纳米粉末复合对块体Bi_2Te_3合金热电性能的影响,当纳米粉末的掺杂量提高到15wt.%时,相比无掺杂试样,合金的晶格热导率降低了近20%。
As one of the most excellent thermoelectric materials near room temperature, bismuth telluride based compounds are extensively used as Peltier cooler for microelectronic devices, photoelectronic devices, biologic slug, medical appliance, military equipment and etc. Currently, they are usually prepared by unidirectional crystal growth methods. Although the resulting single crystal materials present excellent thermoelectric properties along the growth direction, the Te(1)–Te(1) layers bonded with weak Van der Waals force,which aligns orientationally in the single crystal materials, makes them more fragile and difficult for machining. Therefore, the isotropic mechanically strong materials with good thermoelectric properties are more preferable. Powder metallurgical methods, which produce randomly oriented polycrystalline and fine microstructure, and thus good mechanical properties for bismuth telluride based materials, are extensively studied.
     p-type and n-type Bi_2Te_3 based thermoelectric materials were prepared by mechanical alloying (MA) and different sintering processes, including hot pressing (HP), plasma activated sintering (PAS) and equal channel angular extrusion (ECAE) in the present work. The X-ray diffraction (XRD), differential thermal analysis (DTA), field emission scanning electron microscope (FE-SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscope (TEM), infrared spectroscopy (FTIR), positron annihilation technology (PAT) , electrical resistivity, Seebeck coefficient, carrier concentration, mobility and thermal conductivity measurement were applied to analysis the microstructure and thermoelectric properties. Effects of sintering process parameters, doping on the microstructure and thermoelectric properties of Bi_2Te_3 based alloys were investigated.
     Based on a detailed review on the research and development status for Bi_2Te_3 based thermoelectric materials, the research goal, task and content of this work were then put forward. The effect of MA process parameters on the alloying process of Bi_2Te_3 based alloys was investigated and the MA process parameters were optimized. The effects of sintering time, sintering temperature on the microstructure and thermoelectric properties of p-type Bi_(0.5)Sb_(1.5)Te_3 and n-type Bi_2Te_(2.85)Se_(0.15) alloys were researched. A preferentially orientated microstructure with the basal planes (0 0 Z) perpendicular to the pressing direction was formed in the sintering samples. The maximum figures of merit (Z) of the as-PASed p-type Bi_(0.5)Sb_(1.5)Te_3 and n-type Bi_2Te_(2.85)Se_(0.15) alloys at room temperature were 2.85×10-3K-1 and 1.8×10-3K-1, and the maximum figures of merit (Z) of the as-HPed p-type Bi_(0.5)Sb_(1.5)Te_3 and n-type Bi_2Te_(2.85)Se_(0.15) alloys at room temperature were 2.84×10~(-3)K~(-1) and 1.4×10~(-3)K~(-1), respectively.
     The effects of nominal Sb_2Te_3 concentration and Te doping on the microstructure and thermoelectric properties of p-type (Bi_2Te_3)1-x(Sb_2Te_3)x alloys were investigated. For the first time, both twin crystals and spinodal decomposition were observed in the HPed and PASed Bi_2Te_3 based alloys, which enhanced the phonon scattering contribution of crystal defects and thus reduced the crystal thermal conductivity. The positron annihilation spectroscopy was firstly applied to analyze the concentration of deffect of the HPed, PASed polycrystal materials and the single crystal Bi_(0.4)Sb_(1.6)Te_3. The vacancy concentration of the as-PASed alloy was lower than that of the as-HPed alloy but higher than that of the single crystal. FTIR analysis showed that the band gap decreased from 0.26eV to 0.23eV with increasing the nominal concentration of Sb_2Te_3. The maximum figure of merit (Z) of the as-PASed Bi_(0.4)Sb_(1.6)Te_3 alloys reached 5.26×10-3K-1 at 300 K. To our knowledge, this was also the highest figure of merit that has ever been reported for p-type Bi_2Te_3 based bulk materials. Te doping deteriorated the thermoelectric properties of Bi_(0.4)Sb_(1.6)Te_3, and the figure of merit (Z) decreased from 5.26×10-3K-1 of the undoping alloys to 4.44×10-3K-1 with 8wt.% Te dopant.
