镉或铬胁迫对拟穴青蟹非特异性免疫的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
运用酶学分析方法和组织学技术,研究了水体中不同浓度Cd~(2+)或Cr~(6+)胁迫1d,3d,5d,7d,9d后对拟穴青蟹血细胞总数(THC)、免疫相关酶及鳃、肝胰腺显微结构等的影响,探讨Cd~(2+)或Cr~(6+)胁迫下拟穴青蟹的免疫防御机制,以期为其健康养殖水质管理提供理论指导,并为甲壳动物环境免疫学研究积累基础资料。本试验的主要结果和结论如下:
     1.Cd~(2+)或Cr~(6+)胁迫对拟穴青蟹血细胞总数(THC)的影响
     拟穴青蟹分别暴露于不同浓度Cd~(2+)或Cr~(6+)水体中1d,3d,5d,7d,9d后,其血细胞总数(THC)发生了相应的变化,且一定程度上存在时间剂量效应关系。Cd~(2+)或Cr~(6+)胁迫1d后拟穴青蟹THC即显著下降(P<0.05),变幅与Cd~(2+)或Cr~(6+)浓度呈正相关,且拟穴青蟹对Cd~(2+)的反应较Cr~(6+)更灵敏,Cd~(2+)抑制效应较Cr~(6+)持续性更长。随着胁迫时间延长至9d后,Cr~(6+)胁迫下拟穴青蟹THC可逐渐恢复至与对照组差异不显著的状态(P>0.05),然而0.075mg/L、0.1 mg/L Cd~(2+)组的拟穴青蟹THC仍被显著抑制(P<0.05)。
     2.Cd~(2+)或Cr~(6+)胁迫对拟穴青蟹血清中免疫相关酶活性的影响
     Cd~(2+)或Cr~(6+)胁迫对拟穴青蟹血清中免疫相关酶活性影响显著(P<0.05)。Cd~(2+)或Cr~(6+)胁迫均对拟穴青蟹血清酚氧化酶(PO)活性产生显著抑制效应(P<0.05),但剂量效应关系不明显。Cr~(6+)处理组的抑制效应1d后即表现出来,且持续时间较短;Cd~(2+)处理组5d后才表现出来,抑制效应持续时间较长。Cd~(2+)或Cr~(6+)暴露对拟穴青蟹血清溶菌酶(U_L)活性均具有激活效应,0.075mg/L、0.1 mg/L Cd~(2+)组和4.0 mg/L、8.0 mg/L Cr~(6+)组对溶菌酶激活效应显著(P<0.05),Cd~(2+)或Cr~(6+)对血清中溶菌酶激活效应存在时间效应关系,随着胁迫时间的延长,其激活效应逐渐减弱。Cd~(2+)或Cr~(6+)胁迫均能对拟穴青蟹血清抗菌力(U_a)产生显著抑制效应(P<0.05),其中Cr~(6+)的抑制效应强于Cd~(2+),并表现出时间剂量效应关系
     3.Cd~(2+)或Cr~(6+)胁迫对拟穴青蟹组织、器官中免疫相关酶活性的影响
     Cd~(2+)或Cr~(6+)暴露对拟穴青蟹不同组织、器官中免疫相关酶类活性影响显著。Cd~(2+)暴露1d后即对拟穴青蟹鳃中Ca~(2+)-ATPase活性产生显著抑制效应(P<0.05),抑制程度与Cd~(2+)浓度相关性不显著(P>0.05);Cd~(2+)对拟穴青蟹鳃中Na~+,K~+-ATPase活性的抑制效应相对较弱,Ca~(2+)-ATPase对Cd~(2+)的敏感性较Na~+,K~+-ATPase强。拟穴青蟹鳃中Ca~(2+)-ATPase、Na~+,K~+-ATPase活性在Cr~(6+)暴露1d后即被显著抑制(P<0.05),且发现随胁迫时间的延长Cd~(2+)或Cr~(6+)均可诱导拟穴青蟹鳃中Ca~(2+)-ATPase、Na~+,K~+-ATPase活性升高。Cd~(2+)暴露可诱导拟穴青蟹血清、鳃、肝胰腺、肌肉中SOD活性显著升高(P<0.05),其中肝胰腺中SOD反应更灵敏。Cr~(6+)暴露下拟穴青蟹血清、鳃、肝胰腺、肌肉中SOD活性均可被显著诱导升高(P<0.05),与Cd~(2+)不同的是Cr~(6+)胁迫下鳃中SOD反应较灵敏。Cd~(2+)胁迫可诱导拟穴青蟹鳃、肝胰腺、肌肉中ACP活性显著升高(P<0.05),但Cr~(6+)胁迫对拟穴青蟹肝胰腺、肌肉中ACP活性影响不显著(P>0.05)。Cd~(2+)胁迫对拟穴青蟹鳃、肝胰腺、肌肉中AKP抑制效应显著(P<0.05),尤其是肝胰腺、肌肉。与Cd~(2+)处理不同的是,Cr~(6+)处理能刺激拟穴青蟹鳃、肝胰腺、肌肉中AKP活性。
     4.Cd~(2+)或Cr~(6+)胁迫对拟穴青蟹组织、器官显微结构的影响
     Cd~(2+)或Cr~(6+)胁迫对拟穴青蟹组织、器官显微结构产生剂量-时间效应。胁迫9d后,其显微结构发生了不同程度的改变。0.1mg/LCd~(2+)暴露9d后,拟穴青蟹鳃叶出现一定程度增厚,血腔相对增大;肝胰腺细胞界限模糊。8.0mg/LCr~(6+)暴露下,鳃叶相对增厚,上皮层破坏;肝胰腺中血细胞增多,肝小管基膜出现断裂,界限模糊。
     综上所述,Cd~(2+)或Cr~(6+)胁迫对拟穴青蟹主要免疫指标影响显著,可导致机体免疫力下降。
The effects of different concentrations of water-borne Cd~(2+) or Cr~(6+) on total haemocyte count(THC), enzymes interrelated to immune function and histological structure of gill and hepatopancreas of mud crab Scylla paramamosain were determined by enzyme analysis and histology technique during experimental time. The aim was to clarify the mechanisms of immune defence of Scylla paramamosain under Cd~(2+) or Cr~(6+) stress, which will provide scientific guidelines for mud crab healthy aquaculture and pile up basic data for studying on the crustacean environmental immunology. The main results and conclusion were as follows:
     1. Changes of total haemocyte count of Scylla paramamosain exposed to different concentrations of water-borne Cd~(2+) or Cr~(6+)
     THC of Scylla paramamosain decreased significantly when exposed to different concentrations of Cd~(2+) or Cr~(6+) for 1d(P<0.05). The variation of THC was positive related to the Cd~(2+)or Cr~(6+) concentration and more sensitive when exposed to Cd~(2+). The decreasing of THC induced by Cd~(2+)(0.075mg/L, 0.1 mg/L) was significantly different from the controls after 9d exposure(P<0.05), but Cr~(6+) didn't. THC of Scylla paramamosain was approximately to control group after 9d exposed to Cr~(6+), however, THC still decreased after 9d exposed to Cd~(2+).
