敲低miR-221和miR-222表达对胶质瘤的抑制作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脑胶质瘤是最常见的原发性颅内肿瘤,约占颅内肿瘤的46%。恶性胶质瘤的发病率为5-8/100,000,世界卫生组织1998年公布按死亡率顺序排位,恶性胶质瘤是34岁以下肿瘤患者的第2位死亡原因,是35~54岁患者的第4位死亡原因。由于胶质瘤的侵袭性生长,手术难以完全切除;化疗和放疗既不能高度特异性地杀伤胶质瘤细胞,治疗效果差,又可能产生中枢神经系统的毒、副作用。上述情况在近30年的临床实践中未得到根本改善,因此脑胶质瘤仍是神经外科领域的难治性疾病,阐明发病机理、寻找新的治疗手段的仍然是神经外科的热点课题。
     目前分子病理学认为胶质瘤本质上是一种多基因异常疾病,通过一种/多种癌基因的过表达、同时伴随抑癌基因的突变缺失从而使信号传导通路异常,肿瘤细胞逃避了正常生长调控机制,自主进行增殖和侵袭、出现恶性表型。近年来研究发现,微小RNA(microRNA或miRNA)为长度约21~25核苷酸的小型非编码RNA,这些miRNA通过与靶mRNA的3`非编码区结合,可在转录后水平通过促进靶mRNA降解和/或抑制其翻译而发挥负调控基因表达的作用。已有研究证明超过50%的miRs定位在癌相关基因区域或在脆弱区域,尤其是发现有些miRs在肿瘤细胞与相应正常细胞中的表达截然不同,这使人们有理由相信miRs与肿瘤生成有关。同样,在研究胶质瘤miRs表达谱时发现一些miRs表达与正常星形细胞不同,其中miR-221和miR-222的表达明显高于正常星形细胞。miR-221和miR-222是通过调控哪些靶基因的表达来促进胶质瘤的生成,敲低胶质瘤miR-221和miR-222表达是否可以逆转胶质瘤的恶性表型,从而成为胶质瘤新的治疗靶点,这些都是值得关注的重要课题。为此,本研究将着重探索miR221和miR222在胶质瘤恶性表型中所起的作用,通过体内外研究来证实敲低胶质瘤miR-221和miR-222表达对胶质瘤生长的抑制作用。通过鉴定miR221和miR222的靶基因来探讨敲低胶质瘤miR-221和miR-222表达对胶质瘤抑制作用的机制。通过联合放射治疗来探讨敲低胶质瘤miR-221和miR-222与放疗是否具有抑制胶质瘤生长的协同作用。
     本研究分为五个部分进行:
     1.分析胶质瘤中miRNA表达数据,并通过人工合成2’-O-methyl(OMe)修饰的反义寡核苷酸(As-miR-221和As-miR-222)敲低胶质母细胞瘤细胞系U251细胞中miR-221和miR-222的表达来系统分析miR-221和miR-222对胶质母细胞瘤发生、进展所起的作用。
     2用脂质体介导转染As-miR-221/222于胶质母细胞瘤细胞系U251,敲低miR-221和miR-222表达,观察胶质瘤细胞增殖活性、细胞周期、侵袭能力及细胞凋亡等生物学性状的变化。
     3通过生物信息学的方法获得miR-221和miR-222的潜在靶基因,并通过荧光素酶报告载体策略进行鉴定,初步探讨敲低胶质瘤miR-221和miR-222表达抑制胶质瘤生长的作用机制。
     4构建U251裸鼠皮下荷瘤模型,进行反义miRNA221/222的体内治疗,观察肿瘤生长速度与体积,将肿瘤组织进行免疫组化染色和原位杂交分析,进一步验证反义miRNA221/222治疗后肿瘤靶基因的表达变化以及与细胞增殖,细胞周期,侵袭及凋亡的关系。
     5通过平板克隆形成实验证实敲低胶质瘤细胞系U251细胞的miR-221和miR-222表达对放射治疗是否具有增敏效果。
     通过本实验,可以得出以下几个结论:
     1.胶质瘤中存在一系列miRNA表达异常,miR-221和miR-222是其中表达上调的成簇miRs,miR-221过表达可以被认为是人脑胶质瘤新的分子标签。
     2.p27kip1、PUMA、PTEN、TIMP3、Cx43基因mRNA的3’UTR是miR-221和miR-222直接作用靶点。
     3.Lipofectamine 2000介导转染2’-O-methyl(OMe)修饰的反义寡核苷酸-As-miR-221/222可有效敲低miR-221和miR-222在U251人胶质母细胞瘤细胞系的表达,同时上调靶基因的表达,从而其恶性表型得以逆转,包括细胞的增殖和侵袭能力受到抑制,出现G0/G1期阻滞,并诱导细胞凋亡。
     4.裸鼠皮下胶质瘤模型应用Lipofectamine 2000介导的As-miR-221/222治疗,同样可有效敲低miR-221和miR-222的表达,增加靶基因的表达(p27kip1、PUMA、PTEN、TIMP3、Cx43),从而抑制肿瘤的生长,诱导细胞凋亡,与体外试验结果一致。
     5.敲低胶质瘤细胞系U251细胞的miR-221和miR-222后对其放射治疗有明显的增敏效果。
     6.miR-221和miR-222种子序列相同,为了达到最佳治疗效果,我们在敲低种子序列相同的miRs簇时,必须同时抑制两者的表达。
Gliomas are the most common intracranial tumors which account for 46% of primarybrain tumors.The incidence of malignant gliomas is approximately 5~8 per 10,0000individuals per year.According to the statistics of World Health Organization(WHO),the mortality rate of malignant gliomas is the second in all tumor patients that areunder 34 years old and the fourth in all tumor patients that are 35~54 years old.Because of invasive growth,malignant gliomas can not be totally resected.Moreover,malignant gliomas are resistant to radiotherapy and chemotherapy.In addition,chemo-radiotherapy usually generates toxic and side-effects to normal central nervoussystem,so malignant glioma is a refractory disease in neurosurgery,the prognosis ofpatients with malignant glioma has not been changed significantly over the past threedecades.The study on the pathogenesis and new therapeutic approaches of malignantgliomas is imperative in neurosurgical field..