     The effects of the concentration of Se, Sb and AgI, CuBr2 dopants on the thermoelectric properties of n-type Bi_2Te_3 based alloys were also investigated. A maximum figure of merit (Z) of the n-type alloys Bi_2Te_(2.85)Se_(0.15) with 0.2wt.% AgI dopant was obtained as 1.86×10-3K-1.
     By the ECAE process, an obvious preferentially orientated microstructure with the basal planes (0 0 l) in parallel to the extrusion direction was formed in the p-type Bi_(0.4)Sb_(1.6)Te_3 and n-type Bi_2Te_(2.85)Se_(0.15) alloys. The maximum orientation factor of the p-type and n-type alloys reached 0.36 and 0.28. The formation of preferentially orientated microstructure resulted in the thermoelectric properties along the parallel direction to the extrusion was more optimized than that of the perpendicular direction to the extrusion. The maximum dimensionless figures of merit (ZT) of p-type Bi_(0.4)Sb_(1.6)Te_3 and n-type Bi_2Te_(2.85)Se_(0.15) alloys reached 0.979 and 0.66 at 343K, respectively.
     The nano-sheet and ellipsoid shaped nano-powders Bi_2Te_3 were prepared by microwave assistant wet-chemical technique and arc-plasma deposition technique respectively and then they were added into the as-MAed powders for consolidation. The effects of the concentration of nano-sheet and ellipsoid shaped nano-powders Bi_2Te_3 on the thermoelectric properties of bulk Bi_2Te_3 were investigated. When the doping concentration was 15wt.%, the crystal thermal conductivity reduced 20% than the undoping alloys.
引文
[1] F.J. Disalvo. Thermoelectric cooling and power generation. Science, 1999, 285: 703-706.
    [2]徐德胜,半导体制冷与应用技术,上海:上海交通大学出版社,1992,1-7.
    [3] G. Mahan, B. Sales, J. Sharp. Thermoelectric materials: new approaches to an old problem. Physics Today, 1997, 4:42-47.
    [4] A.F. Loffe. Semiconductors thermoelements and thermoelectric cooling. London: Infosearch, 1957, 36-41.
    [5] M.Telkes. The efficiency of thermoelectric generators. International J. Appl. Phys., 1947, 18:1116-1127.
    [6]黄昆,韩汝琦.固体物理学,北京:高等教育出版社,2000,142-145.
    [7]刘恩科.半导体物理学,北京:国防工业出版社,2003,167-169.
    [8]高敏,张景韶,D. M. Rowe.温差电转换及其应用.北京:兵器工业出版社,1996,276-317.
    [9] J.E. Parrott. Transport theory of semiconductor energy conversion. J. Appl. Phys.,1982, 53(12):9105-9111.
    [10] G.S. Nolas, G.A. Slack, J.L. Cohn, et al. The next generation of thermoelectric materials. In Proc. of the 17th Int. Conf. on thermoelectrics, Nagoya, Japan: IEEE, 1998, 294-297.
    [11] R.S. Culp, S.J. Poon, N. Hickman, et al. Effect of substitutions on the thermoelectric figure of merit of half-Heusler phases at 800°C. Appl. Phys. Lett., 2006, 88: 042106-042109.
    [12]唐新峰,陈立东,后藤孝,等.填充式Skutterudite化合物:BayFexCo4-xSb12的多步固相反应合成及结构.物理学报, 2000, 49(11): 2196-2199.
    [13] D. A. Broido, T. L. Reinecke. Effect of superlattice structure on the thermoelectric figure of merit. Phy. Rev. B, 1995, 51(19):13797-137801.
    [14] R.F. Service. Temperature rises for devices that turn heat into electricity. Science, 2004, 306: 806-807.
    [15] W. Corinna. A silent tool thermoelectrics may offer new ways to refrigerate and generate power. Science news Online, September 6, 1997, 3.
    [16] Anonymous. Hot water generates electricity. Current Science, 2003, 88:12.
    [17] G.S. Nolas, T.M. Tritt. The effect of various filled atoms on the thermoelectric properties of ternary skutterudites. In Proc. of the 18th Int. Conf. on thermoelectrics, Baltimore, USA, 1999: 325-328
    [18] A. Majumdar. Thermoelectricity in semiconductor nanostructures. Science, 2004, 303: 777-778.