     2. Effects of water-borne Cd~(2+) or Cr~(6+) exposure on the activities of enzymes interrelated to immune function in hemolymph of Scylla paramamosain
     Phenoloxidase activity was significantly suppressed in hemolymph when exposed to different concentrations of Cd~(2+) for 1d(P<0.05), exposed to different concentrations of Cr~(6+) for 5d. Lysozyme activity was significantly elevated in hemolymph of Scylla paramamosain when exposed to the concentrations of 0.075mg/L and 0.1 mg/L Cd~(2+), or 4.0 mg/L and 8.0 mg/L Cr~(6+)(P<0.05).The activation depended on exposure time of Cd~(2+) or Cr~(6+), which suggested a decrease in activation with prolongation of exposure time. The antibacterial activity was significantly inhibited in hemolymph of Scylla paramamosain(P<0.05). The effect of Cr~(6+) exposure on antibacterial activity showed a dose-time response relationship at some degree.
     3. Effects of water-borne Cd~(2+) or Cr~(6+) exposure on the activities of enzymes interrelated to immune function in gill, muscle and hepatopancreas of Scylla paramamosain
     The Ca~(2+)-ATPase activity was significantly suppressed in gills of Scylla paramamosain when exposed to different concentrations of Cd~(2+) after 1d (P<0.05), but the changes had no relation with Cd~(2+) concentration. However, the Na~+,K~+-ATPaseactivity was insignificantly inhibited by Cd~(2+) compared to control group except Cd~(2+) 0.075mg/L. Na~+,K~+-ATPase was lower sensitive to Cd~(2+) than Ca~(2+)-ATPase. The activities of Ca~(2+)-ATPase and Na~+,K~+-ATPase were significant decreased by Cr~(6+) exposure in gills of Scylla paramamosain after 1d(P<0.05). The activities of Ca~(2+)-ATPase and Na~+,K~+-ATPase were stimulated by Cd~(2+) or Cr~(6+) with exposure time prolonging. The superoxide dimutase(SOD) activity were significant increased by Cd~(2+) or Cr~(6+) exposure in gills, hepatopancreas, muscle of Scylla paramamosain (P<0.05). The SOD activity in hepatopancreas revealed a much higher sensitivity to Cd~(2+) than that in other tissues, whereas SOD activity in gills revealed a much higher sensitivity to Cr~(6+) exposure. Acid phosphatase activity in gills, hepatopancreas, muscle of Scylla paramamosain was significantly stimulated by Cd~(2+)(P<0.05), but revealed less change to Cr~(6+) exposure. The alkaline phosphatase activity was significant decreased by Cd~(2+) exposure in gills, hepatopancreas, muscle of Scylla paramamosain(P<0.05), whereas Cr~(6+) exposure induced an increase in alkaline phosphatase activity in Scylla paramamosain.
     4. Effects of water-borne Cd~(2+) or Cr~(6+) exposure on histological microstructure of gill and hepatopancreas in Scylla paramamosain
     The effect of water-borne Cd~(2+) or Cr~(6+) exposure on gill and hepatopancreas microstructure of Scylla paramamosain put up the dose-time effect. Some changes were observed in histolopathological microstructure of gill and hepatopancreas after 9d. The gill filament epithelium were thickened, vasal become larger compared to control group, the boundary between hepatopancreas cells were faint in Scylla paramamosain exposed to 0.lmg/L Cd~(2+) after 9d. The irregularly thickened gill lamellae epithelium disassembled were the other histolopathological effects of 8.0mg/L Cr~(6+) after 9d. In hepatopancreas, the basement membranes injury, the boundary between hepatic tubules was unclear, increasing hemocytes was observed.
     In summary, the research suggests water-borne Cd~(2+) or Cr~(6+) exposure caused negative effects on immune factors, led to immune disturbance in Scylla paramamosain.
引文
[1] 孟紫强.环境毒理学[M].北京:中国环境科学出版社,2003.
    [2] Gunshin H, Mackenzie B, Berger U V, et al. Cloning and characterization of a mammalian proton-coupledmetal-ion transporter[J]. Nature, 1997,388: 482-488.
    [3] Simkiss K. Lipid solubility of heavy metals in saline solutions[J]. J. Mar. Biol. Associa. U. K., 1983, 63:1-7.
    [4] George S G Heavy metal detoxication in the mussel Mytilus edulis composition of Cd-containing kidney granules(tertiary lysosomes)[J]. Comp. Biochem. Physiol., 1983, 76C: 53-57.
    [5] 陈金堤,缪惠彬,郑建春,等.九龙江河口海区生物体内汞、铜、铅、锌和锡含量的初步调查[J].厦门大学学报,1981,20(4):458-467.
    [6] White S L, Rainbow P S. Regulation of zinc concentration by Palaoemon elegans(crustacean: decapoda): zinc flux and effects of temperature zinc concentration and molting. Mar. Ecol. Prog. Ser, 1984,16: 135-147.
    [7] 王兰,杨秀清,王茜,等.镉在河蟹五种组织器官的积累及对酯酶同工酶的影响[J].动物学报(专刊),2001,47:96-100.
    [8] 席玉英,王兰,杨秀清.汞在中华绒鳌蟹主要组织器官中的积累[J].动物学报(专刊),2001,47:92-95.
    [9] 杨志彪.水体 Cu~(2+)对中华绒鳌蟹(Eriocheir sinensis)毒性作用机制的研究[D].上海:华东师范大学博士论文,2005.
    [10] José Dias Corr(?)a Jr, Miguel Ramos da Silva, Antonio Carlos Bastos da Silva, et al. Tissue distrib ution, subcellular localization and endocrine disruption patterns induced by Cr and Mn in the crab Ucides cordatus[J]. Aquat. Toxicol., 2005, 73(2), 139-154.
    [11] 杨美兰,林钦,王增焕,等.大亚湾海洋生物体重金属含量与变化趋势分析[J].海洋环境科学,2004,23(1):41-43.
    [12] Ahearn G A, Mandal P K, Mandal A. Mechanisms of heavy-metal sequestration and detoxification in crustaceans: a review[J]. J. Comp. Physiol. B., 2004,174(6): 439-452.
    [13] Viarengo A, Moore M N, Pertica M. Detoxification of copper in the cells of the digestive gland of mussel: the role of lysosomes and thioneins[J]. Sci. Total. Environ., 1985, 44: 135-145.
    [14] Viarengo A, Moore M N, Mancinelli G, et al. Metallothioneins and lysosomes in metal toxicity and homeostasis in marine mussels: the effect of cadmium in the presence and absence of phenanthrene[J]. Mar. Biol., 1987,94: 251-257
    [15] Viarengo A. Heavy metals in marine invertebrates: mechanisms of regulation and toxicity at the cellular level[J]. Rev. Aquat. Sci., 1989, 1: 295-317.
