矿井通风系统安全可靠性与预警机制及其动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
世界范围内的主要煤炭生产国家,均经历过由于煤矿开采而导致的安全事故频发,引起严重后果的阶段。当前,我国正处在煤矿生产事故多发,人员伤亡,财产损失严重这一阶段,统计表明,尽管2003年以后,我国年度煤矿事故死亡人数呈逐年下降趋势,但事故死亡人数却仍然占全世界煤矿死亡总人数的70%左右。
     在组成煤矿生产的各个单元系统中,矿井通风系统无疑占有极其重要的位置。这一典型的具有动态、随机性的系统必须能够保持长时间、稳定的运行状态,这对于矿井抗灾能力的提升,优化矿井综合安全生产能力,进而促进煤炭企业经济效益提高,乃至确保我国能源安全均具有重要而现实的意义。
     本文以煤矿通风系统生产的全过程安全为切入点,从通风系统各个不同服务阶段入手,着重从技术角度展开以下四个方面的研究:
     (一)针对矿井通风系统设计过程中的系统可靠性分配进行了优化研究
     可靠性分配则是可靠性设计中最初步的也是最为关键的一步。本文着重对可靠性分配方法在通风系统设计过程中的应用做了研究。在保证矿井通风系统总体可靠度的前提下,通过考虑技术水平、复杂程度、单元重要程度、工作环境等因素,对通风系统各单元进行人力、物力、财力进行了综合、统一、合理的决策。采用与模糊数学相结合的技术手段确定了矿井通风系统各个单元的可靠度的分配并进行了相应的优化,最后编制了相关可靠性分配软件。
     (二)采用“动态”随机模拟手段发展了矿井通风系统可靠性评估方法
     相比用传统的解析方法进行可靠性评估而言,概率性评估方法不仅能有效解决建模中存在的“维数灾”问题,更能充分考虑所要评估系统的负荷、元件故障等随机特性。本文从任务可靠性的逻辑关系角度规划了矿井通风可靠性模型,采用统计建模分析方法,归纳并拟合所要研究对象的概率分布特征及相关参数。利用Monte Carlo随机模拟方法,对矿井通风风网系统的可靠性进行评估。通过大量的重复随机试验,完成对系统进行状态抽样的过程,最后对试验结果进行了整理分析,完成可靠性评估。
     (三)矿井通风系统的预警机制研究
     构建矿井通风系统的预警机制,其目的就是在于在通风系统发生灾变之前能够预先发出警报,提示矿井管理人员及时地调整系统或实行相关对应的维护措施来减少灾害发生的风险,从而防范和制止通风系统失效发生的一种工作机制。论文利用数据挖掘理论中相关技术方法建立了矿井通风系统预警机制,主要分为指标选取与状态识别两个模块。首先应用数据挖掘理论中的粗集理论方法,利用其强大的属性简约和模式识别功能来对纷繁芜杂的、能够反映矿井通风系统运行状态的相关指标进行了分析与优选。然后采用建立于统计学习理论的支持向量机方法构建矿井通风系统运行状态判定模块。最后依据来源于现场的统计资料进行了预警预测验证,结果表明了该预警机制的可行性和实用性,这为准确昭示通风系统未来可能的风险状态及对应相关措施的采取,提供了理论支持与技术保证。
     (四)基于系统动力学的矿井通风系统建模及其干涉实验分析
     矿井通风系统的服务时间几乎等同于矿井的整个服务时间,而矿井通风系统又包含非常多且复杂的子系统。本文深入研究了这些子系统间以及子系统内子因素之间的因果影响关系,建立了基于系统动力学的矿井通风系统动力学流图模型并进行了实证研究。然后从未来系统运行的预测角度出发,设计了相关系统动力学干涉实验。从经济学角度探究了资金投入与系统安全总水平提高的关系,最后依据这些实验的结果,从不同的角度及层面提出了矿井通风系统事故防范的长效机制及建议,来保证系统长期稳定的安全运行,也为煤矿企业管理者提供了科学的决策参考依据。
There are lots of historical mine accidents happened and fatality experiences inthe worldwide main coal production counties due to coal mining activities. Currently,China has been undergoing the critical stage with high frequency of mining accidents,high casualties and property damages. According to the statistics, Although thenumber of coal mine fatalities has been kept decline since the year of2003, it stilltakes up to70%of all fatalities all over the world.
     Among all systems to consist of the coal mine, the mine ventilation system isdefinitely an important subpart. It is a typical, dynamic system which can keep a longtime and stable running state, and is also significant for improving the anti-disasterability, optimizing the comprehensive safety production ability, promoting the miningcompany’s profit and guaranteeing our country’s energy security s strategy.
