栀子拮抗内毒素活性物质京尼平苷的分离制备及其活性评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
构成革兰阴性菌(Gram-negative,G-)外膜的主要成分内毒素(lipopolysaccharide,LPS),是介导细菌脓毒症的重要病原分子,LPS由O-侧链多糖、核心多糖和脂质A(Lipid A)三部分组成,其中Lipid A是LPS的生物学活性中心。研究证实,LPS在脓毒症发生过程中具有重要作用,因此,寻求能拮抗LPS的药物是预防和治疗G-细菌介导的脓毒症的重要手段;传统中草药在脓毒症领域的应用具有悠久的历史。现代医学实践已证明,许多中药在体内外都具有拮抗内毒素的作用。然而由于中药成份复杂,在分离纯化的过程中缺少有效的活性跟踪手段,使对具有拮抗内毒素活性中药的深入研究受到限制。本课题利用本实验室建立的生物传感器筛选和跟踪平台,对与Lipid A具有较高结合活性的栀子进行拮抗内毒素活性组分的定向分离,以期获得具有拮抗内毒素活性的单体化合物,为脓毒症的防治研究提供一种可能的手段。
     方法:(1)依托课题组前期已经建立的生物传感器筛选平台,选择60种药物与Lipid A进行结合活性的检测,选择具有高结合活性的药物进行研究(2)应用与Lipid A的结合活性测定及对脓毒症模型动物的保护作用作为分离过程中的活性跟踪手段,采用大孔吸附树脂、萃取、聚酰胺层析、HPLC等技术对栀子进行活性组分的定向分离,以期最终得到具有拮抗LPS活性的单体化合物(3)对所得化合物进行HPLC、薄层色谱及熔点测定等技术分析。(4)活性评价:在体外应用鲎试验观察化合物对LPS的中和作用,并通过细胞培养观察化合物对LPS介导的RAW264.7活化的抑制作用;在体内观察其在小鼠体内对LPS的中和作用。
     结果:(1)对60种清热解毒中草药进行结合活性测定,筛选出22种与Lipid A具有较高结合活性的中药,并以其中的栀子作为研究对象(2)从栀子水提取物中定向分离出一个与Lipid A具有较高结合活性的化合物CJ-1(3)经HPLC、薄层色谱及熔点测定等技术分析,初步确定CJ-1为京尼平苷(C17H24O10)(4)活性评价:京尼平苷在体外对LPS具有较好的中和作用,并呈现剂量效应关系;能显著抑制LPS诱导的RAW264.7细胞释放TNF-α;在小鼠体内对LPS也具有显著的中和作用。
     结论:利用大孔吸附树脂层析、聚酰胺层析、HPLC等技术从栀子中分离出化合物京尼平苷,京尼平苷在体内外对LPS均具有较好的拮抗作用。
LPS, one major component of the outer membrane in gram negative bacteria, is the most important pathogen recognition molecule for sepsis. There are three basic parts in LPS, lipid A, O-specific polysaccharide chain and core polysaccharide, among which lipid A is the core structure. LPS plays an important role in sepsis according to research findings. As a result, the way to find anti-LPS drugs is also an important way to prevent and treat sepsis. Traditional Chinese Medicines have a long history in septic therapy. Clinical experiences and studies in vitro and in vivo also suggest that many herbs possess anti-LPS activity. However, complicated chemical constitutes in herbs and lack of effective specific target and screening methods hinder further study on these herbs. The biosensor technology set up in our laboratory is applied in this study to screen and guide the isolating process of Gardenia jasminoides Ell, an traditional Chinese herb with high binding affinity to lipid A. anti-LPS monomers were expected to be isolated in order to provide a new approach to septic therapy research.
     Methods: (1)aqueous extracts of sixty herbs were tested with the help of the biosensor platform to screen those with higher binding ability for further study; (2)binding affinity to Lipid A and protective effect on animal models of sepsis were tested to screen the bioactive fractions. Macroporous resin, abstraction, polyamide laminar analysis and high performance liquid chromatography(HPLC) were applied to isolate the compound. (3) HPLC, thin-layer chromatography (TLC) and fusion point measurement were used to analyze the purity and quality of the isolated compound. (4) anti-LPS activities of the fractions and compound included neutralization of LPS (imulus Amebocyte Lysate (LAL) test) and inhibition of TNF-αrelease from LPS-stimulated RAW264.7 cells in vitro and protection of mice challenged by leather dose of heat killed E coli. in vivo.