    [16] Viarengo A, Nott J A. Mechanisms of heavy metal cation homeostasis in marine invertebrates[J]. Comp. Biochem. Physiol., 1993, 104C: 355-372.
    [17] Thornalley P J, Vasak M. Possible role for metallothionein in protection against radiotioninduced oxidative stress: Kinetics and mechanism of its reaction with superoxide and hydroxyl radicals. Biochem. Biophys. Acta., 1985, 827: 36-44.
    [18] Abel J, Ruiter N. Inhibition of hydroxyl-radical generated DNA degradation by metallothionein. Toxcicol. Lett., 1989, 47:191-196.
    [19] 陈瑗,周玫.自由基医学基础与病理生理[M].北京:人民卫生出版社,2002.
    [20] 浅田浩二.生物体内的活性氧清除系统-抗氧化酶[J].日本医学介绍,1994,15(7):293-294.
    [21] Parke V D. Role of enzymes in protection against lipid peroxidation[J]. Regul. Toxicol. Pharmacol., 1987,7:222-235.
    [22] Marius Brouwer, Thea Hoexum Brouwer. Biochemical defense mechanisms against copper-induced oxidative damage in the blue CTab,Callinectes sapidus[J]. Arch. Biochem, Biophys., 1998, 351(2): 257-264.
    [23] 潘鲁青,任加云,吴众望.重金属离子对中华绒螯蟹肝胰脏和鳃丝SOD、CAT活力的影响[J].中国海洋大学学报,2004,34(2):189-192.
    [24] Luqing Pan, Hongxia Zhang. Metallothionein, antioxidant enzymes and DNA strand breaks as biomarkers of Cd exposure in a marine crab, Charybdis japonica[J]. Comp. Biochem. Physiol., 2006,144C: 67-75.
    [25] Smith V J, Swindlehurst R J, Johnston P A, et al. Disturbance of host defence capability in the common shrimp, Crangon crangon by exposure to harbour dredge spoils[J]. Aquat. Toxicol., 1995,32: 43-58.
    [26] Lorenzon S, Francese M, Smith V J, et al. Heavy metals affect the circulating haemocyte number in the shrimp Palaemon elegans[J]. Fish. Shellfish. Immunol., 2001,11: 459-472.
    [27] Truscott R, White K N. The influence of metal and temperature stress on the immune system of crabs[J]. Function. Ecol., 1990,4:455-461.
    [28] Wang R, Lee S Y, Cerenius L, et al. Properties of the prophenoloxidase activating enzyme of the freshwater crayfish,Pacifastacus leniusculus[J].Eur. J. Biochem., 2001, 268(4): 895-902.
    [29] Rodriguez J, Le Moullac G. State of the art of immunological tools and health control of penaeid shrimp[J]. Aquaculture, 2000,191(1-3): 109-119.
    [30] Smith V J, Johnston P A. Differential haematoxic effect of PCB congeners in the common shrimp, Crangon crangon[J]. Comp. Biochem. Physiol., 1992, 10C: 641-649.
    [31] Jing G, Li Y, Xie L, et al. Different effects of Pb~(2+) and Cu~(2+) on immune and antioxidant enzyme activities in the mantle of Pinctada fucata[J]. Environ. Toxicol. Pharmacol, 2007, 24:122-128
    [32] Gagnairea B, Thomas-Guyonb H, Renault T. In vitro effects of cadmium and mercury on Pacific oyster, Crassostrea gigas (Thunberg), haemocytes[J]. Fish. Shellfish. Immunol., 2004, 16:501-512.
    [33] Marcano L, Nusetti O, Rodriguez-Grau J, et al. Coelomic fluid lysozyme activity induction in metal toxicity the Polychaete Eurythoe complanata as a biomarker of heavy metal toxicity[J]. Bull. Environ. Contain. Toxicol., 1997,59: 22-28.
    [34] Anderson R S, Unger M A, Burreson E M. Enhancement of Perkinsus marinus disease progression in TBT-exposed oyster (Crassostrea virginica)[J]. Mar. Environ. Res., 1996, 42: 177-180.
    [35] Anderson R S, Brubacher L L, Ragone-Calvo L, et al. Effect of tributyltin and hypoxia on the progression of Perkinsus marinus infections and host defence mechanisms in Crassostrea virginica(Gmelin) [J]. J. Fish. Dis., 1998, 21: 371-380.
    [36] Dhavale D M, Masurekar V B, Giridhar B A. Cadmium induced inhibition of Na~+,K~+-ATPase activity in tissues of crab Scylla serrata(Forska)[J]. Bull. Environ. Contain. Toxicol., 1988, 40: 759 -763.
    [37] 任加云,潘鲁青,姜令绪.3种重金属离子对中华绒螯蟹鳃丝 Na~+,K~+-ATPase活性的影响[J].中国水产科学,2004,11(4):291-295.
    [38] 李少菁,王桂忠,翁卫华,等.重金属对日本对虾仔虾存活及代谢酶活力的影响[J].台湾海峡,1998,17(2):115-120.
    [39] 王维娜,王安利,孙儒泳.水环境中的铜、锌、铁、钴离子对日本沼虾消化酶和碱性磷酸酶的影响[J].动物学报(专刊),2001,247:72-77.
    [40] 杨志彪,赵云龙,周忠良,等.水体铜对中华绒鳌蟹(Eriocheir sinensis)代谢酶活力的影响[J].海洋与湖沼,2006,37(2):118-124.
    [41] 李艳东.水体镉对中华绒鳌蟹(Eriocheir sinensis)亲体毒性作用研究[D].上海:华东师范大学硕士学位论文,2007.
    [42] Victor B, Narayanan M, Jones-Nelsn D. Gill pathology and haemocyte response in mercury exposed Macrobranchium idea(Heller)[J]. J. Environ. Biol., 1990,11: 61-65.
    [43] 卢敬让,赖伟.镉对中华绒螯蟹鳃组织及亚显微结构的影响[J].海洋与湖沼,1991,22(6):565-570.
    [44] Silvestre F, Trausch G, Devos P. Hyper-osmoregulatory capacity of the Chinese mitten crab (Eriocheir sinensis) exposed to cadmium; acclimation during chronic exposure[J]. Comp. Biochem. Physiol., 2005, 140C: 29-37.
    [45] 成永旭,徐兆礼.Zn对中华绒螯蟹肝胰脏超微结构的影响[J].动物学研究,2000,21(5):343-347.
    [46] 王兰,王定星,王茜,等.镉对长江华溪蟹肝胰腺细胞超微结构的影响[J].解剖学报,2003,34(5):522-526.
    [47] 张红霞.重金属离子对日本蟳毒理学效应的研究[D],青岛:中国海洋大学硕士论文,2006.
    [48] 艾春香,刘建国,林琼武,等.青蟹的营养需求及其配合饲料研发[J].水产学报,2007,31(S):122-128.
    [49] Cornick J W, Stewart J E. Interaction of the pathogen, Gqffkya homari, with the natural defence mechanisms of Homarus americanu[J]. Journal of the Fisheries Research Board of Canada, 1968,25:695-709.