     By study on the molecular pathology of gliomas,it is considered that glioma is adisease of multiple gene aberration involved amplification and overexpression ofoncogenes and mutation or deletion of tumor suppressor genes,which results in thederegulation of signaling transduction pathways,then the tumor cells escape from thenormal growth control mechanism and present the malignant phenotype.Recentstudies have discovered microRNAs(miRNAs or miRs),21-25 nucleotides in length,being the largest family of noncoding RNA involved in gene silencing.MiRNAsnegatively regulate protein expression at the post-transcriptional level in a sequencespecific manner through binding to the target mRNA 3'UTRs(3'untranslated regions)and triggering translation inhibition or target mRNA degradation.Some studiesdemonstrated that more than 50% of miRNA genes are located in cancer-associatedgenomic regions or in fragile sites of chromosomal regions.In particular,Throughnegative regulation of gene expression,microRNAs(miRNAs)can function incancers as oncosuppressors,and they can show altered expression in various tumortypes.These evidences suggest that miRNAs may play an important role in thepathogenesis of human cancers.As the same with other cancers,The miRNAexpression profiles of gliomas also demonstrate that some miRNAs are expressed aberrantly in gliomas including upregulation of miR-221 and miR-222.However,thetarget genes regulated by miR-221 and miR-222 inducing the development of gliomasare not clear.Whether knocking down miR-221 and miR-222 is able to reversemalignant phenotype of gliomas or not and if miR-221 and miR-222 can be thepotential targets of glioma therapy.These problems need to be explored.In the presentstudy,the role ofmiR-221 and miR-222 may play in gliomagenesis is investigated.
     This study is ivided to 5 parts:
     1 The role of miR-221 and miR-222 playing in the development and progressionof glioblastoma is analyzed by 2′-O-methyl(OMe)-modified antisenseoligonucleotides for knocking down miR-221 and miR-222 in glioblastoma.
     2 After transfection with As-miR-221/222 into glioblastoma(GBM)cells,thechange of biological characteristics of GBM cells including proliferation activity,cellcycle kinetics,invasive ability and apoptosis are investigated in vitro.
     3 By bioinformatics analysis,some potential target genes of miR-221 andmiR-222 are obtained and identified by luciferase reporter assay.Then,themechanism of miR-221 and miR-222 regulating glioma cell growth and invasion maybe preliminary clarified.
     4 The established U251 subcutaneous glioma model in nude mice is treated withAs-miR221/222 and the growth rate and volume of tumors in vivo are compared withthe controls.The correlation of expression of target genes with proliferation,invasionand apoptosis in xenograft tumor samples are investigated.
     5 The effect of knocking down miR-221 and miR-222 on the radiosensitivity ofglioma cells is studied by Clonogenic assay.
     The conclusion drawing from the present study is as follows:
     1)Some miRs are altered expression in the four glioma cell lines includingupregulation of miR-221 and miR-222.Mir-221 overexpression is considered to be anovel molecular signature in gliomas.
     2)Five genes including p27kipl、PUMA、PTEN、TIMP3、Cx43 are target genesofmiR-221 and miR-222.
     3)By transfecting As-miR-221/222 into glioma cells,the expression of miR-221 and miR-222 are knocked down,and that results in reduced cell proliferationand invasive ability,arrested cell cycle and increased cell apoptosis.The reversedphenotype of glioma cells is correlated with the upregulation of the target genes ofmiR221/222.
     4)The growth rate of established U251 subcutaneous glioma model in nude micetreated with As-miR221/222 is slowed down and the tumor volume of treated mice ismuch smaller than that of control mice.MiR-221/222 expression in tumor specimensis knocked down but the expression of their target genes is significantly upregulated.This result in vivo is in concordant with that of in vitro experiment.
     5)Downregulation of miR-221 and miR-222 by transfection withAs-miR-221/222 can enhance radiosensitivity of glioma cells as determined byclonogenic assay.
     6)Since miR-221 and miR-222 possess the similar seed sequence,it is importantto co-suppress the expression of miR-221 and miR-222 cluster for optimizing theantiglioma effect.
引文
1.Mischel PS,Cloughesy TF.Targeted molecular therapy of GBM.Brain Pathol,2003;13:52-61.
    2.Jeong Hyun Hwang,Christian A.Smith,Bodour Salhia,James T.Rutka.The role of Fascin in the migration and invasiveness of malignant glioma cells.Neoplasia 10 (2008)149-159.
    3.Holger Hetschko,Valerie Voss,Sigrid Horn,Volker Seifert,Jochen H.M.Prehn,Donat Ko(?)gel.Pharmacological inhibition of Bcl-2 family members reactivates TRAIL-induced apoptosis in malignant glioma.J Neurooncol 86(2008)265-272.
    4.Geoffrey A.Geiger,Weili Fu,and Gary D.Kao.Temozolomide-Mediated Radio sensitization of Human GliomaCells in a Zebrafish Embryonic System.Cancer Res 68(2008)3396-3404.
    5.Yingfeng Zheng,Ling Lin,Zhihong Zheng.TGF-a induces upregulation and nuclear translocation of Hesl in glioma cell.Cell Biochem Funct 26(2008) 692-700.
    6.Xuan Zhou,Chunsheng Kang,Peiyu Pu.MicroRNA and Brain Tumors,Chinese Journal of Clinical Oncology.2007;4(5):355-359.
    7.Lee RC,Feinbaum RL&Ambros V,The C.elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14.Cell,1993;75 843-854.
    8.张春智,浦佩玉。MicriRNA与脑发育及神经系统疾病。医学分子生物学杂志,2008,5:42-46。
    9.Branislav Kusenda,Marek Mraz,Jiri Mayer,et al.MicroRNA BIOGENESIS,FUNCTIONALITY AND CANCER RELEVANCE.Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub.2006,150:205-215.
    10.MISHIMA T,MIZUGUCHI Y,KAWAHIGASHI Y,et al.RT-PCR-based analysis of microRNA (miR-1 and-124) expression in mouse CNS[J].Brain Res,2007,1131:37-43.