     Making the whole producing process safety as a starting point, based on thedifferent service sections of the mine ventilation system, the dissertation hasperformed the research works in the following four subjects:
     Research on the systemic reliability allocation during the mine ventilationsystem design stage
     The reliability allocation is the first and also the key step in a reliability designwork. The dissertation did the research work of the reliability allocation applicationin mine ventilation system. Under the condition of ensuring the whole reliability ofthe system, the reliability allocation for each subsystem can be comprehensively,unified and reasonably determined based on the considerations including technicallevel, complicated grade, importance and working environment, etc. The fuzzymathematics technology is used in this allocation application and its optimization. Thecorresponding software is also developed in this research effort.
     The―dynamic‖random simulation method for the reliability assessment ofmine ventilation system
     Comparing with the traditional analytical assessment method, probabilityassessment method not only can solve the―Curse of dimensionality‖problem inbuilding model, but also consider the load, random failure property of the assessmentobject. Starting from the point of the logical relationship of mission, the mineventilation model is reprogrammed. With using the statistical modeling method tosummary and fit the probability properties and related parameters of the research objects, Monte Carlo random simulation method is used to assess the mine ventilationsystem. The sampling process for the system status can be done based on a largerepeated and random experiments. Then, the reliability evaluation could be finishedvia experimental results analysis.
     Research on the early warning mechanism of mine ventilation system
     The aim of designing the mine ventilation of early warning mechanism is toidentify the potential hazards before the failure of mine ventilation system and toremind the mine operators to take proper measures to avoid these risks. Thetechniques used in the proposed the early warning mechanism of mine ventilationsystem consisted of two models which are the index selection model and recognizingstatus model are from the data mining theory. Firstly, By using the attribute reductionalgorithm in the Rough Set, the best indexes which can reflect the behavior of mineventilation system can be selected. Then, Support Vector Machine method from thestatistical study theory is used to set up the model of status determination. Finally, theproposed mechanism has been tested by the reality cases, and the results shows thatthe predicted results agrees with the real results. This early warning can provide thetheoretical supports and technology insure with identifying the future running status.
     Modeling mine ventilation system by system dynamic and correspondingpolicy interferential experiments
     The life-span of mine ventilation system is almost equal to the whole servicetime of a coal mine. The mine ventilation system also includes lots of subsystems.The dissertation in-depth analyzes these subsystems and causalities between them andsetup a system dynamic model of mine ventilation system and finishes demonstrationresearches. Then, starting from the future point, a series of interferential experimentsis designed to explore the relationship between the capital investment and theimprovement of system safety level. Based on these experimental results, suggestionsto insure the long-term mine ventilation safety are proposed from different angles andlevels. In addition, the experimental results also can be used as scientific referenceevidences for mine operators.
引文
[1]范维唐.我国安全生产形势、差距和对策[M].北京:煤炭工业出版社,2003;
    [2]2005年全国煤矿安全生产状况综合分析.国家安全生产监督管理总局网http://www.chinasafety.gov.cn,2006-02-15
    [3]黄元平.矿井通风[M].徐州:中国矿业大学出版社,1986.
    [4]陈开岩.矿井通风系统优化理论及应用[M].徐州:中国矿业大学出版社,2003.
    [5]付建华.煤矿瓦斯灾害防治理论研究与工程实践[M].徐州:中国矿业大学出版社,2005.
    [6]王洪德,马云东.采用模糊综合评价法判定矿井通风系统的可靠性[J].煤矿开采,2002,7(2):55-57.
    [7]祝启坤.矿井通风系统的二级模糊综合评价[J].武汉化工学院学报,1997,19(1):44-49.
    [8]唐敏康.矿井通风系统的灰色分析[J].有色金属,1997,49(3):18-22.
    [9]高新春.矿井通风状况综合评价方法探讨[J].郑州经济管理干部学院学报,2002,17(1):91-93.
    [10]夏孝明.矿井通风系统方案优化的评判指标[J].煤矿安全,2000,24(4):5-6.
    [11]杨娟.矿井通风系统评价方法与标准[J].工业安全与防尘,2000,12(1):11-12.
    [12]谭允祯.矿井通风管理技术理论[M].北京:煤炭工业出版社,1998:104-105.
    [13]任振平.矿井通风系统可靠性分析及应用[D].唐山:河北理工大学,2008
    [14]方裕璋,王家棣,杨立兴.矿井通风技术改造[M].北京:煤炭工业出版社,1994:38-42.
    [15]王超.矿井通风系统可靠性评价的研究[D].徐州:中国矿业大学,2006.
    [16]贾进章.矿井火灾时期通风系统可靠性研究[D].阜新:辽宁工程技术大学,2004.
    [17]谭家磊.矿井通风系统评判及安全预警研究系统[D].泰安:山东科技大学,2005.
    [18]周静.矿井通风系统可靠性研究[D].阜新:辽宁工程技术大学,2005.
    [19]耿爱平.矿井通风系统可拓综合评价方法研究与应用[D].南宁:广西大学,2008
    [20]王从陆,李树清,吴超.矿井通风系统与耗散结构理论[J].中国安全科学学报,2004,14(6):11~13.
    [21]王从陆,吴超,王卫军. Lyapounov理论在矿井通风系统稳定性分析中的应用[J].中国安全生产科学技术,2005,1(4):46~49.