    [50] Smith V J, Ratcliffe N A. Host defence reactions of the shore crab, Carcinus maenas (L.); clearance and distribution of injected test particles[J]. J. Mar. Biol. Associa. U. K., 1980a, 60: 89-102.
    [51] Smith V J, Ratcliffe N A. Cellular defense reactions of the shore crab, Carcinus maenas (L.): in vivo haemocytic and histopathological responses to injected bacteria[J]. J. Invert. Pathol., 1980b, 35: 65-74.
    [52] Smith V J, S(?)derh(?)ll K, Hamilton, M. β-1,3-glucan induced cellular defence reactions in the shore crab, Carcinus maenas[J]. Comp. Biochem. Physiol., 1984, 77A: 635-639.
    [53] Hose J E, Martin G G, Tiu S. Patterns of hemocyte production and release throughout the moult cycle in the penaeid shrimp, Sicyonia ingentis[J]. Biol. Bull., 1992, 183:185-189.
    [54] Lorenzon S, Guarrini S, Smith V J, et al. Effects of LPS injection on circulating haemocytes in crustaceans in vivo[J]. Fish. Shellfish. Immunol., 1999, 9: 31-50.
    [55] Mix M C, Sparks A K. Hemocyte classification and differential counts in the dungeness crab, Cancer magister [J]. J. Invert. Pathol., 1980,35: 134-143.
    [56] Martin G G, Graves B L. Fine structure and classification of shrimps hemocytes[J]. J. Morphol., 1985, 185:339-348.
    [57] Bauchau A G, Plaquet J C. Variation du nombre des hemocytes chez les crustaces brachyoures[J]. Crustaceana, 1973, 24(2): 215-223.
    [58] Victor B. Responses of haemocytes and gill tissue to sublethal cadmium chloride poisoning in the crab Paratelphusa hydrodromous (Herbst)[J]. Arch. Environ. Contamina. Toxicol.,1993,24: 432-439.
    [59] Victor B. Gill tissue pathogenicity and hemocyte behavior in the crab Paratelphusa hydrodromous exposed to lead chloride[J]. J. Environ. Sci. Heal. A, Environ. Sci. Engineer., 1994,29:1011-1034.
    [60] Chisholm J R S, Smith V J. Variation of antibacterial activity in the haemocytes of the shore crab, Carcinus maenas with temperature[J]. J. Mar. Biol. Associa. U. K., 1994, 74: 979-982.
    [61] Su-Tuen Yeh.,Chun-Hung Liu.,Jiann-Chu Chen. Effect of copper sulfate on the immune response and susceptibility to Vibrio alginolyticus in the white shrimp Litopenaeus vannamei[J]. Fish. Shellfish. Immunol., 2004,17: 437-446.
    [62] Auffret M, Oubella. Cytometric parameters of biovalve mollusks: effect of environmental factors[J]. Modul. Fish. Immun. Respon., 1994,1: 23-32.
    [63] Khangarot B S, Rathore R S, Tripathi D M. Effects of Chromium on Humoral and Cell-Mediated Immune Responses and Host Resistance to Disease in a Freshwater Catfish, Saccobranchusfossilis (Bloch) [J]. Ecotoxicol. Environ. Safety., 1999,43: 11-20 .
    [64] Wen-Xiong Wang, Sarah B Griscom, Nicholas S Fisher. Bioavailability of Cr(Ⅲ) and Cr(Ⅵ) to Marine Mussels from Solute and Particulate Pathways[J]. Environ. Sci. Technol., 1997, 31: 603-611.
    [65] Smith V J, S(?)derh(?)ll K. β-1,3-glucan activation of crustacean haemocytes in vitro and in vivo[J]. Biol. Bull., 1983a, 164: 229-314.
    [66] Smith V J, S(?)derh(?)ll K. Induction of degranulation and lysis of haemocytes in the freshwater crayfish, Astacus astacus by components of the prophenoloxidase activating system in vitro[J]. Cell. Tissue. Resea., 1983b, 233:195-303.
    [67] Ashida M. Purification and characterization of pro-phenoloxidase from hemolymph of the silkworm Bombyz mori[J]. Arch. Biochem. Biophy., 1971,144: 749-762.
    [68] Hultmark D. Insect immunity: purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophera cecropia[J]. Eur. J. Biochem., 1980,106: 7-16.
    [69] Boman H G. Insect immunity ?. Characteristics of an inducible cell-free antibacterial reaction in hemolymph of Samia cynthia[J]. Infect. Immune., 1974, 10: 136-145.
    [70] 王雷,李光友,毛远兴.中国对虾血淋巴中的抗菌、溶菌活力与酚氧化酶活力的测定及其特性研究[J].海洋与湖沼,1995,26(2):179-185.
    [71] Tsing A, Arcier J M, Brehelin M. Hemocytes of penaeid and palaemonid shrimps: morphology, cytochemistry and hemograms[J]. J. Invert. Pathol., 1989, 53: 64-77.
    [72] Johansson M W, Soderhall K. Cellular immunity in crustaceans and the proPO system[J]. Parasitol Today, 1989, 5: 171-176.
    [73] Bachere E, Miahle E, Rodriguez J. Identification of defence effectors in the haemolymph of crustaceans with particular reference to the shrimp Penaeus japonicus (Bate): prospects and application[J]. Fish. Shellfish. Immunol., 1995, 5:597-612.
    [74] Wang L U, Chen J C. The immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus at different salinity levels[J]. Fish. Shellfish. Immunol., 2005,18: 269-278.
    [75] Hauton C, William J A, Hawkins L E. In situ variability in phenoloxidase activity in the shore crab, Carcinus maenas (L.) [J]. Comp. Biochem. Physiol., 1997,117B: 267-271.
    [76] 汪小峰.中国对虾酚氧化酶的生物化学性质及及几种免疫促进剂对中国对虾酚氧化酶和血细胞的影响[D].青岛:中国海洋大学硕士研究生学位论文,2002.
    [77] Burmester T. Molecular evolution of arthropod hemocyanin superfamily[J]. Mol. Biol. Evol., 2001,18(2): 184-195.
    [78] Burmester T. Origin and evolution of arthropod hemocyanins and related proteins[J]. J. Comp. Physiol. B., 2002, 172(2): 95-107.
    [79] 时超美.昆虫酚氧化酶原活化及其在免疫中的作用[J].昆虫知识,2000,37(5):310-314.
    [80] Christopher A T, Louis E B, Karen G B. The effects of hypoxia and pH on phenoloxidase activity in the Atlantic blue crab, Callinectes sapidus[J]. Comp. Biochem. Physiol., 2006, 144A: 218-223.
    [81] Jing G, Li Y, Xie L, Zhang, et al. Metal accumulation and enzyme activities in gills and digestive gland of pearl oyster (Pinctada fucata) exposed to copper[J]. Comp. Biochem. Physiol., 2006,144C: 184-190.