    11.BEREZIKOV E,THUEMMLER F,VAN LAAKE LW,et al.Diversity of microRNAs in human and chimpanzee brain[J].Nat Genet,2006,38:1375-1377.
    12.WULCZYN FG,SMIRNOVA L,RYBAK A,et al.Post-transcriptional regulation of the let-7 microRNA during neural cell specification[J].FASEB J,2007,21:415-426.
    13.RAMESH S.PILLAI.MicroRNA function:Multiple mechanisms for a tiny RNA[J].RNA,2005,11:1753-1761.
    14.CUI Q,YU Z,PAN Y,et al.MicroRNAs preferentially target the genes with high transcriptional regulation complexity[J].Biochem Biophys Res Commun,2007,352:733-738.
    15.KENNETH SK.The neuronal microRNA system.Nature Reviews[J]Neuroscience,2006,7:911-920.
    16.CAO X,YEO G,MUOTR AR,et al.Noncoding RNAs in the mammalian central nervous system[J].Annual Review of Neuroscience,2006,29:77-103.
    17.LAGOS-QUINTANS M,RAUHUT R,YALCIN A,et al.Identification of tissue-specific MicroRNAs from mouse[J].Curr.Biol,2002,12:735-739.
    18.DOSTIE J,MOURELATOS Z,YANG M,et al.Numerous microRNPs in neuronal cells containing novel microRNAs[J].RNA,2003,9:180-186.
    19.OKABE M,IMAI T,KURUSU M,et al.Translational repression determines a neuronal potential in Drosophila asymmetric cell division[J].Nature,2001,411:94-98.
    20.MILLER S,YASUDA M,COATS JK,et al.Disruption of dendritic translation of CaMK Ⅱα impairs stabilization of synaptic plasticity and memory consolidation[J].Neuron,2002,36:507-519.
    21.Ciafre SA,Galardi S,Mangiola A,et al.Extensive modulation of a set microRNAs in primary glioblastoma.Biochem Biophys Res Commun.2005,334:1351-1358.
    22.康春生,浦佩玉,贾志凡,等.人脑胶质瘤细胞系miRNA表达谱初步研究.中华神经外科杂志。2008,24:468-470。
    23.Chen CZ.MicroRNAs as Oncogenes and Tumor Suppressors.New England Med,2005.353:1768-1771.
    24. Cummins JM, He Y, Leary RJ, et al. The colorectal microRNAome. Proc Natl Acad Sci U S A, 2006, 103:3687-3692.
    25. Enright AJ, John B, Gaul U, et al. MicroRNA targets in Drosophila.Genome Biol, 2003, 5:R1.
    26. Baohong Zhang, Xiaoping Pan, George P.Cobb, et al. MicorRNA as oncogenes and tumor suppressors. Developmental Biology. 2007,302:1-12.
    27. T Dalmay, DR Edwards. MicroRNAs and the hallmarks of cancer. Oncogene.2006,25:6170-6175.
    28. Lee RC, Feinbaum RL & Ambros V, The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993,75 843-854.
    29. V. Narry Kim,Jin-Wu Nam, Genomics of microRNA, Trends Genet, 2006;22:165-73.
    30. Cuellar TL, McManus MT, MicroRNAs and endocrine biology, J Endocrinol, 2005;187:327-32.
    31. Denli AM, Tops BB, Plasterk RH, et al, Processing of primary microRNAs by the Microprocessor complex, Nature, 2004;432(7014):231-5.
    32. Chen CZ, MicroRNAs as oncogenes and tumor suppressors, FEBS Lett. 2006;580:2442-50.
    33. Lim LP, Lau NC, Weinstein EG, et al, The microRNAs of Caenorhabditis elegans, Genes Dev. 2003;17:991-1008.
    34. Margis R, Fusaro AF, Smith NA, et al, The evolution and diversification of Dicers in plants, FEBS Lett. 2006;580:2442-50.
    35. Nakahara K, Kim K, Sciulli C, et al, Targets of microRNA regulation in the Drosophila oocyte proteome, Proc Natl Acad Sci U S A. 2005;102:12023-8.
    36. Pasquinelli AE, Reinhart BJ, Slack F, et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature. 2000;408:86-9.
    37. Olsen PH, Ambros V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol. 1999;216:671-80.
    38. He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5:522-31.
    39. He L, Thomson JM, Hemann MT, et al. A microRNA polycistron as a potential human oncogene. Nature. 2005;435(7043):828-33.
    40. Hake S. MicroRNAs: a role in plant development. Curr Biol. 2003;13:R851-2.
    41. LAGOS-QUINTANS M, RAUHUT R, YALCIN A, et al. Identification of tissue-specific MicroRNAs from mouse[J]. Curr.Biol, 2002,12:735-739.
    42. DOSTIE J, MOURELATOS Z, YANG M, et al. Numerous microRNPs in neuronal cells containing novel microRNAs[J]. RNA,2003,9:180-186.
    43. OKABE M, IMAI T, KURUSU M, et al. Translational repression determines a neuronal potential in Drosophila asymmetric cell division[J]. Nature,2001,411:94-98.
    44. MILLER S, YASUDA M, COATS JK, et al. Disruption of dendritic translation of CaMK Ⅱα impairs stabilization of synaptic plasticity and memory consolidation[J]. Neuron,2002,36:507-519.
    45. CAO X, YEO G, MUOTR AR, et al. Noncoding RNAs in the mammalian central nervous system[J]. Annual Review of Neuroscience, 2006,29:77-103.
    46. ABELSON JF, KWAN KY, BAEK DY, et al. Sequence variants in SLITRK1 are associated with Tourette's syndrome[J]. Science,2005,310:317-320.
    47. GREGORY RI, SHIEKHATTAR R. MicroRNA biogenesis and cancer[J]. Cancer Res,2005,65:3509-3512.
    48. Jan Krutzfeldt, Nikolaus Rajewsky, Ravi Braich, Kallanthottathil GRajeev, Thomas Tuschl, Muthiah Manoharan, Markus Stoffel. Silencing of microRNAs in vivo with 'antagomirs'. Nature.2005,438:685-689.