    [22]马洪亮.基于区网耦合模拟的矿井通风系统抗灾能力分析[D].北京:中国矿业大学(北京),2008.
    [23] Mishra, R.; R. V. Ramani, and Y. J. Wang; Systems Concept for Coal Mine Ventialtion[J].Mining Engineering,1994,55(3):1569~1576
    [24] R. B. Krog, C. J. Bise; Investigation into the Practical Use of Belt Air at U.S. LongwallOperations[J]. Proceedings of the5th US Mine Ventilation Symposium,2008,361-371.
    [25] R. H. Grau Using Mine Planning and Other Techniques to Improve Ventialtion in Large-Opening Mines[J]. Proceedings of the US Mine Ventilation Symposium,2008,207-211.
    [26] S.M.E. Jalali, F. Sereshki, and Z. Rezadi; The Reliability of Ventilation Networks [J].Proceedings of the ninth international mine ventilation congress,2009,651-663.
    [27] C.Pritchard; Methods to Improve Mine Ventilation System Efficiency [J]. SME AnnualMeeting and Exhibit,2009, preprint09-070
    [28]谢贤平,赵梓成.应用海明距离公式评价矿井通风系统[J].川煤科技,1993,9(5):14~16.
    [29] Stefopoulos, E.K. Damigos, D.G. design of emergency ventilation system for anunderground storage facility [J]. Tunneling&Underground Space Technology; May2007,Vol.22Issue3, p293-302,
    [30] Onder, M., Sarac, S., Cevik, E.; The influence of ventilation variables on the volume rate ofairflow delivered to the face of long drivages[J].Tunneling&Underground SpaceTechnology; Sep2006, Vol.21Issue5, p568-574
    [31] Lowndes, I. S., Yang, Z. Y.; The application of GA optimisation methods to the design ofpractical ventilation systems for multi-level metal mine operations[J]. Mining Technology:Transactions of the Institute of Mining&Metallurgy, Section A; Mar2004, Vol.113Issue1,p43-58
    [32] Andrews, John;Quantitative safety assessment of the ventilation recirculation system in anundersea mine[J]. Quality&Reliability Engineering International; Nov/Dec91, Vol.7Issue6, p497-510,
    [33] Petrov, N., Barakhtenko, E. Ways of improving safety and reliability of ventilation in mines[J]. Journal of Mining Science; Mar2006, Vol.42Issue2, p171-177,
    [34]王从陆.非灾变时期金属矿复杂矿井通风系统稳定性及数值模拟研究[D].长沙:中南大学,2007.
    [35]沈海鸿,谢晨阳,刘培根.预测控制理论在矿井通风系统的应用[J].辽宁工程技术大学学报,2001,20(3):270~272.
    [36]徐瑞龙.通风网络的可靠度确定[J].阜新矿业学院学报,1985,3:56一59
    [37]宋保维.系统可靠性设计与分析[M].西安:西北工业大学出版社,1-2,2008
    [38]宋笔峰.飞行器可靠性工程[M].北京:国防工业出版社,1-2,2006
    [39]孙红梅.复杂产品系统可靠性的若干方法及应用[D].青岛:青岛大学,2007
    [40] Han J,Kambr M.Data Mining: Concepts and Techniques. USA: Morgan Kaufmann.2001
    [41]朱明.数据挖掘[M].合肥:中国科学技术大学出版社,2002
    [42]杨敏.矿山数据挖掘的方法与模型研究[D].徐州:中国矿业大学,2007
    [43] M.G.利普塞特, G.R.贝登.矿业信息系统开发[J].国外金属矿山,2001(5):28~34.
    [44]李德毅.数据挖掘研究现状[R].―数据仓库之路‖,2000http://www.sqlmine.com/warehouse/htm/41.htm.
    [45]韩家炜.数据挖掘概念与技术[M].北京:机械工业出版社,2001.
    [46] Jiawei Han,Micheline Kamber.数据挖掘:概念与技术[M].北京:机械工业出版社,2001.
    [47]史忠植.知识发现[M].北京:清华大学出版社,2002.
    [48]史忠植,梁永全,吴斌等译.知识工程和知识管理[M].机械工业出版社,2003.
    [49] Fayyad U..Piatetsky ShapiroG.SmythP. From data mining to knowledge discovery: an ooverview[J].In Advances in Knowledge Discovery and Data Mining, FayyadU, etaleds,Chambridge Mass:MITPress,1996:1-36.
    [50] Hammond, Anthony D.GIS applications in underground mining. Mining Engineering, v54, n9,September,2002, p27-30.
    [51] Homes J. Kniesner and John D. Leeth Data Mining Mining Data:MSHA EnforcementEfforts,Underground Coal MineSafety, and New Health Policy Implications.WorkingPaper03-4June2003.
    [52]陈文伟.数据挖掘技术[M].北京:北京工商大学出版社,2002
    [53]文光才,徐三民.煤矿瓦斯防治技术的新进展.矿业安全与环保.2002年2月第27卷第1期.