    [19] B. C. Sales. Smaller is cooler. Science, 2002, 295: 1248-1249.
    [20] K.F. Hsu, S. Loo, Fu Guo, et al. Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Science, 2004, 303: 818-821.
    [21] I.A. Shiota. Development of FGM thermoelectric materials in Japan. In Proc. of the 16th Int. Conf. on thermoelectrics, Dresden, Germany, 1997:364-370.
    [22] D.T. Morelli, T. Caillal, J.W. Vandersande, et al. Low-temperature transport properties of p-type CoSb3. Phys. Rev. B 1957,51: 9622-9625.
    [23] B.C. Sales, D. Mandrus, B.C. Chakoumakos, et al. Filled Skutterudite antimonides: electron crystals and phonon glasses. Phys. Rev. B, 1997, 56(23): 15081-15086.
    [24] J.Y. Yang, Y.H. Chen,W. Zhu, et al. Effect of La filling on thermoelectric properties of LaxCo3.6Ni0.4Sb12-filled skutterudite prepared by MA–HP method. Journal of Solid State Chemistry. 2006, 179(1): 212-216.
    [25] R. Hara, S. Inoue, H.T. Kaibe. Aging effects of large-size n-type CoSb3 prepared by spark plasma sintering. J. Alloys Compd., 2003, 349: 297-301.
    [26]唐新峰,陈立东,後藤孝,等. Ce填充分数对P型CeyFe1.5Co2.5Sb12化合物热电传输特性的影响.物理学报, 2000, 49(12): 2461-2465.
    [27] S. Bhattacharya, A.L. Pope, R.T. Littleton, et al. Effect of Sb doping on the thermoelectric properties of Ti-based half-Heusler compounds, TiNiSn1–xSbx. Appl. Phys. Lett., 2000,77,(16):2476-2478.
    [28] Q. Shen, L. Chen, T. Goto et al. Effects of partial substitution of Ni by Pd on the thermoelectric properties of ZrNiSn-based half-Heusler compounds. Appl. Phys. Lett., 2001, 79(25):4165-4167.
    [29] Y. Wang, N. S. Rogado, R. J. Cava, et al. Spin entropy as the likely source of enhanced thermopower in NaxCo2O4. Nature. 2003, 423: 425-428.
    [30] C. Masset, C. Michel, A. Maignan, et al. Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca3Co4O9. Phys. Rev. B. 2000, 62: 166-175.
    [31] D.L. Wang, L.D. Chen, Q. Yao, et al. High-temperature thermoelectric properties of Ca3Co4O9+δwith Eu substitution. Solid State Communications. 2004,129:615–618.
    [32] B. C. Sales, G. S. Nolas, V. Fessatidis, et al. Atomic Displacement Parameters and the Lattice Thermal Conductivity of Clathrate-like Thermoelectric Compounds. Journal of Solid State chemistry, 1999,146(2):528-532.
    [33] G.S. Nolas, J.L. Cohn, G.A. Slack, et al. Semiconducting Ge clathrates: promising candidates for thermoelectric applications. Appl. Phys. Lett., 1998, 73(2):178-180
    [34] T. Caillat, J. P. Fleurial, A. Borshchevky, Preparation and thermoelectric properties of semiconducting Zn4Sb3. J. Phys. Chem. Solids, 1997, 58: 1119-1125
    [35] L.R. Testardi. Anomalous laser-induced voltages in YBa2Cu3Ox and“off-diagonal”thermoelectricity. Appl Phys Lett, 1994, 64: 2347-2349.
    [36] N. Mateeva, H. Niculescu, J. Schlenoff, et al. Correlation of Seebeck coefficient and electric conductivity in polyaniline and polypyrrole. J Appl Phys, 1998,83:3111.
    [37] O. Yamashita and S. Tomiyoshi. Effect of annealing on thermoelectric properties of bismuth telluride compounds doped with various additives. J Appl Phys.2004,95(1): 161-170.
    [38] O. Yamashita and S. Tomiyoshi. High performance n-type bismuth telluride with highly stable thermoelectric figure of merit. J Appl Phys.2004,95(11): 6277-6283.