    49. Shalgi R, Lapidot M, Shamir R, et al. A catalog of stability-associated sequence elements in 3'UTRs of yeast mRNAs. Genome Biol.2005,6:R86.
    50. Shalgi R, Lieber D, Oren M, et al. Global and local architecture of the mammalian microRNA-transcription factor regulatory network. Plos Computational Biology.2007,3:e131.
    51. Zhou YM, Ferguson J, Chang JT, et al. Inter- and intra-combination regulation by transcription factors and microRNAs. BMC Genomics.2007,8:396.
    52. Anne linn JOHANNESSEN, Sverre Helge TORP. The clinical Value of Ki-67/MIB-1 labeling index in human astrocytomas. Pathology Oncology Research. 2006,12:143-147.
    53. Karunagaran D, Joseph J, Kumar TR. Cell growth regulation. Adv Exp Med Biol. 2007;595:245-68. Review.
    54. Matsuda Y, Ichida T. p16 and p27 are functionally correlated during the progress of hepatocarcinogenesis. Med Mol Morphol. 2006;39(4):169-75.
    55. Hunter T, Pines J. Cyclins and cancer Ⅱ: cyclin D and CDK inhibitors come of age. Cell,1994;79:573-582.
    56. Jing-Hsien, Tsui-Hwa Tseng, Yung Chyan Ho, et al. Gaseous nitrogen oxides stimulate cell cycle progression by rubidium phosphorylation via activation of Cyclins/Cdks. Toxicological Sciences.2003;76:83-90.
    57. Mohamad N, Gutierrez A, Nunez M, et al. Mitochondrial apoptotic pathways. Biocell. 2005;29(2):149-61. Review.
    58. Brumatti G, Sheridan C, Martin SJ. Expression and purification of recombinant annexin V for the detection of membrane alterations on apoptotic cells. Methods. 2008 Mar;44(3):235-40.
    59. Siegel RM, Lenardo MJ. Apoptosis signaling pathways. Curr Protoc Immunol. 2002;Chapter 11:Unit 11.9C. Review.
    60. Hideaki Ito, Takao Kanzawa, Toru Miyoshi, Satoshi Hirohata, Satoru Kyo, Arifumi Iwamaru, Hiroshi Aoki, Yasuko Kondo, Seiji Kondo. Therapeutic efficacy of PUMA for malignant glioma cells regardless of the p53 status. Hum Gene Ther.2005;16:685-698.
    61. Hsu YT, Wolter KG, Youle RJ, et al. Cytosol-to-membrance redistribution of Bax and Bcl-X(L) during apoptosis. Proc Natl Acad Sci USA.1997;94:3668-3672.
    62. Wolter KG, Hsu YT, Smith CL, et al. Movement of Bax from cytosol to mitochondria during apoptosis. J Cell Biol.1997;139:1281-1292.
    63. Bello L, Giussani C, Carrabba G, Pluderi M, Costa F, Bikfalvi A:Angiogenesis and invasion in gliomas.Cancer Treat Res 2004,117:263-284.
    64.Binder DK,Berger MS:Proteases and the biology of glioma invasion.J Neurooncol 2002,56(2):149-158.
    65.Kachra Z,Beaulieu E,et al.Expression of matrix metalloproteinases and their inhibitors in human brain tumors.Clin Exp Metastasis.1999,17(7):555-566.
    66.Deryugina El,Bourdon MA,Luo GX,Reisfeld RA,Strongin A:Matrix metalloproteinase-2 activation modulates glioma cell migration.J Cell Sci,1997,110(19):2473-2482.
    67.Choe G,Park JK,Jouben-Steele L,et al.Active matrix metalloproteinase9 expression is associated with primary glioblastoma subtype.Clin Cancer Res,2002,8(9):2894-2901
    68.Yamamoto M,Mohanam S,et al.Differential expression of membrane-type matrix metalloproteinaseand its correlation with gelatinase A activation inhuman malignant brain tumors in vivo and in vitro.Cancer Res 1996,56:384-392.
    69.Lampert K,Machein U,et al.Expression of matrix metalloproteinases and their tissue inhibitors in human brain tumors.AmJ Pathol 1998,153(2):429-437.
    70.郭衍,章翔等.整合素αVβ3在脑胶质瘤的表达与肿瘤恶性程度的关系.肿瘤防治研究.2002,29(1).
    71.艾文兵,王煜等.人脑胶质瘤中整合素αVβ3的表达与细胞增殖的关系.广东医学.2004,25(7).
    72.Ruan J,Chen H,Kurgan L,et al.HuMiTar:a sequence-base method for prediction of human microRNA targets.Algorithms Mol Biol.2008;3:16.
    73.Faraglia B,Bonsignore A,Scaldaferri F,et al.Caspase-3 inhibits the growth of breast cancer cells independent of protease activity.J Cell Physiol 2004;202:478-482.
    74.Hortobagyi GN.The status of breast cancermanagement:challenges and opportunities.Breast Cancer Res Treat.2002;75:61-65.
    75.Launay S,Hermine O,Fontenay M,et al.Vital functions for lethal caspases.Oncogene 2005;24:5137-5148.
    76.Johnstone RW,Ruefli AA,Lowe SW.Apoptosis:a link between cancer genetics and chemotherapy. Cell. 2002;108:153-164.
    77. Nicholson DW. From bench to clinic with apoptosis based therapeutic agents. Nature 2000;407:810-816.
    78. Fr(?)M(?)rique V(?)gran, Romain Boidot,Claire Oudin, et al. Overexpression of Caspase-3s Splice Variant in Locally Advanced Breast Carcinoma Is Associated with Poor Response to Neoadjuvant Chemotherapy. Clin Cancer Res. 2006;12: 5794-5800.
    79. Li L, Ross AH. Why is PTEN an important tumor suppressor? J Cell Biochem. 2007;15;102(6):1368-74.
    80. Maehama T. PTEN: its deregulation and tumorigenesis. Biol Pharm Bull. 2007;30(9):1624-7.
    81. Stetler-Stevenson, W. G., Liotta, L. A., et al. Extracellular matrix. 6. Role of matrix metalloproteinases in tumor invasion and metastasis. FASEB J.1993,7: 1434-1441.