    [54]程健维,杨胜强,于宝海.高温热害矿井风流温度与湿度的预测及其程序编制[J].能源技术与管理,2007(1):3~5
    [55]潘艳荣,翟长旭,朱顺应.基于灰色聚类理论和人工神经网络技术的道路交通安全评价.重庆交通学院学报,Vol.24,No.2,2005.4.
    [56]程健维,杨胜强,张再容.应用温度校核确定矿井工作面最大允许产量[J].煤炭科学技术,2007,35(5):14~17
    [57]飞思科技产品研发中心.神经网络理论与MATLAB7实现.北京:电子工业出版社,2005.
    [58]程健维.唐山沟煤矿复杂多风井通风系统优化改造及评价研究[D].徐州:中国矿业大学,2008.
    [59]张颖,刘艳秋.系统可靠性分配有效方法[J],沈阳工业大学学报,1999(4):166~168
    [60]吴永平.工程机械可靠性[M].北京:人民交通出版社,2002:1-18.
    [61]贺建民,黄英.机电产品可靠性技术[M].重庆大学出版社,1998
    [62]孙红梅,高齐圣,朴营国.关于故障树分析中几种典型重要度的研究[J].电子产品可靠性与环境试验,2007(2):14~16
    [63]陈祖云.煤与瓦斯突出前兆信息的非线性预测及支持向量机识别研究[D].徐州:中国矿业大学,2009.
    [64]李良巧主编.引信可靠性设计指南[M].兵器工业出版社,1993
    [65]邵旭飞,宋保维,毛昭勇,梁庆卫.串联系统可靠性分配的模糊层次分析方法[J].弹箭与制导学报,2007(1),250~254
    [66] Esterhuizen, G.S., Karacan, C..2007. A methodology for determining gob permeabilitydistributions and its application to reservoir modeling of coal mine longwalls. SME AnnualMeeting and Exhibit, preprint07-078. Denver Colorado, February25-28.
    [67] Hartman HL, Mutmansky JM, Ramani RV, Wang YJ.1997, Mine Ventilation and AirConditioning, Wiley Interscience.
    [68] Mucho, T.P., W.P. Diamond, F. Garcia, J.D. Byars, and Cario S.L.2000.―Implications ofRecent NIOSH Tracer Gas Studies on Bleeder and Gob Gas Ventilation Design,‖TheSociety of Mining Engineers Annual Meeting, Feb.28-Mar.1, Salt Lake City, UT.
    [69] Oswald N., Prosser BS, Ruckman R.,2008. Measured values of coal mine stoppingresistance,12th U.S./North American Mine Ventilation Symposium2008, pp103-106,ISBN978-0-615-20009-5.
    [70] Prosser BS, Wallace KG,1999. Practical values of friction factors. Proceeding of the8thU.S. Mine Ventilation Symposium, Rolla, Missouri, pp691-695. ISBN1-887009-04-3
    [71] Schatzel SJ, Karacan CO, Krog RB, Esterhuizen GS, Goodman GV,2008. Guidelines forthe Prediction and Control of Methane Emissions on Longwalls. Pittsburgh, PA: U.S.Department of Health and Human Services, Public Health Service, Centers for DiseaseControl and Prevention, National Institute for Occupational Safety and Health, DHHS(NIOSH) Publication No.2008-114, Information Circular9502,2008Mar,1-83
    [72] Thimons ED, Kissell FN,1974. Tracer Gas as an Aid in Mine Ventilation Analysis. U.S.Department of the Interior, Bureau of Mines. Report of Investigations7917, NTIS No.PB234051,1-17
    [73] Timko RJ, Thimons ED,1982. Sulfur hexafluoride as a mine ventilation research tool-recent field applications. U.S. Department of the Interior, Bureau of Mines, RI-8735,1-15
    [74]欧阳博文.基于神经网络理论矿井通风系统安全综合评价研究[D].西安:西安科技大学,2006.
    [75]王俭.基于安全分区的通风瓦斯风险控制研究[D].西安:西安科技大学,2008.
    [76]董宪伟,蔡嗣经,王春来,师雄.基于熵理论的矿井通风耗散系统分析[J].矿业研究与开发,2008,28(5):80~82.
    [77]马超.基于未确知测度理论矿井通风系统安全评价研究[D].西安:西安科技大学,2005.
    [78]马云东,孙宝铮.矿井串联系统模糊可靠性理论的研究[J].煤炭学报,1994,19(5):504~512.
    [79] Vinson RP, Kissell FN.,1986. Three Coal Mine Ventilation Studies Using SulfurHexafluoride Tracer Gas. U.S. Department of the Interior, Bureau of Mines. Report ofInvestigations8142, NTIS No. PB-255300,1-19
    [80] Yuan L., A.C. Smith and J.F. Brune (2006),―Computational Fluid Dynamics Study on theVentilation Flow Paths in Longwall Gobs,‖in The11th U.S. North American MineVentilation Symposium, State College, PA, June5-7.