    [82] Chun-Hung Liu, Jiann-Chu Chen. Effect of ammonia on the immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus[J]. Fish. Shellfish. Immunol., 2004,16: 321-334
    [83] I-Ting Tseng, Jiann-Chu Chen. The immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus under nitrite stress[J]. Fish. Shellfish. Immunol., 2004,17, 325-333.
    [84] Sha-Yen Cheng, Si-Wei Hsu, Jiann-Chu Chen. Effect of sulfide on the immune response and susceptibility to Vibrio alginolyticus in the kuruma shrimp Marsupenaeus japonicus[J]. Fish. Shellfish. Immunol, 2007, 22:16-26.
    [85] Shu-Ling Hsieh, Yuan-Hwa Ruan, Yi-Chen Li, et al. Immune and physiological responses in Pacific white shrimp (Penaeus vannamei) to Vibrio alginolyticus[J]. Aquaculture., 2008, 275: 335-341.
    [86] 牟海津,江晓路,刘树清,等.免疫多糖对栉孔扇贝酸性磷酸酶、碱性磷酸酶和超氧化物歧化酶活性的影响[J].青岛海洋大学学报,1999,29(3):463-468.
    [87] 李光友.中国对虾疾病与免疫机制[J].海洋科学,1995,4:1-3.
    [88] 吴众望,潘鲁青,张红霞.重金属离子对凡纳滨对虾肝胰脏、鳃丝和血液SOD活力的影响[J].应用生态学报,2005,16(10):1962-1966.
    [89] 张红霞,潘鲁青,刘静.重金属离子对日本蟳血淋巴抗氧化酶(SOD,CAT,GPx)活力的影响[J].中国海洋大学学报,2006,36(S):49-53.
    [90] National Research Council. Chromium, Medical and Biological Effects of Environmental Pollutants[A]. Washington, DC. National Academy of Science, 1974.
    [91] Ville P, Roch P, Cooper E L, et al. PCBs increase molucular-related activities (lysozyme, antibacterial, hemolysis, proteases) but inhibited macrophage-functions (phagocytosis, wound healing) in earthworms[J]. J. Invert Pathol., 1995, 65: 217-224.
    [92] Moore M N. Cellular responses to pollutants[J]. Mar. Pollut. Bull., 1985,16:134-139.
    [93] Moore M N. Biomarkers of contaminant exposure and effect: a way forward in marine environmental toxicology [J]. Sci. Total. Environ., 1993, suppl: 1335-1343.
    [94] Cajaraville M P, Robledo Y, Etxeberria M, et al. Cellular biomarkers as useful tools in the biological monitoring of environmental pollution: molluscan digestive lysosomes[A]. In: Cajaraville M P, editor. Cell biology in environmental toxicology. Bilbo: University of the Basque Country Press Service, 1995, 29-55.
    [95] Miren P C, Maria J B, Julian Blascoc, et al. The use of biomarkers to assess the impact of pollution in coastal environments of the Iberian Peninsula: a practical approach[J]. Sci. Total. Environ., 2000, 247: 295-311.
    [96] Moore M N. Cytochemical determination of cellular responses to environmental stressors in marine organisms[J]. Rapp-v. Reun. Cons. Int. Explor. Mer., 1980,179: 7-15.
    [97] Sarasquete C, Gonzalez de Canales M L, Gimeno S. Comparative histopathological alterations in the digestive gland of marine bivalves exposed to Cu and Cd[J]. Eur. J. Histochem., 1992, 36: 223-232.
    [98] Lowe D M, Moore M N, Clarke K R. Effects of oil on digestive cells in mussels: quantitative alterations in cellular and lysosomal structure[J]. Aquat. Toxicol., 1981,1: 213-226.
    [99] Cajaraville M P, Marigomez J A, Angulo E. A stereological survey of lysosomal structure alterations in Littorina littorea exposed to l-naphthol[J]. Comp. Biochem. Physiol., 1989, 93C: 231-237.
    [100] Marig6mez J A, Vega M M, Cajaraville M P, et al. Quantitative responses of the digestive lysosomal system of winkles to sublethal concentrations of cadmium[J]. Cell. Molec. Biol., 1989, 35: 555-562.
    [101] Etxeberria M, Sastre I, Cajaraville M P, et al. Digestive lysosome enlargement induced by experimental exposure to metals_Cu, Cd and Zn.in mussels collected from a Zn-polluted site[J]. Arch. Environ. Contain. Toxicol., 1994, 24: 338-345.
    [102] Regoli F, Nigro M, Orlando E. Lysosomal and antioxidant responses to metals in the Antarctic scallop Adamussium colbecki[J]. Aquat Toxicol., 1998,40: 375-392.
    [103] K(?)hler A. Lysosomal perturbations in fish liver as indicators for toxic effects of environmental pollution[J]. Comp. Biochem. Physiol., 1991,100C: 123-127.
    [104] Nicholson S. Lysosomal membrane stability, phagocytosis and tolerance to emersion in the mussel Perna viridis (Bivalvia: Mytilidae) following exposure to acute, sublethal copper[J], Chemosphere, 2003, 52:1147-1151.
    [105] Schwab G E, Reeves P R, Turner K J. Bactericidal activity of serum of the yabbie (Parachaeraps bicarinatus) [J]. Brit. J. Exper. Pathol., 1966,47: 266-274.
    [106] Stewart J E, Zwicker B M. (1972). Natural and induced bactericidal activities in the hemolymph of the lobster, Homarus americanus: products of hemocyte-plasma interaction[J]. Can. J. Microbiol., 1972, 18(9): 1499-1509.
    [107] Chisholm J R S, Smith V J. Antibacterial activity in the haemocytes of the shore crab, Carcinus maenas[J]. J. Mar. Biol. Associa. U. K., 1992, 72: 529-542.
    [108] Noga E J, Arroll T A., Bullis R A, et al. Antibacterial activity in hemolymph of white shrimp, Penaeus setiferus[J]. J. Mar. Biotechnol., 1996,4:181-184.
    [109] Chattopadhyay T, Guha A K, Chatterjee B P. Novel antimicrobial activity of scyllin, a haemolymph lectin of the edible crab Scylla serrata[J]. Biomedical Letters, 1996, 53: 29-40.
    [110] Schnapp D, Kemp G D, Smith V J. Purification and characterization of a proline-rich antibacterial peptide, with sequence similarity to bactenecin-7, from the haemocytes of the shore crab, Carinus maenas[J]. Eur. J. Biochem., 1996,240: 532-539.
    [111] Destoumieux D, Bulet P, Loew D, et al. Penaeidins, a new family of antimicrobial peptides isolated from the shrimp Penaeus vannamei (Decapoda)[J]. J. Biol. Chem., 1997, 272: 28398-28406.
    [112] Boman H G. Peptide antibiotics and their role in innate immunity [J]. Annu. Rev. Immunol., 1995,13:61-92.
    [113] Mori K, Stewart J E. Natural and induced bactericidal activities of the hepatopancreas of the American lobster, Homarus americanus[J]. J. Inverte. Pathol., 1978, 32: 171-176.