    82. Birkedal-Hansen, H., et al. Matrix metalloproteinases: a review. Crit. Rev. Oral Biol.Med.1993,197-250.
    83. Chintala, S. K., Tonn, J. C., Rao, J. S. Matrix metalloproteinases and their biological function in human gliomas. Int. J. Dev. Neurosci. 1999,5-6: 495 - 502.
    84. Johnson SM, Grosshans H, Shingara J, et al. RAS is regulated by the let-7 microRNA family. Cell.2005;120:635-647.
    85. Cimmino A, Calin GA, Fabbri M, et al. miR-15 and miR-16 induce apoptosis by targeting bc1-2. Pro Natl Acad Sci U S A.2005;102:13944-13949.
    86. Fornari F, Gramantieri L, Ferracin M, Veronese A, Sabbioni S, Calin GA, Grazi GL, Giovannini C, Croce CM, Bolondi L, Negrini M. MiR-221 controls CDKNlC/p57 and CDKNlB/p27 expression in human hepatocellular carcinoma. Oncogene. 2008;27:5651-5661.
    87. Zhao JJ, Lin J, Yang H, Kong W, He L, Ma X, Coppola D, Cheng JQ. MicroRNA-221/222 Negatively Regulates Estrogen Receptor {alpha} and Is Associated with Tamoxifen Resistance in Breast Cancer. J Biol Chem. 2008;283:31079-31086.
    88. Igoucheva O, Alexeev V. MicroRNA-dependent regulation of cKit in cutaneous melanoma. Biochem Biophys Res Commun. 2009;379:790-794.
    89. Galardi S, Mercatelli N, Giorda E, Massalini S, Giovanni V.F, Cliafr(?) S A, Farace M.G. MiR-221 and MiR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27kipl. J Biol Chem. 2007 ,282:23716-23724.
    90. le Sage C, Nagel R, Egan DA, Schrier M, Mesman E, Mangiola A, Anile C, Maira G, Mercatelli N, Ciafre SA, Farace MG, Agami R, Regulation of the p27(Kipl) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation, EMBO J 26(2007)3699-3708.
    91. M Garofalo, C Quintavalle, G Di Leva, et al. MicorRNA signatures of TRAIL resistance in human non-small cell lung cancer. Oncogene. 2008,27:3845-3855.
    92. Gillies JK, Lorimer AJ. Regulation of p27kipl by miRNA221/222 in glioblastoma. Cell Cycle.2007,6:200-2009.
    93. Mansfield JH, Harfe BD, Nissen R, et al. MicroRNA-responsive 'sensor' transgenes uncover Hox-like and other developmentally regulated patterns of vertebrate microRNA expression. Nat Genet, 2004, 36(10):1079-83.
    94. Ying S.-Y. MicroRNA Protocols.Humana Press.2006.
    95. Koff A. How to decrease p27kipl levels during tumor development. Cancer Cell.2006,9:75-76.
    96. Sage CL, Nagel R, Egan DA, et al. Regulation of the p27kipl tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. The EMBO Journal.2007,26:3699-3708.
    97. Migita T, Oda Y, Naito S, et al. Low expression of p27(kipl) is associated with tumor size and poor prognosis in patients with renal cell carcinoma. Cancer.2002,94:973-979.
    98. Yu J, Zhang L, Hwang PM, et al. PUMA induces the rapid apoptosis of colorectal cancer cell. Molecular Cell, 2001, 7(3): 673-682.
    99. Andreas Villunger, Ewa M. Michalak, Leigh Coultas, et al. p53- and Drug- Induced Apoptotic Responses Mediated by BH3-Only Proteins Puma and Noxa. Science, 2003, 11(7): 1036-1038.
    100.Yu J, Wang Z, Kinzler KW, et al. PUMA mediates the apoptotic response to p53 in colotectal cancer cells. Proc Natl Acad Sci USA, 2003,100(4):1931-1936.
    101.Hirohito Yamaguchi, Jiandong Chen, Kapil Bhalla, et al. Regulation of Bax activation and apoptotic response to Microtubule-damaging Agents by p53 transcription-dependent and -independent pathways. The Journal of Biological Chemistry. 2004,279(38):39431-39437.
    102.Feng-Ting Liu, Adrian C. Newland, Li Jia. Bax conformational change is a crucial step for PUMA-mediated apoptosis in human leukemia. Biochemical and Biophy- -sical Research Communications. 2003(310):956-962.
    103 Jerry E. Chipuk, Lisa Bouchier-Hayes, Tomomi Kuwana, et al. PUMA Couples the Nuclear and Cytoplasmic Proapoptotic Function of p53. Science. 2005, 9(309): 1732-1735.
    104.Rutger Middelburg, Richard R. de Haas, et al. Induction of p53 Up-Regulated Modulator of Apoptosis Messenger RNA by Chemotherapeutic Treatment of Locally Advanced Breast Cancer. Clinical Cancer Research. 2005, 3(11): 1863-1869.
    105.Jian Yu, Wen Yue, Bin Wu, et al. PUMA Sensitizes Lung Cancer Cells to Chemo- -therapeutic Agents and Irradiation. Clin Cancer Res. 2006,12(9): 2928- 2936.
    106.Jun S Wei, Craig C Whiteford, Nicola Cenacchi, et al. BBC3 mediates fenretinide -induced cell death in neuroblastoma. Oncogene. 2005, 9 (54): 7976-7983.
    107.Mohammad Obaidul Hoque, Shahnaz Begum, Matthias Sommer, et al. PUMA in head and neck cancer. Cancer Letters. 2003,119:75-81.
    108.Alison M. Karst, Derek L. Dai, Jin Q. Cheng, et al. Role of p53 Up-regulated Modulator of Apoptosis and Phosphorylated Akt in Melanoma Cell Growth, Apoptosis, and Patient Survival. Cancer Res. 2006, 66(18): 9221-9226.