    [81] Alexander, D.W.,2006, The Expected Value of Catastrophes in Underground Coal Mines1987-2001, PhD Dissertation, West Virginia University, pp.38
    [82] Alpert, R.L.,2002,―Ceiling Jet Flows,‖In: SFPE Handbook of Fire Protection Engi-neering,3rd Edition, P.J. DiNenno (ed.), Quincy, MA, Ch.2-4
    [83] Babrauskas, V., R. Peacock,1992,―Heat Release Rate: The Single Most Impor-tantVariable in Fire Hazard‖, Fire Safety Journal, Vol.18, No.3, pp255-272
    [84] Babrauskas, V.,2002,―Burning Rates,‖in: SFPE Handbook of Fire Protection En-gineering,3rd Edition, P.J. DiNenno (ed.), Quincy, MA, Ch.3-1
    [85] Chang, X.,1987, Digital Simulation of Transient Mine Ventilation, PhD Dissertation,Michigan Technological University, Houghton, MI,162pp.
    [86] Chang, X., L.W. Laage, and R.E. Greuer,1990, A User’s Manual for MFIRE: A ComputerSimulation Program for Mine Ventilation and Fire Modeling, USBM, IC9245,171pp.
    [87] Conti, R.S., L.L. Chasko, C.P. Lazzara and G. Braselton,2000, An Underground Coal MineFire Preparedness and Response Checklist: The Instrument, NOISH, IC9452,151pp.
    [88] Dols, W., G. Walton and K. Denton,2000, CONTAMW1.0User Manual: MultizoneAirflow and Contaminant Transport Analysis Software, NISTIR6476, Building and FireResearch Laboratory, NIST, Gaithersburg, MD.137pp.
    [89]程健维,杨胜强.基于模糊集对分析的优选矿井通风系统改造方案[J].煤炭科技,2008(1):28~34
    [90]韩力群.人工神经网络理论、设计及应用[M].北京:化工工业出版社,2002.
    [91]何刚.煤矿安全影响因子的系统分析及其动力学仿真研究[D].淮南:安徽理工大学,2009.
    [92]庄钊文,郁文贤,王永传.模糊技术在可靠性工程中的应用[J].模糊系统与数学,11(3):1~7.
    [93]王国胤, Yiyu Yao,于洪.粗糙集理论与应用研究综述[J],计算机学报,2009(7):28~34.
    [94]孙燕.基于灰色关联分析和支持向量机的煤与瓦斯突出研究[D].徐州:中国矿业大学,2009.
    [95]王其藩.系统动力学[M].北京:清华大学出版社,1-2,1994
    [96]郭波,武晓月.系统可靠性分析[M].长沙:国防科技大学大学出版社,2002.
    [97]张国枢.通风安全学[M].徐州:中国矿业大学出版社,2000:1-18.
    [98]易宏.舰船总体可靠性通用模型及舰船可靠性工程方法研究[D].上海:上海交通大学,2003
    [99] Edwards, J.C. and J. Li,1984,―Computer Simulation of Ventilation in Multilevel Mines‖,Proc. of3rd International Mine Ventilation Congress, M. Howes and M. Jones (ed.), pp.47-51
    [100] Edwards, J.C., C.C. Hwang,1999.―CFD Analysis of Mine Fire Smoke Spread and ReverseFlow Conditions‖, Proc. of8th U.S. Mine Ventilation Symposium, J. Tien (ed.), Universityof Missouri-Rolla, Rolla, MO, pp.417-422
    [101] Edwards, J.C., R.A. Franks, G.F. Friel and L. Yuan,2006,―Experimental and Mod-elingInvestigation of the Effect of Ventilation on Smoke Rollback in a Mine Entry‖, MiningEngineering, April, pp.53-58
    [102] Egan, M.R.,1990, Summary of Combustion Products From Mine Materials: TheirRelevance to Mine Fire Detection, USBM, IC9272,16pp.
    [103] Egan, M.R.,1990, Thermal Decomposition of Ventilation Ducting, Bureau of Mines, IC9263,11pp.
    [104] Evans,D.D.,1995,―Ceiling Jet Flows‖, In: SFPE Handbook of Fire Protection Engi-neering,2nd Edition, P.J. DiNenno (ed.), Quincy, MA, Ch2-34
    [105] Floyd, J.E. and S.P. Hunt,2005,―A Network Fire Model for the Simulation of Fire Growthand Smoke Spread in Multiple Compartments with Complex Ventila-tion‖, Journal of FireProtection Engineering, vol.15, pp.199-229
    [106] Francart, W.,2006.―Reducing Belt Entry Fires in Underground Coal Mines‖, Proc. of11thU.S./North American Mine Ventilation Symposium, Mutmansky J and Ramani R.(ed.),Taylor&Francis Publishers, pp.303-308
    [107]王洪德.矿井通风系统可靠性理论与应用研究[M].煤炭工业出版社,2003
    [108]程健维,杨胜强.矿井采掘工作面通风效果的综合评价[J].中国安全科学学报,2007,17(5):156~161
    [109]沈斐敏.矿井通风系统合理性的综合评判[J].山东矿业学院学报,1986,(2):38-40.