    [39] J.Y. Yang, T. Aizawa, A. Yamamoto, et al. Thermoelectric properties of n-type (Bi2Se3)x(Bi2Te3)1?x prepared by bulk mechanical alloying and hot pressing. J Alloys Compd. 2000 ,312: 326–330.
    [40] E. Koukharenko , N. Fre′ty , , V.G. Shepelevich, et al. Electrical properties of Bi2?xSbxTe3 materials obtained by ultrarapid quenching J Alloys Comps, 2001,327: 1–4.
    [41] E. Koukharenko , N. Fre′ty , V.G. Shepelevich,et al. Thermoelectric properties of Bi2Te3 material obtained by the ultrarapid quenching process route. J Alloys Comps, 2000, 299: 254–257.
    [42]陈柔刚. n型Bi2Te3系热电材料制备与性能研究.华中科技大学硕士论文, 2005, 16-18.
    [43] T.S. Oh, D.B. Hyun, N.V. Kolomoets. Thermoelectric properties of the hot-pressed (Bi,Sb)2(Te,Se)3 alloys. Scripta mater. 2000,42: 849–854.
    [44] D. Eyidi, D. Maier, O. Eibl, et al. phys. stat. sol. (a). 2001,187(2): 585–600.
    [45] B. Lenoir, A. Dauscher, M. Cassart, et al. Effect of antimony content on the thermoelectric figure of merit of Bi1?xSbx alloys. J. Phys.Chem. Solids, 1998, 59(1): 129-134.
    [46] J. Seo , C. Lee , K. Park. Effect of extrusion temperature and dopant on thermoelectric properties for hot-extruded p-type Te-doped Bi0.5Sb1.5Te3 and n-type SbI3-doped Bi2Te2.85Se0.15. Materials Science and Engineering B, 1998; 54: 135-140.
    [47] T.S. Kim, I.S. Kim, T.K. Kim et al. Thermoelectric properties of p-type 25%Bi2Te3+75%Sb2Te3 alloys manufactured by rapid solidification and hot pressing. Materials Science and Engineering B, 2002; 90: 42–46.
    [48] O. Yamashita, Shoichi Tomiyoshi, Bismuth telluride compounds with high thermoelectric figures of merit. J Appl Phys., 2003, 93(1): 368-376.
    [49] D.B. Hyun, J.S. Hwang, T.S. OH, et al, Electrical properties of the 85% Bi2Te3-15% Bi2Se3 thermoelectric material doped with SbI3 and CuBr. J. Phys. Chem. Solids. 59:1039-1044.
    [50] J. Jiang, L.D. Chen, Q.Yao, et al. Effect of TeI4 content on the thermoelectric properties of n-type Bi–Te–Se crystals prepared by zone melting. Materials Chemistry and Physics 2005, 92: 39–42.
    [51] V. A. Greanya, W. C. Tonjes, and Rong Liu. Physical Review B, 2000, 62(24): 16426-16429.
    [52] F. K ONIG. Cryst. Res. Technol.1998,33(2):219-232.
    [53]顾永明,郭燕明.生长速度对N型和P型Bi-Te热电材料性能的影响.上海大学学报(自然科学版), 1999, 5(4):311-306
    [54] D. Eyidi, D. Maier, O. Eibl, et al. phys.stat. sol. (a) ,2001 187,(2): 585–600.
    [55] D. Perrin, M. Chitroub, S. Scherrer,et al. Study of the n-type Bi2Te2.7Se0.3 doped with bromine impurity. Journal of Physics and Chemistry of Solids, 2000,61 :1687–1691
    [56] N.T. Huong, Y. Setou, G. Nakamoto, et al. High thermoelectric performance at low temperature of p-Bi1.8Sb0.2Te3.0 grown by the gradient freeze method from Te-rich melt. J Alloys Comps, 2004; 368: 44-50.
    [57] V.S. Zemskov, A.D. Belaya, U. S. Beluy et al. Growth and investigation of thermoelectric properties of Bi–Sb alloy single crystals. Journal of Crystal Growth, 2000; 212:161-166.