    [114] Stabili L, Miglietta A M, Belmonte G. Lysozyme-like and trypsin-like activities in the cysts of Artemia franciscana Kellog, 1906. Is there a passive immunity in a resting stage? [J]. J. Expert. Biol. Ecol., 1999,237:291-303.
    [115] Jayasankar V, Subramoniam T. Antibacterial activity of seminal plasma of the mud crab Scylla Serrata (Forskal)[J]. J. Exper Mar. Biol. Ecol., 1999,236(2): 253-259.
    [116] Strik J J T, de Iongh H H, van Rijn van Alkemade J W A, et al. Toxicity of Chromium VI in fish, with special reference to organ weights, liver and plasma enzyme activities, blood parameters and histological alterations[A]. In: Sublethal effects of toxic chemicals on Aquatic animals (J. H. Koeman & J. J. T. W. A. Strik, eds) New York: Elsevier, 1975, 31-58.
    [117] Sugatt R H. Effects of sublethal hexavalent chromium exposure on the osmoregulation, immune response and blood characteristics of Coho salmon Oncorhynchus kisutch[D]. Ph.D. thesis, University of New Hampshire, Durham, 1978.
    [118] Prabakarana M, Binuramesha C, Dieter Steinhagenb, et al. Immune response in the tilapia, Oreochromis mossambicus on exposure to tannery effluent[J]. Ecotoxicol. Environ. Safety., 2007,68: 372-378.
    [119] O'Neill J G. The humoral immune response of Salmo trutta L. and Cyprinus carpio L. exposed to heavy metals[J]. J. Fish. Biol., 1981,19: 297-306.
    [120] Zelikoff J T. Fish immunotoxicology[A]. In: Immunotoxicology and Immunopharmacology. Vol. 2 (J. H. Dean, M. I. Luster, A. E. Munson & I. Kimber, eds). New York: Raven Press, 1994, 71-95.
    [121] Bryan G W. The effects of heavy metals (other than mercury) on marine and estuarine organisms[J]. Proc. R. Soc. Lond. B., 1971,177: 389-410.
    [122] Hare L. Aquatic insects and trace metals: bioavailability,bioaccumulation, and toxicity[J]. Crit. Rev. Toxicol., 1992, 22: 327-369.
    [123] Timmermans K R, Peeters W, Tonkes M. Cadmium,zinc, lead and copper in Chironomus riparius (Meigen)larvae (Diptera, Chironomidae): Uptake and effects[J]. Hydrobiologia., 1992,241: 119-134.
    [124] Thurberg F P, Dawson M A, Collier R S. 1973. Effects of copper and cadmium on osmoregulation and oxygen consumption in two species of estuarine crabs[J]. Mar. Biol., 1973,23:171-175.
    [125] Bjerregaard P, Vislie T. Effects of cadmium on hemolymph composition in the shore crab Carcinus maenas[J]. Mar. Ecol. Prog. Ser., 1985,27, 135-142.
    [126] Majewski H S, Giles M A. Cardiovascular-respiratory responses of rainbow trout (Salmo gairdneri) during chronic exposure to sublethal concentrations of cadmium[J]. Water. Res., 1981,15:1211-1217.
    [127] Shaffi S A, Manohar Y R, Nandan M.J. Influence of protective agents on metal induced respiratory distress in Labeo rohita (Ham) [J]. Bull. Environ. Contain. Toxicol., 2001, 66: 611-616.
    [128] Vitale A M, Monserrat J M, Castilho P, et al. Inhibitory effects of cadmium on carbonic anhydrase activity and ionic regulation of estuarine crab Chasmagnathus granulata (Decapoda,Grapsidae) [J]. Comp. Biochem. Physiol., 1999, 122C: 121-129.
    [129] Rodriguez E M, Bigi R, Medesani D A, et al. Acute and chronic effects of cadmium on blood homeostasis of an estuarine crab, Chasmagnathus granulata, and the modifying effect of salinity[J]. Braz. J. Med. Biol. Res., 2001,34: 509-518.
    [130] Siebers D, Lucu C, Winkler A, et al. Active uptake of sodium in the gills of the hyperregulating shore crab Carcinus maenas[J]. Helgolander Meeresunters., 1986, 40: 151-160.
    [131] Tucker R K, Matte A. 1980. In vitro effects of cadmium and lead on ATPases in the gill of the rock crab, Cancer irrogatus[J]. Bull. Envir. Contain. Toxic, 1980,24: 847-852.
    [132] Flik G, Jeanne H, Sjoerd E. Evidence for high-affinity Ca~(2+)-ATPase activity and ATP-driven Ca~(2+)-transport in membrane preparations of the gill epithelium of the cichlid fish Oreochromis mossambicus[J]. J.exp.Biol., 1985,119: 335-347.
    [133] Ram R, Sathayanesan A G. 1985. Mercuric chloride, cythion and ammonium sulfate induced changes in the brain, liver and ovarian alkaline phosphatase content in the fish Channa puntactus[J]. Environ. Ecol., 1985, 3: 263-268.
    [134] Blasco J, Puppo J, Sarasquete C. Acid and alkaline phosphatase activities in the clam Ruditapes philippinarum[J]. Mar. Biol., 1993,115:113-118.
    [135] Cajaraville M P, Bebianno M J, Blasco J, et al. The use of biomarkers to assess the impact of pollution in coastal environments of the Iberian Peninsula: a practical approach[J]. Sci. Total. Environ., 2000, 247: 295-311.
    [136] Bogé G, Bussiere D, Peres G. Effect du chrome hexavalent sur les activities enzymatiques et de transport del'intestin de la truite arc en ciel (Salmo gairdneri) [J]. Water. Res., 1988, 22: 441-447.
    [137] Krajnovic-Ozretic M, Ozretic B. Enzyme activity in prawns exposed to the water soluble fraction of Ural' crude oil[J]. Journees Etude. Pollut. Mar. Mediterr. Cannes(C.I.E.S.M.)., 1982, 6: 663-668.
    [138] Reddy M S, Rao K V. Methylparathion-induced alterations in the acethylcholinesterase and phosphatases in a penaeid prawn, Metapenaeus monoceros[J]. Bull. Environ. Contain. Toxicol., 1990,45: 350-357.
    [139] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal. Biochem., 1976, 72: 248-254.
    [140] Jernelov A, Beijer K, Soderland. General aspects of toxicology [A]. In: Butler G C (Ed), Principles of Ecotoxicology, Wiley, New York, 1978,151-168.
    [141] Wright D A. The uptake of cadmium into the haemolymph of the shore crab Carcinus rnaenas: The relationship with copper and other divalent cations[J]. J. Exp. Biol., 1977, 67:147-161.
    [142] Wright D A. Cadmium and calcium interactions in the freshwater amphipod Gammerus pulex[J]. Freshwat. Biol., 1980, 67:163-173.
    [143] Perry S E, Flik G. Characterization of branchial transepithelial calcium fluxes in freshwater trout, Salmo gairdneri[J]. Am. Z. Physiol., 1988, 254: R491-R498.