    109.Brinckerhoff, C. E., Matrisian, L. M. Matrix metalloproteinases: a tail of a frog that became a prince. Nat. Rev. Mol. Cell. Biol.2003, 3: 207 - 214.
    110.Hernandez-Barrantes, S., et al. Regulation of membrane type-matrix metalloproteinases.Semin. Cancer Biol. 2002,12: 131 - 138.
    111.Paula Lam,Kar Sian Lim,Suk Mei Wang,et al.A Microarray Study to Characterize the Molecular Mechanism of TIMP-3-Mediated Tumor Rejection.MOLECULAR THERAPY.2005,12:144-152.
    112.Galina Gabriely,Thomas Wurdinger,Santosh Kesari,et al.MicroRNA 21 Promotes Glioma Invasion by Targeting Matrix Metalloproteinase Regulators.MCB,2008,28:5369-5380.
    113.Shinoura N,Chen L,Wani MA,et al.Protein and messenger RNA expression of connexin43 in astrocytomas:implications in brain tumor gene therapy.J Neurosurg.1996;84(5):839-45;discussion 846.
    114.Huang GQ,Song Y,Zhang J,et al.Enhancement of the bystander effect by tanshinone ⅡA in HSV-tK/GCV system is related to expression of connexin 43 mRNA.Zhonghua Zhong Liu Za Zhi.2004;26(3):146-9.
    115.Goldberg GS,Lampe PD,Sheedy D,et al.Direct isolation and analysis of endogenous transjunctional ADP from Cx43 transfected C6 glioma cells.Exp Cell Res.1998;239(1):82-92.
    116.Denny WA.et al.Tumor-activated prodrugs--a new approach to cancer therapy.Cancer Invest.2004;22(4):604-19.
    117.Lelievre JD,Mammano F,Arnoult D,et al.A novel mechanism for HIV 1-mediated bystander CD4+ T-cell death:neighboring dying cells drive the capacity of HIV1 to kill noncycling primary CD4+T cells.Cell Death Differ.2004;11(9):1017-27.
    118.Krohne TU,Shankara S,Geissler M,et al.Mechanisms of cell death induced by suicide genes encoding purine nucleoside phosphorylase and thymidine kinase in human hepatocellular carcinoma cells in vitro.Hepatology.2001;34(3):511-8.
    119.康春生,浦佩玉,贾志凡等.反义Akt2 RNA抑制U251胶质瘤细胞生长的体内外研究.中华神经医学杂志,2007,6:113-117。
    120.Otsuki Y,Li Z,Shibata MA.Apoptotic detection methods--from morphology to gene.Prog Histochem Cytochem.2003;38(3):275-339.
    121.Fisher JL,Schwartzbaum JA,Wrensch M et al.Epidemiology of brain tumors.Neurol Clin.2007:25(4):867-90.
    122.浦佩玉.脑胶质瘤分子生物学与分子遗传学研究进展.中国临床神经科学 2001;9:402-405.
    123.Calin GA,Sevignani C,Dumitru CD,et al.Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers.Proc Natl Acad Sci USA.2004,101:2999-3004.
    124.Lu J,Getz G,Miska EA,et al.MicroRNA expression profiles classify human cancers.Nature.2005,435:834-838.
    125.Volinia S,Calin GA,Liu CG,et al.A microRNA expression signature of human solid tumors defines cancer gene targets.Proc Natl Acad Sci USA.2006,103:2257-2261.
    126.Scott A,Waldman,Andre Terzic.A study of microRNAs in silico and in vivo:diagnostic and therapeutic applications in cancer.FEBS J.2009,276:2157-2164.
    127.Calin GA,Dumitru CD,Shimizu M,et al.Frequent deletions and down-regulation of microRNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia.Proc Natl Acad Sci USA.2002,99:15524-15529.
    128.He L,Thomson JM,Hemann MT,ET AL.A microRNA polycistron as a potential human oncogene.Nature.2005,435:828-833.
    129.Jesse Chung-sean Pang,Wai Kei Kwok,Zhongping Chen,et al.Oncogenic role of microRNAs in brain tumors.Acta Neuropathol.2009.DOI 10.1007/s00401-009-0525-0
    130.Gabriely G Wurdinger T,Kesari S,et al.MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators.Mol Cell Biol.2008,28:5369-5380.
    131.Papagiannakopoulos T,Shapiro A,Kosik KS.MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells.Cancer Res.2008,68:8164-8172.
    132.Godlewski J,Nowicki MO,Bronisz A,et al.Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal.Cancer Res.2008,68:9125-9130.
    133.Nass D,Rosenwald S,Meiri E,et al.MiR-92b and miR-9/9* are specifically expressed in brain primary tumors and can be used to differentiate primary from metastatic brain tumors. Brain Pathol.2008 [Epub ahead of print] 134.Lawrie CH, Gal S, Dunlop HM, et al.Detection of elevated levels oftumour-associated microRNAs in serum of patients with diffuselarge B-cell lymphoma. Br J Haematol. 2008, 141:672-675.
    135.Taylor DD, Gercel-Taylor C . MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol.2008, 110:13-21.
    136.Skog J, W(?)rdinger T, van Rijn S, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol.2008,10:1470-1476.
    137.Bloomston M, Frankel W, Ptrocca F, et al. MicroRNA expression patterns differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA .2007,297, 1901 - 1908.
    138.Schetter AJ, Leung SY, Sohn JJ, et al. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA.2008, 299, 425 - 436.
    139.Corsten MF, Miranda R, Kasmieh R, et al. MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Res.2007,67:8994-9000.
    140.W(?)rdinger T, Tannous BA, Saydam O, et al. miR-296 regulates growth factor receptor overexpression in angiogenic endothelial cells. Cancer Cell. 2008, 14:382-393.
    141.Jeong Hyun Hwang, Christian A. Smith, Bodour Salhia , James T. Rutka, The role of Fascin in the migration and invasiveness of malignant glioma cells, Neoplasia 10 (2008)149-159.
    142.Holger Hetschko, Valerie Voss, Sigrid Horn , Volker Seifert, Jochen H. M. Prehn , Donat K(?)gel, Pharmacological inhibition of Bc1-2 family members reactivates TRAIL-induced apoptosis in malignant glioma, J Neurooncol 86(2008)265-272.