     Results: (1) Anti-endotoxin activities of forty-two Chinese herbs were screened using lipid A as target with biosensor technique and ten possessed components with higher binding ability to lipid A, among which Gardenia jasminoides Ell was chosen for further study; (2) fraction CJ-1 was isolated from the aqueous extracts of Gardenia jasminoides Ell, which possessed high binding ability to lipid A; (3) HPLC, thin-layer chromatography (TLC) and fusion point measurement proved CJ-1 to be Geniposide (C17H24O10); (4) Geniposide showed significant endotoxin-neutralizing effect in vivo and in vitro, And could markedly inhibited TNF-αrelease in RAW264.7 cells induced by LPS.
     Conclusions: (1) Geniposide has high binding capability to lipid A and possesses significant endotoxin- neutralizing capacity in vitro and in vivo.
引文
1. R, Niels C., Ren-Feng G, Peter A,et al. Novel strategies for the treatment of sepsis. Nature medicine, 2003. 9(5):517-524.
    2. GS, Martin, Mannino DM, Eaton S,et al. The Epidemiology of Sepsis in the United States from 1979 through 2000. N Engl J Med, 2003. 348(16):1546-1554.
    3.姚咏明,盛志勇.我国创伤脓毒症基础研究新进展.中华创伤杂志, 2003. 19(9-12).
    4. AM, Krieg. CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol, 2002. 20:709-760.
    5. C, Alexander,Rietschel ET. Bacterial lipopolysaccharides and innate immunity. J Endotoxin Res, 2001. 7(3):167-202.
    6. Frecer, V., B. Ho,J. L. Ding. Molecular dynamics study on lipid A from Escherichia coli: insights into its mechanism of biological action. Biochim Biophys Acta, 2000. 1466(1-2):87-104.
    7. A, Macagno, Molteni M, Rinaldi A,et al. A cyanobacterial LPS antagonist prevents endotoxin shock and blocks sustained TLR4 stimulation required for cytokine expression[J Exp Med, 2006. 203(6):1481-1492.
    8. WJ, Lin,Yeh WC. Implication of Toll-like receptor and tumor necrosis factor alpha signaling in septic shock. Shock., 2005. 24(3):206-209.
    9. SM, Dauphinee,Karsan A. Lipopolysaccharide signaling in endothelial cells. Lab-Invest, 2006. 86(1):9-22.
    10. Rietschel, E. T., T. Kirikae, F. U. Schade, U. Mamat, et al. Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J, 1994. 8(2):217-25.
    11. Tadros, T., D. L. Traber, J. P. Heggers,D. N. Herndon. Effects of interleukin-1alpha administration on intestinal ischemia and reperfusion injury, mucosal permeability, and bacterial translocation in burn and sepsis. Ann Surg, 2003. 237(1):101-9.
    12. NS, Tan, Ho B,Ding JL. High-affinity LPS binding domain(s) in recombinant factor C of a horseshoe crab neutralizes LPS-induced lethality. FASEB J, 2000. 14(7):859-870.
    13. TA, Kellogg, Lazaron V, Wasiluk KR,et al. Binding specificity of polymyxin B, BPI, LALF, and anti-deep core/Lipid Amonoclonal antibody to lipopolysaccharide partial structures. Shock., 2001. 15(2):124-129.
    14. A, Iwagaki, Porro M,Pollack M. Influence of synthetic antiendotoxin peptides on lipopolysaccharide (LPS) recognition and LPS-induced proinflammatory cytokine responses by cells expressing membrane-bound CD14 Infect Immun, 2000. 68(3): 1655-1663.
    15. MG, Vallespi, Alvarez Obregon J C, Rodriguez-Alonso I,et al. A Limulus anti-LPS factor-derived peptide modμlates cytokine gene expression and promotes resolution of bacterial acute infection in mice. Int Immunopharmacol. 3, 2003. 2(247-256).
    16. G, Vallespi M, Glaria L A, Reyes O,et al. A Limulus antilipopolysaccharide factor-derived peptide exhibits a new immunological activity with potential applicability in infectious diseases. Clin Diagn Lab Immunol, 2000. 7(4):669-675.
    17. A, Weiss C, Wasiluk K R, Kellogg T A,et al. Bactericidal and endotoxin neutralizing activity of a peptide derived from Limulus antilipopolysaccharide factor. Surgery, 2000. 128(2):339-344.