    [144] Verbost P M., Van Rooij J, Flik G, et al. The movement of cadmium through freshwater trout branchial epithelium and its interference with calcium transport[J]. J. Exp. Biol., 1989, 145: 185-197.
    [145] Bjerregaard E, Depledge M H. Cadmium accumulation in Littorina littorea, Mytilus edulis and Carcinus maenas: The influenceof salinity and calcium ion concentration[J]. Mar. Biol., 1994,119:385-395.
    [146] Verbost P M, Flik G, Lock RAC, et al. Cadmium inhibition of Ca~(2+) uptake in rainbow trout gills[J]. Am. J. Physiol., 1987,253: R216-R221.
    [147] Reid S D, McDonald D G. Effects of cadmium,copper and low pH on ion fluxes in rainbow trout . Salmo gairdneri[J]. Can. J. Fish, aquat. Sci., 1988, 45: 244-253.
    [148] Verbost P M, Flik G, Lock R A. C, et al. Cadmium inhibits plasma membrane calcium transport[J]. J. Membr. Biol., 1988,102: 97-104.
    [149] Suzuki Y J, Forman, Sevanian A. Oxidants as stimulators of signal transduction[J]. Free. Radic. Biol. Med., 1997,22(12): 269-285.
    [150] Pacific EHK, Mcleod L L, Sevanian A. 1994.Lipid hydroperoxide-induced peroxidation and turnover of endothelial cell phospholipids[J]. Free. Radic. Biol. Med., 1994,17:297-309.
    [151] Boraso A, Willians A J. Modification of the gating of the cardiac sarcoplasmic reticulum Ca~(2+)-releasing channel by H_2O_2 and dithiothreitol[J]. AM. J. Phys., 1994,267: H1010-1016.
    [152] Volk T, Hensel M, Kox W. Transient Ca~(2+) changes in endothelial cells induced by low doses of reactive oxygen species:role of hydrogen peroxide[J]. Mol.Cell.Biochem., 1997, 171(1-2): 11-21.
    [153] Péqueux A, Gilles R. Na~+ fluxes across isolated perfused gills of the Chinese crab Eriocheir sinensis[J]. J. Exp. Biol., 1981,92: 173-186.
    [154] Gilles R, Péqueux A, Bianchini A. Physiological aspects of NaCl movements in the gills of the euryhaline crab, Eriocheir sinensis, acclimated to fresh water[J]. Comp. Biochem. Physiol., 1988, 90A: 201-207.
    [155] Lemaire-Gony S, Mayer-Gostan N. In vitro dose-response study of the effect of cadmium on eel (Anguilla anguilla) gill Na~+/K~+-ATPase activities[J]. Ecotoxicol. Environ. Saf., 1994, 28: 43-52.
    [156] Postel U, Petrausch G, Riestenpatt S, et al. Inhibition of Na+/K+-ATPase and of active ion-transport functions in the gills of the shore crab Carcinus maenas induced by cadmium[J]. Mar. Biol. 1998,130: 407-416.
    [157] Lionetto M G, Giordano M E, Vilella S, et al. Inhibition of eel enzymatic activities by cadmium[J]. Aquat. Toxicol, 2000,48: 561-571.
    [158] Rodriguez Moreno P A., Schwarzbaum P J, Rodriguez E M. Effects of cadmium on gill Na,K-ATPase of the estuarine crab Chasmagnathus granulata (Decapoda, Grapsidae) during postmolt: in vivo and in vitro studies[J]. Bull. Environ. Contain. Toxicol., 1998,61:629-636.
    [159] Lehninger A L. Principles of biochemistry [M]. Worth Publishers, Inc., New York, 1982.
    [160] Zichittella A E, Shi H G, Arguello J M. Reactivity of cysteines in the transmembrane region of the Na~+,K~+-ATPase ,a subunit probed with Hg~(2+)[J]. J. Membr. Biol., 2000,177:187-197.
    [161] McDonald D G, Wood C M. Branchial mechanisms of acclimation to metals in freshwater fish[A]. In: Rankin J C, Jensen F B (Eds), Fish Ecophysiology. Chapman &Hall, London, 1993, 297-321.
    [162] Bradley R W, DuQuesnay C, Sprague J B. Acclimation of rainbow trout, Salmo gairdneri Richardson, to zinc:kinetics and mechanisms of enhanced tolerance induction[J]. J. Fish Biol.,1985, 27: 367-379.
    [163] Hogstrand C, Wood C M. The physiology and toxicology of zinc in fish[A]. In: Taylor E W (Ed), Toxicology of Aquatic Pollution: Physiological, Cellular and Molecular Approaches. Cambridge University Press, Cambridge, 1996, 61-84.
    [164] Lauren D J, McDonald D G. Acclimation to copper by rainbow trout, Salmo gairdneri: physiology[J]. Can. J. Fish. Aquat. Sci.,1987a, 44: 99-104.
    [165] Lauren D J, McDonald D G. Acclimation to copper by rainbow trout, Salmo gairdneri: biochemistry [J]. Can. J. Fish. Aquat. Sci., 1987b, 44:105-111.
    [166] Hogstrand C, Reid S D, Wood C M. Ca~(2+) versus Zn~(2+) transport in the gills of freshwater rainbow trout and the cost of adaptation to waterborne Zn~(2+)[J]. J. Exp.Biol., 1995, 198: 337-348.
    [167] Pelgrom S M G J, Lock R A C, Balm PHM, et al. Integrated physiological response of tilapia, Oreochromic mossambicus, to sublethal copper exposure[J]. Aquat. Toxicol., 1995, 32:303-320.
    [168] Felten V, Charmantier G, Mons R, et al. Physiological and behavioural responses of Gamm arus pulex(Crustacea: Amphipoda) exposed to cadmium[J]. Aquat. Toxicol., 2008, 86 : 413- 425.
    [169] Wendelaar B S E, Locke R A C. Toxicants and osmoregulation in fish[J]. Netherl. J. Zool., 1992, 428: 478-493.
    [170] Shirai N. Electron-microscope localization of sodium ionsand adenosine-triphosphatase in chloride cells of the Japanese eel, Anguilla japonica[J]. J. Fac. Sci. Tokyo. Univ., 1972, 12: 385-403.
    [171] Hootman S R, Philpott C W. Ultracytochemical localization of Na~+,K~+-activited ATPase in chloride cells from the gills of euryhaline teleost[J]. Anal.Rec, 1979,193: 99-130.
    [172] Van der P I, Laurier M B H K, van Eijk G J M. Respiration and osmoregulation in rainbow trout (Salmon gairdneri) exposed to hexavalent chromium at different pH values[J]. Aquat. Toxicol., 1982,2:99-112.
    [173] Subashini P, Manavalaramanujam R, Ramesh, M, et al. Changes in selected biomarkers in freshwater teleost fish, Cyprinus carpio var. communis exposed to sublethal concentrations of chromium sulphate toxicity[J]. J. Environ. Sci. Eng., 2005,47: 65-68.