    [110]袁树杰.风网安全指标的量化与计算机分析[J].淮南工业学院学报,2000,20(4):19-21.
    [111]王旭斌.通风系统可靠性分析[J].昆明工学院学报,1994,19(5):100-105.
    [112]马云东.矿井通风系统可靠性分析理论研究[J].阜新矿业学院学报,1995.14(3):5-10.
    [113]刘晓斐.冲击地压电磁辐射前兆信息的时间序列数据挖掘及群体识别体系研究[D].徐州:中国矿业大学,2008.
    [114]王义江,马文彬.煤矿安全事故分析与对策研究[J].中国矿业,2009,18(7):45-47.
    [115]程健维,杨胜强,杨伍伍.唐山沟煤矿通风系统技术改造分析[J].工业安全与环保.2008,17(10):38~41
    [116] Gaunt, R., R. Cole, C. Erickson, R. Gido, R. Gasser, S. Rodriguez, and M. Young,2000,MELCOR Computer Code Manuals: Reference Manuals Version1.8.5, NUREG/CR-6119,US Nuclear Regulatory Commission, Vol.2, Rev.2, Wash-ington, DC
    [117] Gaunt, R., R. Cole, C. Erickson, R. Gido, R. Gasser, S. Rodriguez, and M. Young,2000,MELCOR Computer Code Manuals: Reference Manuals Version1.8.5, NUREG/CR-6119,US Nuclear Regulatory Commission, Vol.2, Rev.2, Wash-ington, DC
    [118] Gillies, A.D.S., A. M. Wala and H. W. Wu,2004, Mine Fire Simulation in Australian MinesUsing Computer Software, Australian Coal Association Research Pro-gram, Grant C12026,Final report
    [119] Gillies, A.D.S., A.M. Wala, H.W. Wu,2005,―Simulation of the Effect of Inertisation ofFires on Mine Ventilation Systems‖, Proc. of8th International Mine Ventila-tion Congress,Brisbane, Austrilia.
    [120] Gorbett, G.E.,2008,―Computer Fire Models for Fire Investigation and Reconstruc-tion‖,Proc. of International Symposium on Fire Investigation Science and Technology, Cincinnati,OH, pp.23-34
    [121] Greuer, R.E.,1973, Influence of Mine Fires on the Ventilation of Underground Mines,USBM Contract Report No. S0122095,173pp.
    [122] Greuer, R.E.,1977, Study of Mine Fire and Mine Ventilation-Computer Simulation ofVentilation Systems under the Influence of Mine Fires, USBM contract re-port No.S0241032
    [123]陈开岩,王省身,赵以惠等.矿井通风安全理论与技术[M].中国矿业大学出版社.1999
    [124]宋凯成.浅析生产矿井通风系统技术改造及应用[J].煤炭技术.2003. Vol.22No. z1
    [125]程健维,杨胜强.基于灰色聚类分析—模糊综合评价的矿井通风系统综合评价[J].矿业安全与环保,2009,36(1):26~28.
    [126]朱银吕,候贤文.煤矿安全工程设计[M].煤炭工业出版社.1995
    [127]谢贤平,赵梓成.矿井通风系统优化设计的研究现状与发展方向[J].新疆有色金属,2001,(6):14-16
    [128]李德仁,王树良,史文中,王新洲.论空间数据挖掘和知识发现[J].武汉大学学报,2001,(6):492-499.
    [129] Mollestad T.,Skowron A.. A Rough set framework for data mining of propositional defaultrules [A]. In: The9th In'l Sympon Methodologies for Intelligent System [C]. Poland: ISMIS'96,1996.1-15.
    [130]周成虎,张健挺.基于信息熵的地学空间数据挖掘模型[J].中国图像图形学报,1999,4(11):943-951.
    [131]汪云甲.数字矿山与矿区资源绿色开发[J].科技导报,2004,(06):42-46.
    [132]邸凯昌.空间数据发掘和知识发现[M].武汉:武汉大学出版社,2000
    [133]苏为华,多指标综合评价理论与方法间题研究[D],厦门:厦门大学,2000
    [134]周长春.连续危险源危险性评价原理与方法及其在煤炭瓦斯灾害中的应用[D].中国矿业大学研究生院,1995.
    [135]雷占波,赵吉博,朱正威.企业危机预警理论及其对我国社会危机预警的启示[J].中国行政管理,2005(2):34~36.
    [136]程健维,杨胜强,程涛.国外矿井救生舱研究现状及问题分析[J].煤炭科学技术,2010,38(11):93~96
    [137]赵卫东,陈国华.粗集与神经网络的集成技术研究[J].系统工程与电子技术,2002,24(10):103-107.