    18.刘进.中药化学成分抗内毒素研究现状.医药导报2004. 23(7):486-488.
    19.邓文龙,徐嘉红,王文烈,刘家玉,等.热毒平的抗内毒素作用研究.中药药理与临床, 1995. 11(2):16-19.
    20.方建国,施春阳,汤杰王,文清,等.大青叶抗内毒素活性部位筛选.中草药, 2004. 35(1):60-62.
    21.刘志峰,李桂生,傅风华,刘珂. 8种中药注射剂体外抗内毒素作用的观察.中草药, 2002. 33(1):58-59.
    22.张霞,崔乃杰,王家泰.清热解毒中药拮抗内毒素研究.天津中医, 1999. 16(1):43-45.
    23.陈益国,姚婕,张向武.以Lipid A为靶点拮抗内毒素中药的筛选.中国临床药理学与治疗学, 2005. 12(10):1349-1353.
    24.吕根法,龚小云,卫国,等.应用生物传感技术测定多粘菌素B中和内毒素活性物质能力的实验研究.中华烧伤杂志, 2004. 20(2):23-24.
    25.龙宇鹏,和生琦,陈益国,等.应用生物传感器技术筛选拮抗细菌肽聚糖的中药.重庆医学, 2007. 36(2):230-231.
    26. L, Genfa, Jiang Z, Hong Z, Yimin Z, et al. The screening and isolation of an effective anti-endotoxin monomer from Radix Paeoniae Rubra using affinity biosensor technology. International Immunopharmacology, 2005. 5(6):1007-1017.
    27.郭毅斌,曹红卫,陈莉萍,鲁永玲,等.白鲜皮提取物DPR-2拮抗内毒素/脂多糖的实验观察.中华烧伤杂志, 2007. 23(2):104-107.
    28. M, Keusgen. Biosensors: new approaches in drug discovery. Naturwissenschaften, 2002. 2002, 89(10): 433-444.
    29. JL, Robin,Paul RE. Analysis of molecular recognition using optical biosensors. Current Opinion in Chemical Bio, 1999. 3:544-547
    30.胡冠时.中草药除鞣质的方法研究.中草药, 1991. 22(11):491-493.
    31.吕根法,王宁,卫国,郭毅斌,等.以细菌内毒素为靶点应用生物传感器技术筛选拮抗内毒素中草药.四川生理科学杂志, 2003. 25(3):134.
    32. T, Mosmann. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Immunol Methods, 1983. 65(1-2):55-63.
    33. P, Lowe,Clark T. New approaches for the analysis of molecular recognition using iasys evanescent wave biosensor. J Mol Recognit, 1998. 11:194.
    34. LR, Rebecca, David G,Myszka. Survey of the year 2001 commercial optical biosensor literature. J Mol Recognit, 2002. 15:352.
    35.闫滨.植物中鞣质类化合物的化学研究进展.山东医药工业, 2003. 22(1):23-24.
    36.石碧,狄莹.植物多酚. 2000,北京:科学出版社. 5-18.
    37.马秀赚,王慧森,刘延泽.对中药材中裸质的新认识.中国中医药信息杂志, 1999. 6(11):35-36.
    38.倪慧艳,张朝晖,傅海珍.中药栀子的研究与开发概述.中国中药杂志, 2006. 7(4):538.
    39.王跃生,王洋.大孔吸附树脂研究进展.中国中药杂志, 2006. 31(12):961-965.
    40.潘林梅,傅佳,丁立远,郭立玮. AB-8树脂精制柴芩两解汤的工艺研究,.南京中医药大学学报, 2006. 5(9):309-310.
    41.周忻.大孔吸附树脂分离纯化中药有效成分的影响因素.中国药物应用与监察, 2006. 2(2):50-51.
    42.王钢力,赵淑杰,陈德昌,吕扬,等.大黄栀子果实化学成分的研究.中国中药杂志, 1999. 24(1):38-40.
    43.曹进,徐燕,张永知,王义明,等.栀子药材的指纹图谱整体性分析.分析化学, 2004. 7(7):875-878.
    44.毕岳琦,侯世祥,毛声俊.大孔吸附树脂对中药提取液中3种苷类成分的吸附规律考察.中国药学杂志, 2007. 16(8):1211-1214.