    143.Shapiro WR, Young DF (1976) Treatment of malignant glioma. A controlled study of chemotherapy and irradiation. Arch Neurol.33(7):494-550
    144.Walker MD et al (1978) Evaluation of BCNU and/or radiotherapy in the treatment of anaplastic gliomas. A cooperative clinical trial. J Neurosurg 49(3):333-343
    145.Walker MD et al (1980) Randomized comparisons of radiotherapy and nitrosoureas for the treatment of malignant glioma after surgery. N Eng J Med 303(23):1323-1329
    146.Kristiansen K et al (1981) Combined modality therapy of operated astrocytomas grade Ⅲ and Ⅳ. Confirmation of the value of postoperative irradiation and lack of potentiation of bleomycin on survival time: a prospective multicenter trial of the Scandinavian Glioblastoma Study Group. Cancer 47(4):649-652
    147.Sandberg-Wollheim M et al (1991) A randomized study of chemotherapy with procarbazine, vincristine, and lomustine with and without radiation therapy for astrocytoma grades 3 and/or 4.Cancer 68(1):22-29
    148.Laperriere N, Zuraw L, Cairncross G (2002) Radiotherapy for newly diagnosed malignant glioma in adults: a systematic review. Radiother Oncol 64(3):259-273
    149.Andersen AP (1978) Postoperative irradiation of glioblastomas. Results in a randomized series. Acta Radiol Oncol Radiat Phys Biol 17(6):475-484
    150.Bleehen NM, Stenning SP (1991) A Medical Research Council trial of two radiotherapy doses in the treatment of grades 3 and 4 astrocytoma. The Medical Research Council Brain Tumour Working Party. Br J Cancer 64(4):769-774
    151.Nelson DF et al (1993) Hyperfractionated radiation therapy and bis-chlorethyl nitrosourea in the treatment of malignant glioma-possible advantage observed at 72.0 Gy in 1.2 Gy B_I.D. fractions:report of the Radiation Therapy Oncology Group Protocol 8302. Int J Radiat Oncol Biol Phys 25(2): 193-207
    152.Chang CH et al (1983) Comparison of postoperative radiotherapy and combined postoperative radiotherapy and chemotherapy in the multidisciplinary management of malignant gliomas. A joint Radiation Therapy Oncology Group and Eastern Cooperative Oncology Group study. Cancer 52(6):997-1007
    153.Geoffrey A. Geiger, Weili Fu, and Gary D. Kao, Temozolomide-Mediated Radiosensitization of Human GliomaCells in a Zebrafish Embryonic System, Cancer Res 68(2008)3396-3404.
    154.Yingfeng Zheng, Ling Lin , Zhihong Zheng, TGF-a induces upregulation and nuclear translocation of Hesl in glioma cell, Cell Biochem Funct 26(2008) 692-700.
    155.Bashir R, Hochberg F, Oot R (1988) Regrowth patterns of glioblastoma multiforme related to planning of interstitial brachytherapy radiation fields. Neurosurgery 23:27-30.
    156.Jansen EP, Dewit LG, van Herk M, Bartelink H (2000) Target volumes in radiotherapy for high-grade malignant glioma of the brain. RadiotherOncol 56:151-156.
    157.Wallner KE, Galicich JH, Krol G, Arbit E, Malkin MG (1989) Patterns of failure following treatment for glioblastoma multiforme and anaplastic astrocytoma. Int J Radiat Oncol Biol Phys 16:1405-1409
    158.Kim IA, Fernandes AT, Gupta AK, McKenna WG,Bernhard EJ. The influence of the Ras pathway signalingon tumor radiosensitivity. Cancer Metastasis Rev .2004,23:227-236.
    159.Gottschalk AR, Doan A, Nakamura JL, Stokoe D, Haas-Kogan. Inhibition of phosphatidylinositol-3-kinase causes increased sensitivity to radiation through a PKB-dependent mechanism. Int. J. Radiation Oncology Biol.Phys. 2005,63:1221-1227.
    160.Nakamura JL, Karlsson A, Arvold ND, Gottschalk AR, Pieper RO, Stokoe D,Haas-Kogan DA. PKB/Akt mediates radiates radiosensitization by the signaling inhibitor LY294002 in human malignant gliomas. Journal of Neuro-Oncology.2005,71:215-222.
    161.Kim W, Seong J, An JH, Oh HJ. Enhancement of tumor radioresponse by wortmannin in C3H/HeJ hepatocarcinomaJ . Radiat Res (Tokyo). 2007,48:187-195.
    162.Virsik-K(?)pp P, Hofman-H(?)ther H, Rave-Frank M, Schmidberger H. The effect of wortmannin on radiation-induced chromosome aberration formation in the radioresistant tumor cell line WiDr. Radiat Res. 2005 ,164:148-156.
    163.Rosser CJ, Tanaka M, Pisters LL, et al. Adenoviral-mediated PTEN transgene expression sensitizes Bc1-2-expressing prostate cancer cells to radiation. Cancer Gene Therapy.2004,11:273-279.
    164.Pappas G, Zumstrin LA, Munshi A, et al. Adenoviral-mediated PTEN expression radiosensitizes non-small cell lung cancer cells by suppressing DNA repair capacity. Cancer Gene Therapy.2007,14:543-549.
    165.Collis SJ, DeWeese TL, Jeggo PA, et al. The life and death of DNA-PK. Oncogene,2005,24:949-961.
    166.Lieber MR, Ma Y, Pannicke U, et al. Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol,2003,4:712-720.
    167.Daido S, Yamamoto A, Fujiwara K, et al. Inhibition of the DNA-dependent protein kinase catalytic subunit radiosensitizes malignant glioma cell by inducing autophagy. Cancer Res,2005,65:4368-4375.
    168.Reggiori F, Klionsky DJ . Autophagosomes: biogenesis from scratch? Curr Opin Cell Biol,2005,17: 415-422.
    169.Zakeri, Z., Bursch, W., Tenniswood, M., et al. Cell death: programmed apoptosis, necrosis, or other? Cell Death Differ. 1995, 2: 87-96.