    [138]张文修,吴伟志,梁吉业,李德玉.粗糙集理论与方法[M].北京:科学出版社,2001.
    [139]程叶青,李同升,张平宇.SD模型在区域可持续发展规划中的应用[J].系统工程理论与实践,2004,12:13-18
    [140] Cheng, J, Yang, S. Improved Coward Explosive Triangle for Determining Explosibility ofMixture Gas[J]. Process Safety and Environmental Protection,2011,89(2):89~94
    [141] Hartman, H.L. and Y.J. Wang,1967,―Computer Solution of Three Dimensional MineVentilation Networks with Multiple Fans and Natural Ventilation‖, inter-national Journal ofRock Mechanic Science, Vol.4, pp.129-154
    [142] Hartman, H.L., J.M. Mutmansky, R.V. Ramani and Y.J. Wang,1997, Mine Ventila-tion andAir Conditioning, John Wiley&Sons, Inc., New York,730pp.
    [143] Heselden A.J.M.,1976,―Studies of Fire and Smoke Behavior Relevant to Tunnels‖, Proc.of the Second international Symposium of Aerodynamics and Ventila-tion of VehicleTunnels, Cambridge, UK: BHRA Fluid Engineering;1976, pp.23–35
    [144] Hinkley, P.L.,1970,―The Flow of Hot Gases along an Enclosed Shopping Mall‖, FireResearch Note, No.807
    [145] Hwang, C.C. and, J.C. Edwards,2001,―CFD Modeling of Smoke Reversal‖, Proc. of theInternational Conference on Engineering Fire Protection Design, Socie-ty of Fire ProtectionEngineers, Bethesda, MD, pp.376-387
    [146] Hwang, C.C., C.D. Litton, F.J. Perzak, and C.P. Lazzara,1991,―Modeling the Flow-Assisted Flame Spread Along Conveyor Belt Surfaces‖, Proc. of5th US Mine VentilationSymposium, Y. J. Wang (ed.), West Virginia University, Mor-gantown, WV, pp.39-45
    [147]张惠忱.计算机在矿井通风中的应用[M].徐州:中国矿业大学出版社,1991.
    [148]茹阿鹏.开滦矿区深部开采瓦斯涌出规律[D].徐州:中国矿业大学,2006.
    [149]朱健.四川电网可靠性评估的蒙特卡洛仿真[D].重庆:重庆大学,2007
    [150]刘洋.发输电系统可靠性评估的蒙特卡洛模型及算法研究[D].重庆:重庆大学,2003
    [151]宋晓通.基于蒙特卡罗方法的电力系统可靠性评估[D].济南:山东大学,2008.
    [152]黄元平.矿井通风系统改造指标分析[J].矿业安全与环保,1994,22(2):14-19.
    [153]王洪德.基于粗集-神经网络的矿井通风系统可靠性理论与方法研究[D].阜新:辽宁工程技术大学,2004.
    [154]詹姆斯R埃文斯,戴维L奥尔森.洪锡熙译模拟与风险分析[M].上海:上海人民出版社,2001.
    [155]沈斐敏.矿井通风安全理论与技术[M].徐州:中国矿业大学出版社,1999:138-142.
    [156]周福宝,王德明.矿井通风系统优化评判的模糊优选分析方法[J].中国矿业大学学报,2002,31(3):62-69.
    [157]施式亮,王海桥.矿井安全非线形性动力学评价[M].北京:煤炭工业出版社,2001:1-3.
    [158] Ingason H.,2009, Design Fire Curves for Tunnels, Fire Safety Journal, Vol.44, No.2, pp.259-265
    [159] ISO,1996,―Glossary of Fire Terms and Definitions‖ISO/CD13943, InternationalStandards Organization, Geneva, Switzerland,30pp.
    [160] Jahn, W., G. Rein, J.L. Torero,2009,―The Effect of Model Parameters on the Si-mulationof Fire Dynamics‖, Fire Safety Science, Vol.9, pp.1341-1352
    [161] Jin,T.,1978,―Visibility Through Fire Smoke‖, Fire&Flammability, vol.9, pp.135-154
    [162] Jones, W.W., R.D. Peacock, G.P. Forney, and P.A. Reneke,2005, CFAST-ConsolidatedModel of Fire Growth and Smoke Transport (Version6)–Technical Reference Guide, NISTspecial publication1026,146pp.
    [163] Karlsson, B. and J.G. Quintiere,2000, Enclosure Fire Dynamics, CRC Press LLC, Florida,315pp.
    [164] Kennedy, W.D., J.D. Gonzales and J.G. Sanchez,1996,―Derivation and Applica-tion of theSES Critical Velocity Equations‖, ASHRAE Transactions: Research, vol.102, pp.40-44
    [165]宋久壮.火灾探测报警系统的可靠性分析与Monte Carlo仿真[D].西安:西安科技大学,2006
    [166]将曙光,综放采场瓦斯运移规律三维模型试验及数值模拟的研究[D],徐州:中国矿业大学,1994
    [167]夏春艳.基于粗集属性约简的数据挖掘技术的研究与应用[D],长春:长春理工大学,2007
    [168]李新军.基于支持向量机的建模预测研究[D].天津:天津大学,2004.