    45.张靖贤.鲎试剂法测定细菌内毒素影响因素的研究.医学文选, 2002. 5(10):706-707.
    46.卫国,郑江.细菌内毒素影响因素分析及对策.局部手术学杂志, 2003. 3(2):215-216.
    47. D, Heumann,Roger T. Initial responses to endotoxins and Gram-negative bacteria. Clin-Chim-Acta, 2002. 323(1-2):59-72.
    48. RC, Vianna, Gomes RN, Bozza FA, Amancio RT, et al. Antibiotic treatment in a murine model of sepsis: impact on cytokines and endotoxin release. Shock., 2004. 21(2):115-120.
    49. J, Wang, Zhou H, Zheng J, Cheng J, et al. The antimalarial artemisinin synergizes with antibiotics to protect against lethal live Escherichia coli challenge by decreasing proinflammatory cytokine release. Antimicrob-Agents-Chemother, 2006. 50(7):2420-2427.
    50. S, Yamamoto, Tin-Tin-Win, ShweAhmed S, Kobayashi T, et al. Effect of ultrafine carbon black particles on lipoteichoic acid-induced early pulmonary inflammation in BALB/c mice. Toxicol Appl Pharmacol, 2006. 213(3):256-266.
    51. DN, Mannel. Advances in sepsis research derived from animal models. Int J Med Microbiol, 2007. 297(5):393-400.
    52.程合理,赵新民.栀子苷的抗炎作用实验研究.安徽医药, 2004. 8(3):137-168.
    53.傅春升,娄红祥,张学顺.栀子的化学成分与药理作用.国外医药·植物药分册, 2004. 19(4):152-156
    54.那莎,郭国田,王宗殿,龙子江.栀子及其有效成分药理研究进展.中国中医药信息杂志, 2005. 12(1):90-92
    55.乔卫.京尼平苷和京尼平的抗血栓形成作用国外医药.植物药分册, 2002. 17(6):251-252.
    56. HJ, Koo, Song Y S, Kim HJ,et al. Antiinflammatory effects of genipin, an active principle of gardenia. Eur J Pharmacol, 2004. 495(2-3):201-208.
    57.董娟娥,张靖.植物中环烯醚萜类化合物研究进展.西北林学院学报, 2004. 19(3):131-135.
    58.史卉妍,何鑫,欧阳冬生,周宏灏.京尼平苷及其衍生物的药效学研究进展.中国药学杂志, 2006. 41(1):4-6.
    59. M, Fujihara, Muroi M, Tanamoto K,et al. Molecular mechanisms of macrophage activation and deactivation by lipopolysaccharide: roles of the receptor complex. Pharmacol Ther, 2003. 100(2):171-194.
    60. MO, Manley, O'Riordan MA, Levine AD,et al. Interleukin 10 extends the effectiveness of standard therapy during late sepsis with serum interleukin 6 levels predicting outcome. Shock, 2005. 23(6):521-526.
    61. K, Fujie, Shinguh Y, Inamura N, Yasumitsu R, et al. Release of neutrophil elastase and its role in tissue injury in acute inflammation: effect of the elastase inhibitor, FR134043. Eur J Pharmacol, 1999. 374 (1):117-125.
    1. ahorec R, Firment J, Strakova J, Mikula J, Malik P, Novak I, Zeman J, Chlebo P. Epidemiology of severe sepsis in intensive care units in the Slovak Republic. Infection, 2005, 33(3): 122-128.
    2. Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United States from 1979 through 2000. N-Engl-J-Med, 2003, 348(16): 1546-1554.
    3. Angus, D.C. et al. (2001) Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit. Care Med. 29, 1303–1310
    4. Bennett, I.L. et al. The effectiveness of hydrocortisone in the manager of severe infection. JAMA 183, 462-465(1963).
    5. Meduri, G. U. et al. Efect of prolonged methylprednisolone therapy in unresolving acute respiratory distress syndrome: a randomized controlled trial. JAMA 280, 159-165(1983).
    6. Meduri, G. U, Tolley, E.A, Chrousos, G.P.& stentz, F. Prolonged methylprednisolone treatment suppresses systemic inflammation in patients with unresolving acute respiratory distress syndrome: evidence for inadequate endogenous glucocoticoid secretion and inflammation-induced immune cell resistance to glucocoticoids. Am, J, Respir, Crit care med. 165, 983-991(2002).