    [58]胡淑红,赵新兵,朱铁军.机械合金化法制备的Mn15Bi34Te51和La15B34Te51热电材料.稀有金属材料与工程, 2002; 31(4): 287-290
    [59] Yuma Horio, Toshiharu Hoshi. Amorphous Thermoelectric Alloys and thermoelectric Couple Using Same, U.S. Patent, 1998;10, 5,726
    [60] Y. Kato et al. J japan Soc, Powder and powder metallurgy, 1995, 42(7): 847-853.
    [61] X.H. Ji, X.B. Zhao, Y.H. Zhang, et al. Synthesis and properties of rare earth containing Bi2Te3 based thermoelectric alloys. J Alloys Compd. 2005, 387: 282-286.
    [62]吉晓华,赵新兵,倪华良,等.溶剂热合成Bi2Te3基合金的结构与电学性能,中国有色金属学报,2004,14(1):28-33.
    [63] X.B. Zhao, X.H. Ji, Y.H. Zhang, et al. Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites. Appl. Phys. Lett. 2005, 86:062111-062113.
    [64] R.M. Lopez , B. Lenoir, X. Devaux et al. Mechanical alloying of BiSb semiconducting alloys. Materials Science and Engineering A, 1998: 248: 147–152.
    [65] N. Bouad, R.M. Marinayral, J.C. Te′denac. Mechanical alloying and sintering of lead telluride J Alloys Compd, 2000 297:312–318.
    [66] X.B. Zhao, S.H. Hu , M.J. Zhao , et al.. Thermoelectric properties of Bi0.5Sb1.5Te3/polyaniline hybrids prepared by mechanical blending. Materials Letters 2002, 52:147–149
    [67] P. Pierrat , A. Dauscher , R. Lenoir et al. Preparation of the Bi8Sb32Te60 solid solution by mechanical alloying. Journal of Materials Science, 1997; 32 (14): 3653 -3657.
    [68] J.Y. Yang , T. Aizawa , A. Yamamoto et al. Thermoelectric properties of n-type (Bi2Se3)x(Bi2Te3)1?x prepared by bulk mechanical alloying and hot pressing. J Alloys Comps, 2000; 312 : 326–330.
    [69] J.Y. Yang, T. Aizawa, A. Yamamoto et al. Effects of interface layer on thermoelectric properties of a pn junction prepared via the BMA-HP method. Materials Science and Engineering B, 2001, 85: 34–37.
    [70] J. Yang , T. Aizawa , A. Yamamoto et al. Thermoelectric properties of p-type (Bi2Te3)x(Sb2Te3)1?x prepared via bulk mechanical alloying and hot pressing. J Alloys Comps, 2000; 309:225–228.
    [71] S.J. Hong , B.S. Chun. Microstructure and thermoelectric properties of extruded n-type 95%Bi2Te2–5%Bi2Se3 alloy along bar length. Materials Science and Engineering A, 2003; 356: 345-351.
    [72] S.J. Hong, S.H. Lee, B.S. Chun. Thermoelectric properties of newly fabricated n-type 95%Bi2Te2–5%Bi2Se3 alloys by gas atomizing and extrusion process. Materials Science and Engineering B, 2003, 98: 232-238.
    [73] J.Seo, K. Park, D. Lee, et al. Thermoelectric properties of hot-pressed n-type Bi2Te2.85Se0.15 compounds doped with SbI3. Materials Science and Engineering B, 1997, 49: 247-250.
    [74] S. Yamanaka, Atsuko Kosuga, Ken Kurosaki. Thermoelectric properties of Tl9BiTe6. J AlloysComps, 2003, 352: 275–278.
    [75] J. Seo, K. Park, C. Lee. Fabrication and Thermoelectric Properties of n-Type SbI3-Doped Bi2Te2.85Se0.15 Compounds by Hot Extrusion. Materials Research Bulletin, 1998 33(4): 553–559.
    [76] J. Seo, D. Cho, K. Park et al.. Fabrication and thermoelectric properties of p-type Bi0.5Sb1.5Te3 compounds by ingot extrusion. Materials Research Bulletin, 2000, 35: 2157–2163.
    [77] S. Miura, Y. Sato, K. Fukuda et al. Texture and thermoelectric properties of hot-extruded Bi2Te3 compound. Materials Science and Engineerin g A, 2000, 277: 244–249.