    [174] Thaker J, Chaya J, Nuzhat S, et al. Effects of chromium(Ⅵ) on some ion-dependent ATPases in gills, kidney and intestine of a coastal teleost, Periophthalmus dipes[ J]. Toxicol., 1996,112:237-244.
    [175] Sastry K V, Gupta P K. Chronic mercuric chloride intoxication in the digestive system of Chunna punctutus[J].J. E
    [176] Sargent J R, Bell M V, Killy K F. The nature and properties of sodium ions plus potassium ion activated adenosine triphosphatase and its role in marine salt secreting epithelia[A]. In: Lahlou B (Ed), Epithelial Transport in the Lower Vertebrates, Cambridge University Press, London, 1980,251-267.
    [177] Rankin J C, Shuttleworth P J. Effects of pollutants on gill[A]. In: Houlihal D F (Ed), Gills, Cambridge University Press, Cambridge, 1982,207-219.
    [178] Pauls H, Bredenbrocker B, Schoner W. Inactivation of (Na~+,K~+)-ATPase by chromium(Ⅲ) complexes of nucleotide triphosphates[J]. Eur. J. Biochem., 1980, 109: 523-533.
    [179] Gantzer M L, Klevickis C, Grisham C. Interaction of Co(NH_3)_4ATP and Cr(H_2O)_4ATP with CaATPase from SR and Na,K-ATPase from kidney medulla[J]. Biochem., 1982, 21: 4083-4088.
    [180] Hamer E, Schoner W. Modification of the E_1ATP binding site of Na~+/K~+-ATPase by the chromium com plex of adenosine 5' -[β,γ -methylene] triphosphate blocks the overall reaction but not the partial activities of the E2 conformation[J]. Eur. J. Biochem., 1993, 213: 743-748.
    [181] Linnertz H, Th(?)nges D, Schoner W. Na~+/K~+-ATPase with a blocked E_1ATP site still allows backdoor phosphorylation of the E_2ATP site[J]. Eur. J. Biochem., 1995, 232: 420-424.
    [182] Otacilio C M, Priscila F R, Hector Barrabin. Inhibition of plasma membrane Ca~(2+)-ATPase by CrATP. LaATP but not CrATP stabilizes the Ca~(2+)-occluded state[J]. Biochimica Biophy sicaActa., 2005,1708:411-419.
    [183] Brouwer M, Brouwer T H. Biochemical defense mechanisms against copper-induced oxidative damage in the blue crab, Callinectes sapidus[J]. Arch. Biochem. Biophys., 1998, 351:257-264.
    [184] Company R, Serafim A, Cosson R, et al. The effect of cadmium on antioxidantresponses and the susceptibility to oxidative stress in the hydrothermal vent mussel Bathymodiolus azoricus[J]. Mar. Biol.,2006,148: 817-825.
    [185] Mouneyrac C, Amiard-Triquet C, Amiard J C, et al. Comparison of metallothionein concentrations and tissue distribution of trace metals in crabs (Pachygrapsus marmoratus) from a metal-rich estuary, in and out of the reproductive season[J]. Comp. Biochem. Physio., 2001,129C: 193-209.
    [186] Radhakrishnaiah K, Suresh A, SIvaramakrishna B. Size and sex related study on cadmium accumulation in different organs of the freshwater field crab, Oziotelphusa senex senex (Fabricius) [J]. Proc. Ind..Natl. Sci. Acad.(B.Biol.Sci), 1991, 57(5): 347-352.
    [187] Andres S, Laporte J M, Mason R P. Mercury accumulation and flux across the gills and the intestine of the blue crab (Callinectes sapidus) [J]. Aquatic Toxicology., 2002, 56:303-332.
    [188] Sala L F, Rizzotto M A, Frascaroli M I, et al. Contaminacion ambiental por el metal de transicion cromo. Estamos frente a un serio problema ecol6gico? [J]. Quim. Nova., 1995, 18: 468-474.
    [189] Stohs S J. Synthetic pro-oxidants: drugs, pesticides and other environmental pollutants [A]. In: Ahmad S (Ed.), Oxidative Stress and Antioxidant Defenses in Biology, Chapman & Hall, New York, 1995, 117-180.
    [190] Jones P, Kortenkamp A, O'Brien P, et al. Evidence for the generation of hydroxyl radicals from a chromium(V) intermediate isolated from the reaction of chromate with glutathione[J]. Arch. Biochem. Biophys., 1991, 286: 652-655.
    [191] Maron D M, Ames B N. Revised methods for the Salmonella mutagenicity test[J]. Mutat. Res., 1983,113:173-215.
    [192] Meneghini R. Genotoxicity of active oxygen species in mammalian cells[J]. Mutat. Res., 1988,195:215-230.
    [193] Halliwell B, Gutteridge J M C. Free Radicals in Biology and Medicine[M], third ed, Oxford, New York, 1999.
    [194] Nebert D W, Gonzalez F J. P450 genes: structure, evolution, and regulation[J]. Ann. Rev. Biochem., 1987, 56: 945-993.
    [195] Cecchini R, Aruoma O I, Halliwell B. Liposomes or from DNA damage by bleomycin or phenanthroline. Artefacts in the thiobarbituricacid test[J]. Free. Radic. Res. Comms., 1990, 10: 245-258.
    [196] 谭树华,邓先余,蒋文明.高浓度铬对克氏原螯虾抗氧化酶系统的影响[J].农业环境科学学报,2007,26(4):1356-1360.
    [197] Qing-Xi Chen, Wen-Zhu Zheng, Jing-Yu Lin, et al. Effect of metal ions on the activity of mud crab(Scylla serrata ) alkaline phosphatase[J]. The Intern J. Biochem. Cell. Biol., 2000, 32: 879-885.
    [198] Mazorra M T, Rubio J A, Blasco J. 2002. Acid and alkaline phosphatase activities in the clam Scrobicularia plana: kinetic characteristics and effects of heavy metals[J]. Comp. Biochem. Physiol., 2002,131B: 241-249.
    [199] Plocke D J, Vallee B L. Interaction of alkaline phosphatase of E.coli with metal ions and chelating agents[J]. Biochem., 1962,1:1039-1043.
    [200] Fosset M, Chappelet-Tordo D, Lazdunski M. Intestinal alkaline phosphatase.Physical properties and quaternary structure[J]. Biochem., 1974,13: 1783-1791.
    [201] 赵维信,魏华,贾江,等.镉对罗氏沼虾组织转氨酶活性及组织结构的影响[J].水产学报,1995,19(1):21-27.
    [202] 堵南山.甲壳动物学(下)[M].北京:科学出版社,1993.
    [203] 卢敬让,赖伟,堵南山.镉对中华绒螯蟹肝 R-细胞亚显微结构及血清谷丙转氨酶活力的影响[J].青岛海洋大学学报,1989,19(2):61-67.
    [204] 刘发义.铜在中国对虾体内的积累和致毒效应[J].海洋与湖沼,1988,19(2):133-13