    7. Meduri, G. U, Kanangat, S, Stefan, J, Tolley, E, & Schaberg, D. Cytokines IL-1β, IL-6, and TNF-αenhance in vitro growth of bacteria. Am. J. Respir Grit. Care Med. 160, 961-967(1999).
    8. Kanangat, S. et al. Effects of cytokines and endotoxin on the intracellular growth of bacteria. Infect. Immun. 67, 2834-2840(1999).
    9. Michle, H. R. et al. Tumor necrosis factor and endotoxin induce similar metabollc responses in humanbeings. Surgery 104, 280-286(1988).
    10. Beuler, B, Milsark, I. W. & Ceramal, A. C. Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. science 229, 869-871(1986).
    11. Okusawa, S, Gelfand, J. A, Ikejima, T, connolly, R. J. & Dinarello, C. A, Inkerlutin 1 induces a shock-like state in rabbits. Synergism with tumor necrosis factor and the effect of cyclooexygenase inhibition. J. Clin. Invest 81, 1162-1172(1988).
    12. Warren, B. L. et al. Caring for the critically ill patient high-dose antithrombinⅢin severe sepsis: a randomized controlled trial. JAMA 286, 1869-1878(2001).
    13. Taylor, F.B., Jr et al. (1987) Protein C prevents the coagulopathic and lethal effects of Escherichia coli infusion in the baboon. J. Clin. Invest. 79, 918–925
    14. Bernard, G.R. et al. (2001) Efficacy and safety of recombinant human activated protein C for severe sepsis. N. Engl. J. Med. 344, 699–709
    15. Wiedermann, C.J. and Kaneider, N.C. (2005) A meta-analysis of controlled trials of recombinant human activated protein C therapy in patients with sepsis. BMC Emerg. Med. 5, 7
    16. Montori, V.M. et al. (2005) Randomized trials stopped early for benefit: a systematic review. JAMA 294, 2203–2209
    17. Hoffmann, J.N. et al. (2004) Microhemodynamic and cellular mechanisms of activated protein C action during endotoxemia. Crit. Care Med. 32, 1011–1017
    18. Iba, T. et al. (2005) Activated protein C improves the visceral microcirculation by attenuating the leukocyte–endothelial interaction
    19. Grinnell, B.W. et al. (1994) Human protein C inhibits selectinmediated cell adhesion: role of unique fucosylated oligosaccharide. Glycobiology 4, 221–225
    20. Isobe, H. et al. (2001) Activated protein C prevents endotoxin-induced hypotension in rats by inhibiting excessive production of nitric oxide. Circulation 104, 1171–1175
    21. Venkataraman, R. et al. (2002) Resuscitation with Ringer’s ethyl pyruvate solution prolongs survival and modulates plasma cytokine and nitrite/nitrate concentrations in a rat model of lipopolysaccharideinduced shock. Shock 18, 507–512
    22. Ulloa, L. et al. (2002) Ethyl pyruvate prevents lethality in mice with established lethal sepsis and systemic inflammation. Proc. Natl. Acad. Sci. U. S. A. 99, 12351–12356
    23. Yang, H. et al. (2004) Reversing established sepsis with antagonis endogenous HMGB1. Proc. Natl. Acad. Sci. U. S. A. 101, 296–301
    24. Klenzak, J. and Himmelfarb, J. (2005) Sepsis and the kidney. Crit. Care Clin. 21, 211–222
    25. Miyaji, T. et al. (2003) Ethyl pyruvate decreases sepsis-induced acute renal failure and multiple organ damage in aged mice. Kidney Int. 64, 1620–1631
    26. Hauser, B. et al. (2005) Ethyl pyruvate improves systemic hepatosplanchnic hemodynamics and prevents lipid peroxidation a porcine model of resuscitated hyperdynamic endotoxemia. Crit. Med. 33, 2034–2042
    27. Sappington, P.L. et al. (2003) Ethyl pyruvate ameliorates intestinal epithelial barrier dysfunction in endotoxemic mice immunostimulated Caco-2 enterocytic monolayers. J. Pharmacol. Exp. Ther. 304, 464–476
    28. Song, M. et al. (2004) Evidence that glutathione depletion mechanism responsible for the anti-inflammatory effects pyruvate in cultured LPS-stimulated RAW 264.7 cells. J. Pharmacol. Exp. Ther. 308, 307–316