    [78]高濂,宫本大树.放电等离子烧结技术.无机材料学报,1997,14 (2) :129-133.
    [79]彭金辉,张利波,张世敏.等离子体活化烧结技术新进展,云南冶金,2000,29(3):42-44.
    [80] Masao Tokita. Trends in Advanced SPS Systems and FGM Technology. NEDO International Symposium on Functionally Graded Materials, Mielparque, Tokyo , Japan , , 1999 : 23-33.
    [81] L.D. Chen, J. Jiang, X. Shi. Thermoelectric performance of textured Bi2Te3-based sintered materials prepared by spark plasma sintering. Mat. Res. Soc. Symp. Proc, 2004, 793: 931-939.
    [82] N. Keawprak, Z.M. Sun, H. Hashimoto, et al. Effect of sintering temperature on the thermoelectric properties of pulse discharge sintered (Bi0.24Sb0.76)2Te3 alloy J Alloys Comps, 2005,397:236–244.
    [83] J. Jiang, L.D. Chen, S.Q. Bai, et al. Fabrication and thermoelectric performance of textured n-type Bi2(Te,Se)3 by spark plasma sintering. Materials Science and Engineering B,2005 117: 334–338.
    [84] J. Jiang, L.D. Chen, S.Q. et al. Thermoelectric performance of p-type Bi–Sb–Te materials prepared by spark plasma sintering. Journal of Alloys and Compounds 2005, 390: 208–211.
    [85] L.D. Hicks, M.S. Dresselhaus. Effect of quantum-well structures on the thermoelectric figure of merit. Physical Review B, 1993, 47(19): 12727-12731.
    [86] G. Chen. Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices Physical Review B,1998, 57(23): 14958-149973.
    [87] R. Venkatasubramanian, E. Siivola, T. Colpitts, et al. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature, 2001, 413: 597-602.
    [88] T. C. Harman, P. J. Taylor, M. P. Walsh, et al. Quantum Dot superlattice thermoelectric materials and devices. Science, 2002, 297: 2229-2232.
    [89] T. C. Harman, M. P. Walsh, B. E. Laforge, et al. Journal of Electronic Materials, 2005, 34(5):L19-L22.
    [90] L.D.Hicks, M.S. Dresselhaus. Thermoelectric figure of merit of a one-dimensional conductor Physical review B, 1993, 47(24): 16631-16634.
    [91] D.A. Borca, G. Chen, A. Prieto, et al. Thermal properties of electrodeposited bismuth telluride nanowires embedded in amorphous alumina. Appl. Phys. Lett., 2004,85(24): 6001-6003.
    [92] V. B. Ufimtsev and V. B. Osvenksy. Structure, Homogeneity and Properties of Thermoelectric Materials Based on Ternary Solid Solutions of Bismuth and Antimony Chalcogenides. Adv. Perform. Mater., 1997, 4:189-197
    [93] M. Toprak, Y. Zhang, M. Muhammed. Chemical alloying and characterization of nanocrystalline bismuth telluride. Mater. Lett., 2003, 57: 3976–3982
    [94] P. S. Gilman, J. S. Benjamin. Mechanical Alloying. Ann. Rev. Mater. Sci., 1983, 13(1): 279-300.
    [95] E. G. Dzhafarov, T. D. Alieva, and D. Sh. Abdinov. Effect of Grain Size on the Textureand Thermoelectric Properties of Extruded Bi2Te2.7Se0.3 Solid Solutions. Inorg. Mater. 2001, 37(2): 135-137
    [96] H. Tashiro, M. Yonetsu, S. Matsu, et al. Thermoelctric properties of Bismuth-Telluride based compounds prepared by particulate processing. In Proc. of the 18th Int. Conf. on thermoelectrics, 1999: 717-720
    [97] K. Hasezaki, M. Nishimura, M. Umata, et al. Mechanical alloying of BiTe and BiSbTe thermoelectric meaterials. Mater. Trans. JIM, 1994, 35(6): 428-432.
    [98] H. Kohri, X. Dauphin, K. Hasezaki et al. Control of grain size and crystal orientation for Bi-Sb-Te compounds. In Proc. of the 20th Int. Conf. on thermoelectrics, 2001:121-124.