    170.Hippert MM, O'Toole PS, Thorburn A. Autophagy in cancer : good, bad, or both? Cancer Res,2006,66:9349-9351.
    171.Paglin S, Hollister T, Delohery T, et al. A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res. 2001;61:439-444.
    172.Kim KW, Moretti L, Lu B. M867, a novel selective inhibitor of caspase-3 enhances cell death and extends tumor growth delay in irradiated lung cancer models. PLoS ONE. 2008 , 3:e2275.
    173.Peng PL, Kuo WH, Tseng HC, et al. Synergistic tumor-killing effect of radiation and berberine combined treatment in lung cancer: the contribution of autophagic cell death. Int J Radiat Oncol Biol Phys. 2008;70:529-542.
    174.Moretti L, Attia A, Kim KW,et al. Crosstalk between Bak/Bax and mTOR signaling regulates radiation-induced autophagy. Autophagy. 2007;3:142-144.
    175.Shoshana Paglin, Timothy Hollister, Thomas Delohery, et al. Induction of autophagic cell death and radiosensitization by the pharmacological inhibition of nuclear factor-kappa B activation in human glioma cell lines Laboratory investigation. J Neurosurg. DOI: 10.3171/2008.8.JNS17648.
    176.Wurdinger T, Costa FF. Molecular therapy in the microRNA era. The Pharmacogenomics Journal.2006:1-8.
    1.Baohong Zhang,Xiaoping Pan,George P.Cobb,et al.MicorRNA as oncogenes and tumor suppressors.Developmental Biology.2007,302:1-12.
    2.T Dalmay,DR Edwards.MicroRNAs and the hallmarks of cancer.Oncogene.2006,25:6170-6175.
    3.张春智,浦佩玉。 MicriRNA与脑发育及神经系统疾病。医学分子生物学杂志,2008,5:42-46。
    4.Pallante P,Visone R,Ferracin M,et al.MicroRNA deregulation in human thyroid papillary carcinomas.Endocrine-Related Cancer.2006,13:497-508.
    5.Zhang lilei,Wang tao,Wright AF,et al.A microdeletion in Xpl 1.3 accounts for co-segregation of retinitis pigmentosa and mental retardation in a large kindred.American Journal of Medical Genetics.2006,140A:349-357.
    6.Ciafre SA,Galardi S,Mangiola A,et al.Extensive modulation of a set microRNAs in primary glioblastoma.Biochemical and Biophysical Research Communications.2005,334:1351-1358.
    7.康春生,浦佩玉,贾志凡,张安玲,周旋,王广秀.人脑胶质瘤细胞系miRNA表达谱初步研究.中华神经外科杂志.2008,24:468-470.
    8.Gillies JK,Lorimer AJ.Regulation of p27kip1 by miRNA221/222 in glioblastoma.Cell Cycle.2007,6:200-2009.
    9.Bracarda S,de Cobelli O,Greco C,et al.Cancer of the prostate.Crit.Rev.Oncol.Hematol.2005,56:379-396.
    10.Tsihlias J,Kapusta L,Slingerland J.The prognostic significance of altered cyclin-dependent kinase inhibitors in human cancer.Annu.Rev.Med.1999,50:401-423.
    11.Galardi S,Mercatelli N,Giorda E,et al.MiR-221 and MiR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27kip 1.J Biol Chem.2007,282:23716-23724.
    12.Pallante P,Visone R,Ferracin M,et al.MicroRNA deregulation in human thyroid papillary carcinomas.Endocrine-Related Cancer.2006,13:497-508.
    13.Huiling He,Krystian Jazdzewski,Wei Li,et al.The role of microRNA genes in papillary thyroid carcinoma. PNAS.2005,102:19075-19080.
    14. Gramantieri L, Ferracin M, Fornari F,et al. Cyclin Gl is a target of miR-122a, a microRNA frequently down-regulated in human hepatocellular carcinoma. Cancer Res. 2007 ,67:6092-6099.
    15. Lee EJ, Gusev Y, Jiang J,et al. Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer. 2007,120:1046-1054.
    16. Lawrie CH, Soneji S, Marafioti T, et al. MicroRNA expression distinguishes between germinal center B cell-like and activated B cell-like subtypes of diffuse large B cell lymphoma. Int J Cancer. 2007 ,121:1156-1161.
    17. Cummins JM, He Y, Leary RJ, et al. The colorectal microRNAome. Proc Natl Acad Sci U S A, 2006, 103:3687-3692.
    18. Gottardo F, Liu CG, Ferracin M, et al. Micro-RNA profiling in kidney and bladder cancers. Urol Oncol. 2007,25:387-392.
    19. Koff A. How to decrease p27kipl levels during tumor development. Cancer Cell.2006,9:75-76.
    20. Sage CL, Nagel R, Egan DA, et al. Regulation of the p27kipl tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. The EMBO Journal.2007,26:3699-3708.
    21. Migita T, Oda Y, Naito S, et al. Low expression of p27(kip1) is associated with tumor size and poor prognosis in patients with renal cell carcinoma. Cancer.2002,94:973-979.
    22. Belletti B, Nicoloso MS, Schiappacassi M, et al. p27(kip1) functional regulation in human cancer: a potential target for therapeutic designs. Curr Med Chem. 2005;12:1589-1605.
    23. Hsu PW, Huang HD, Hsu SD, et al. miRNAMap: genomic maps of microRNA genes and their target genes in mammalian genomes. Nucleic Acids Res. 2006;34:D135-139.
    24. M Garofalo, C Quintavalle, G Di Leva, et al. MicorRNA signatures of TRAIL resistance in human non-small cell lung cancer. Oncogene. 2008,27:3845-3855.
    25. Stuart C Andrews, Michelle D Wood, Simon J Tunster,et al. Cdknlc (p57Kip2) is the major regulator of embryonic growth within its imprinted domain on mouse distal chromosome 7. BMC Developmental Biology. 2007,7:53.
    26. F Fornari, L Gramantieri, M Ferracin, et al. MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene.2008, doi: 10.1038/onc.2008.178