    29. Han, Y. et al. (2005) Ethyl pyruvate inhibits NF-kB-dependent signaling by directly targeting p65. J. Pharmacol. Exp. Ther. 1097–1115
    30. Sappington, P.L. et al. (2005) The ethyl pyruvate analogues, oxaloproprionate,
    2-acetamidoacrylate, and methyl-2-acetamidoacrylate, exhibit anti-inflammatory properties in vivo and/or Biochem. Pharmacol. 70, 1579–1592
    31. Embi, N. et al. (1980) Glycogen synthase kinase-3 from rabbit muscle. Separation from cyclic-AMP-dependent protein kinase phosphorylase kinase. Eur. J. Biochem. 107, 519–527
    32. Wagman, A.S. et al. (2004) Discovery and development inhibitors for the treatment of type 2 diabetes. Curr. Pharm. 10, 1105–1137
    33. Evenson, A.R. et al. (2005) GSK-3b inhibitors reduce protein degradation in muscles from septic rats and in dexamethasonetreated myotubes. Int. J. Biochem. Cell Biol. 37, 2226–2228
    34. van den Berghe, G. et al. (2001) Intensive insulin therapy in critically ill patients. N. Engl. J. Med. 345, 1359–1367
    35. van den Berghe, G. et al. (2006) Intensive insulin therapy in the medical ICU. N. Engl. J.Med. 354, 449–461
    36. Tobert, J.A. (2003) Lovastatin and beyond: the history of the HMG-CoA reductase inhibitors. Nat. Rev. Drug Discov. 2, 517–526
    37. Ma, P.T. et al. (1986) Mevinolin, an inhibitor of cholesterol synthesis, induces mRNA for low density lipoprotein receptor in livers of hamsters and rabbits. Proc. Natl. Acad. Sci. U. S. A. 83, 8370–8374
    38. Vaughan, C.J. and Gotto, A.M., Jr (2004) Update on statins: 2003. Circulation 110, 886–892
    39. Bi, X. et al. (2004) Inhibition of geranylgeranylation mediates the effects of
    3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors on microglia. J. Biol. Chem. 279, 48238–48245
    40. Weber, C. et al. (1997) HMG-CoA reductase inhibitors decrease CD11b expression andCD11b-dependent adhesion ofmonocytes to endothelium and reduce increased adhesiveness of monocytes isolated from patients with hypercholesterolemia. J. Am. Coll. Cardiol. 30, 1212–1217
    41. Yoshida, M. et al. (2001) Hmg-CoA reductase inhibitor modulates monocyte–endothelial cell interaction under physiological flow conditions in vitro: involvement of Rho GTPase-dependent mechanism. Arterioscler. Thromb. Vasc. Biol. 21, 1165–1171
    42. Kallen, J. et al. (1999) Structural basis for LFA-1 inhibition upon lovastatin binding to the CD11a I-domain. J. Mol. Biol. 292, 1–9
    43. Dichtl, W. et al. (2003) HMG-CoA reductase inhibitors regulate inflammatory transcription factors in human endothelial and vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 23, 58–63
    44. Merx, M.W. et al. (2004) HMG-CoA reductase inhibitor simvastatin profoundly improves survival in a murine model of sepsis. Circulation 109, 2560–2565
    45. Merx, M.W. et al. (2005) Statin treatment after onset of sepsis in a murine model improves survival. Circulation 112, 117–124
    46. Niessner, A. et al. (2006) Simvastatin suppresses endotoxin-induced upregulation oftoll-like receptors 4 and 2 in vivo. Atherosclerosis 189, 408–413
    47. Almog, Y. et al. (2004) Prior statin therapy is associated with a decreased rate of severe sepsis. Circulation 110, 880–885
    48. Thomsen, R.W. et al. (2006) Statin use and mortality within 180 days after bacteremia: a population-based cohort study. Crit. Care Med. 34, 1080–1086
    49. Fernandez, R. et al. (2006) Statin therapy prior to ICU admission: protection against infection or a severity marker? Intensive Care Med. 32, 160–164
    50. Hackam, D.G. et al. (2006) Statins and sepsis in patients with cardiovascular disease: a population-based cohort analysis. Lancet 367, 413–418
    51. Hackam, D.G. et al. (2006) Statins and sepsis in patients with cardiovascular disease: a population-based cohort analysis. Lancet 367, 413–418