    [99] J.Y. Yang, T. Aizawa , A. Yamamoto,et al. Effect of processing parameters on thermoelectric properties of p-type (Bi2Te3)0.25(Sb2Te3)0.75 prepared via BMA–HP method Mater. Chem. Phys. 70 (2001) 90-94.
    [100] T.S. Kim, I.S. Kim, T.K. Kim, et al. Effect of processing parameters on thermoelectric properties of p-type (Bi2Te3)0.25(Sb2Te3)0.75 prepared via BMA–HP method. Mater. Sci. and Eng. B90 (2002) 42-46.
    [101] X. A. Fan, J Y Yang, R G Chen, et al. Characterization and thermoelectric properties of p-type 25%Bi2Te3–75%Sb2Te3 prepared via mechanical alloying and plasma activated sintering, J. Phys. D: Appl. Phys. 39, 2006: 740-745.
    [102] X. A. Fan, J.Y. Yang, W. Zhu, et al. Microstructure and thermoelectric properties of n-type Bi2Te2.85Se0.15 prepared by mechanical alloying and plasma activated sintering, J. Alloys Compd.2006,420:256-259.
    [103] Ionescu R, Jaklovszky J, Nistor N, Chiculita A. Phys Stat Sol (a) 1975;27:27..
    [104]蒋俊,许高杰,崔平,陈立东. TeI4掺杂量对n型Bi2Te3基烧结材料热电性能的影响.物理学报, 2006, 55(9):4849-4853.
    [105]张联盟;沈强;李俊国,等. Sn离子注入PbTe的热电性能和结构.物理学报, 1999, 48(12):2334-2342.
    [106] F.K. Lotgering and J. Inorg. Nucl. Chem. 1959 9 113.
    [107] N. Keawprak, Z.M. Sun, H. Hashimoto, et al. J. Alloys Compd. 2005397 236.
    [108] X. A. Fan, J.Y. Yang, W. Zhu, et al. Effect of nominal Sb2Te3 content on thermoelectric properties of p-type (Bi2Te3)x(Sb2Te3)1-x alloys by MA-HP. J. Phys. D: Appl. Phys. 2006,39:1-5.
    [109] K. Yamazaki, S. H. Risbud, H. Aoyama, K. Shoda, J. Mater. Process Technol. 56 (1996) 955-965.
    [110]J. X. Zhang, Q. M. Lu, K. G. Liu, et al. Synthesis and thermoelectric properties of CoSb3compounds by spark plasma sintering. Materials Letters, 2004, 58: 1981- 1984.
    [111] L. Yang, J.S. Wu, L.T. Zhang. Synthesis of filled skutterudite compound La0.75Fe3CoSb12 by spark plasma sintering and effect of porosity on thermoelectric properties. J. Alloys Compd.,2004, 364 : 83-88.
    [112] T. Thonhauser, G.S. Jeon, G.D. Mahan, et al. Stress-induced defects in Sb2Te3 Phys. Rev. B 68 (2003) 205207.
    [113] J. L. Cui. Optimization of p-type segmented FeSi2/Bi2Te3 thermoelectric material prepared by spark plasma sintering. Materials Letters, 2003, 57: 4 074-4 078
    [114] L. Yang, J.S. Wu. L.T. Zhang. Microstructure evolvements of a rare-earth filled skutterudite compound during annealing and spark plasma sintering Materials and Design, 2004, 25: 97–102.
    [115] D.B. Hyun, T. S. Oh, J.S. Hwang, et al. Effect of excess Te addition on the thermoelectric properties of the 20% Bi2Te3-80% Sb2Te3 single crystal and hot-pressed alloy. Scripta Mater. 44 (2001) 455–460
    [116] T.S. Kim, I.S. Kim, T.K. Kim,et al. Thermoelectric properties of 25%Bi2Te3-75%Sb2Te3 solid solution prepared by hot-pressing method. J. Phys. Chem Solids 58 (1997) 671-678.
    [117] H S Shin, Ha H P, Hyun D B, Shim J D and Lee D H 1997 J. Phys. Chem. Solids 158 671.