    [169]冯夏庭,赵洪波.岩爆预测的支持向量机[J].东北大学学报:自然科学版,2002,23(1):57-59.
    [170]杨胜强、俞启香、王凯:采场脉动通风理论及其在采矿安全中的应用[M],徐州:中国矿业大学出版社,2002
    [171]杜圣东.基于多分类支持向量机的文本分类研究[D]..重庆:重庆大学,2007.
    [172]苗夺谦.Rough Set理论中连续属性的离散化方法[J].自动化学报,2001,27(3):296-302.
    [173] Li Yuancheng, Fang Tingjian, Yu Erkeng. Study of Support Vector Machines for Short-term Load Forecasting[J]. Proceedings of the CSEE,2003,3(6):55-59.
    [174]许学汉,王杰等.煤矿突水预报研究[M].北京:地质出版社,1991.
    [175]王延福,靳德武,曾艳京.矿井煤层底板突水预测新方法研究[J].水文地质工程地质,1999,26(4):33-37.
    [176]董玉林,夏尊铨,杨慎恭.支持向量机中一种参数优化选取方法[J].运筹与管理,2007,16(3):61-65.
    [177]齐志泉,田英杰,徐志洁.支持向量机中的核参数选择问题[J].控制工程,2005,12(4):379-381.
    [178]杜京义,侯媛彬.基于遗传算法的支持向量机回归机参数选取[J].系统工程与电子技术,2006,28(9):1430-1433.
    [179]李颖.基于支持向量机的煤层底板突水预测方法研究[D].北京:煤炭科学研究总院,2007,3:35-58.
    [180]杨胜强,俞启香等:单元法测定瓦斯分布及旋转射流驱散积聚瓦斯[J],中国矿业大学学报,2003(5):68-72
    [181]罗新荣,李增华等:综采放顶煤采场漏风与采空区氧化三带研究[J],煤炭学报,1998(5):34-36
    [182]章梦涛等:采场空气流动状况的数值模型和数值方法[J],煤炭学报,1983(3):46-53
    [183]章梦涛等:采场大气中沼气运移过程的数值模拟[J],煤炭学报,1987(3):15-17
    [184]朱明.矿山安全生产系统动力学研究初探[J].矿业快报,2005,28(2):23~25
    [185]刘清.城市道路运输系统动力学模型的研究[J].武汉交通科技大学学报,1999,23(1):89~92
    [186]邢中芳,陈善早.系统动力学模型及其应用[J].华南理工大学学报,2000,28(l):130~133
    [187]宁钟,刘学应.产业集群演进的系统动力学分析[J].预测,2004(2):66~69
    [188]许长新,严以新.基于系统动力学的港口吞吐量预测模型[J].水运工程,2006(5):31~33
    [189]孙玉峰.矿区环境系统动力学仿真模型的建立[J].辽宁工程技术大学学报2006,25(2):308~311
    [190] Kissell F.N. et.al,2007. Handbook for Methane Control in Mining. U.S. NationalInstitution Of Safety and Healthy, Report of Information Circular9486, DHSS PublicationNo.2006-127
    [191] Zipf. R.K. et.al,2000. Compendium of Structural Testing Data for20-psi Coal Mine Seals.U.S. National Institution Of Safety and Healthy, Report of Information Circular9515,DHSS Publication No.2009-151
    [192] Weiss. E.S. et.al,2008. Explosion Effects on Mine Ventilation Stoppings. U.S. NationalInstitution Of Safety and Healthy, Report of Investigations9676, DHSS Publication No.2009-102
    [193] Cashdollar. K.L. et.al,2009. Results of In-Mine Research in Support of the Investigation ofthe Sago Mine Explosion. U.S. National Institution Of Safety and Healthy, Report ofInvestigations9678, DHSS Publication No.2009-168
    [194] Zipf. R.K. et.al,2007. Expolsion Pressure Design Criteria for New Seals in U.S. CoalMines. U.S. National Institution Of Safety and Healthy, Report of Information Circular9500, DHSS Publication No.2007-144
    [195] Kallu, R.R,2009, Design of Reinforced Concrete Seals for Underground Coal Mines, Ph.D.Dissertation, West Virginia University, Morgantown, WV, U.S.A.
    [196] Zhou,L.,2009, Improvement of the Mine Fire Simulation Program MFIRE, Ph.D.Dissertation, West Virginia University, Morgantown, WV, U.S.A.
    [197] Massey energy company,2011, Preliminary Reports of Investagtion Upper Bigger BranchMine Explosion
    [198] Mcatree, D.J.,2011, Governor’s Independent Investigation Panel reports of Upper BiggerBranch Mine Explosion
    [199]俞启香:矿井瓦斯防治[M],徐州:中国矿业大学出版社,1992