    [118] S. Sugihara, S. Kawashima, I. Yonekura et al. Doping effects on the Electronic Structures of Bi2Te3 and thermoelectric property. In Proc. of the 16th Int. Conf. on Thermoelectrics, 1997: 63-67.
    [119] M. K. Zhitinskaya, S. A. Nemov, T.E. Svechnikova et al. Impurity states of tin in Bi2Te3-xSex (x=0.06, 0.12) solid solutions. Semiconductors, 2004, 38(2): 182-184.
    [120] J. P. Fleurial. Evaluation of the improvement in the figure of merit of Bi2Te3-based alloys with addition of ultrafine scattering centers. In Proc. of 12th Int. Conf. on Thermoelectrics, Yokohama, Japan, 1993: 1-6.
    [121] Y. H. Park and Liu X. D. Thermoelectric Properties of Bi-Sb-Te-X Compounds Prepared by MA-PDS Method. In Mat. Res. Soc. Symp. Proc, 2001, 691: G8.24.1- G8.24.5.
    [122] A.Nozue, Y.H. Park, A. Kawasaki. The effect of various dopants on thermoelectric properties of Bi2(Te0.9Se0.1)3 polycrystals. In Proc. of 22th Int Conf on Thermoelectrics, Yokohama, Japan, 2003: 31-33.
    [123] J.M. Simard, D. Vasilevskiy, F. Belanger, et al. Production of thermoelectric materials by mechanical alloying-extrusion process, In Proc. of 20th Int Conf on Thermoelectrics, Yokohama, Japan, 2001: 132-135.
    [124] J. Seo K. Park, D. Lee, et al. Microstructure and thermoelectric properties of p-type Bi0.5Sb0.5Te0.5 compounds fabricated by hot pressing and hot extrusion. Script Materialia, 1998, 38;447-484.
    [125] J. Seo, C. Lee, K. Park. Effect of extrusion temperature and dopant on thermoelectric properties for hot extruded p-type Te-doped Bi0.5Sb1.5Te3 and n-type SbI3-doped Bi2Te2.85Se0.15. MaterialsScience and Engineering B, 1998, 54:135-140.
    [126] Y.Iwahashi, Z. Horita, M. Nemoto, et al. The Process of grain refinement in eaual channel angular pressing. Acta Mater. 1998, 46:3317-3331.
    [127] Y. Iwahashi, J.T. Wang, Z.J. Horita, et al. Principle of equal channel angular pressing for the processing of ultra fine grained materials. Scripta Materialia, 1996, 35:143-146.
    [128] V.M. Segal, Equal channel angular extrusion from macromechanics to structure formation. Materials Science and Engineering A,1999, 271: 322–333
    [129] J.T. Im. K. T. Hartwig, J. Sharp, Microstructural refinement of cast p-type Bi2Te3–Sb2Te3 by equal channel angular extrusion. Acta Materialia, 2004, 52: 49–55
    [130] S.S. Kim, S. Yamamoto, T. Aizawa, Thermoelectric properties of anisotropy-controlled p-type Bi–Te–Sb system via bulk mechanical alloying and shear extrusion. J. Alloys Compd. 2004, 375:107–113.
    [131]罗婷,任山.纳米技术在提高热电材料性能上的应用现状及发展趋势.材料导报, 2006, 20(2):50-53.
    [132] Kat suyama S , Kanayama Y, Ito M , et al. J Appl Phys , 2000 ,88 :3484
    [133] Kat suyama S , et al. 18th International Conference on Thermoelect rics , 1999. 348
    [134] Mikio Ito , Hiroshi Nagai ,et al. In Proc. of 20th Int Conf on Thermoelectrics , 2001. 221.
    [135] Vining C B. Mater Res Soc Symp Proc ,1991 ,234 :95
    [136] P.G. Klemens. In Proc. of 15th Int Conf on Thermoelectrics ,1996. 206
    [137]史迅,陈立东,柏胜强,等. CoSb_3/C_(60)复合材料的固相反应合成和热电性能.物理学报, 2004 ,53 (5) :1469
    [138] F. Brochin, B. Lenoir , X. Devaux ,et al. Preparation and transport properties of polycrystalline Bi and Bi–SiO2 nanocomposites J. Appl. Phys. , 2000, 88 (6) :3269-3275.