水稻谷氨酸合酶基因和胞质异柠檬酸脱氢酶基因的功能研究以及氨基酸转运蛋白基因家族分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮是植物必需的大量元素,对植物的生长发育至关重要,也是决定作物产量的重要因子。近年来,氮肥的大量施入虽然增加了作物产量,但对生态环境也造成了巨大的破坏。通过现代生物技术提高作物的氮素利用率(NUE),是解决粮食增产和环境保护这一矛盾的根本出路。水稻是我国最重要的粮食作物之一,其氮肥需求量巨大,提高水稻的NUE意义重大。充分了解氮素吸收和同化关键基因的生物学功能,对于深入解析碳氮代谢的分子机制,进而通过精细调控提高作物NUE至关重要。谷氨酰胺合成酶-谷氨酸合酶(GS-GOGAT)循环是氮素同化过程中无机氮转变为有机氮的起点,也是碳氮结合的交叉点,在提高作物NUE工程中的重要性不言而喻。目前,人们对GOGAT基因在氮素吸收和碳氮代谢中扮演的角色仍未形成一个清晰的认识,GS-GOGAT循环所需碳骨架(α-酮戊二酸,20G)的供应机制也未得到解析。本研究即以获得的NADH-GOGAT及胞质ICDH (NADP-依赖型异柠檬酸脱氢酶)受到抑制的两类转基因水稻为材料,从主要代谢产物变化、相关酶活水平以及相关基因表达等方面进行了分析,对NADH-GOGAT的生物学功能以及胞质ICDH在提供20G过程中的角色定位问题进行了深入的探讨。同时,本研究还对水稻氨基酸转运蛋白(OsAAT)基因家族进行了生物信息学分析和转录表达分析,获得了其中11个成员的T-DNA插入突变体,并对其碳氮含量进行了初步分析。主要结果如下:
     1.在粳稻中组成型表达OsNADH-GOGAT基因导致OsNADH-GOGAT1和OsNADH-GOGAT2的共抑制,OsFd-GOGATl也下调表达。共抑制家系在正常营养供应的田间表现为氮缺乏症状,如分蘖减少、株高变矮、产量和千粒重下降。代谢物检测显示,NADH-GOGAT共抑制家系叶片的可溶性糖、总氮以及多数含氮化合物含量下降,20G、异柠檬酸和游离氨含量增加,部分碳氮代谢相关酶活也受到影响。这表明,NADH-GOGAT在水稻碳氮代谢的多个层面发挥着重要作用,是水稻氮素高效利用的关键基因;
     2.在粳稻中组成型表达OsICDH2导致共抑制,使OsICDHl和内源OsICDH2表达量降低,叶片和根部ICDH酶活分别较野生型降低43.5%-76.6%和19.4%-56.4%。正常营养条件下,ICDH共抑制家系表现为生长量减少,田间产量降低,表明胞质ICDH是保持水稻高产稳产的重要因子;
     3.当置于高温下3-6天,ICDH共抑制家系幼苗逐渐失绿并最终死亡,而野生型表现正常。高温下,与野生型比较,共抑制家系叶片中的叶绿素、多种有机酸、可溶性糖、硝酸盐含量降低,游离氨、总游离氨基酸、天冬酰胺和葡萄糖-6-磷酸含量增加,谷氨酸脱氢酶、天冬氨酸转氨酶、葡萄糖-6-磷酸脱氢酶、果糖激酶和葡萄糖激酶活性上升,GS活性下降,OsGDHl和OsGDH2上调表达,OsGS2和OsFd-GOGAT1下调表达。我们推测,水稻IDH (NAD-依赖型异柠檬酸脱氢酶)和胞质ICDH均可以为氮素的同化提供20G,IDH是20G的主要来源,胞质ICDH仅在特殊条件下,如高温胁迫期间,20G供应不足时,提供必要补充。谷氨酸脱氢酶、天冬氨酸转氨酶以及20G转运蛋白均参与了20G的补充过程;
     4.共鉴定出65个OsAAT基因,其中49个受到全长cDNA支持,部分OsAAT基因具有器官特异或氮饥饿诱导的表达模式。获得了11个OsAAT成员的T-DNA插入突变体,与野生型比较,部分突变体的碳氮含量发生了显著改变,表明这些基因与水稻的碳氮分配关系密切。
Nitrogen is an essential macroelement for plant growth and development, and is one of the most important limiting factors in crop production. In recent decades, luxury application of nitrogen fertilizer greatly enhanced crop production. However, it also caused severe environmental contamination. Contradictorily, demands for food are still increasing because of the increasing population in the world. To solve this problem, improving crop nitrogen use efficiency (NUE) through biotechnology is a smart choice. Rice is the staple food of China and the demand of nitrogen fertilizer in its production is huge, it is of great significance to improve the NUE of this crop.
     It is valuable to thoroughly identify the biological functions of key genes of nitrogen absorption and assimilation for understanding the molecular mechanism of carbon and nitrogen metabolism and improving crop NUE. The glutamine synthetase-glutamate synthase (GS-GOGAT) pathway is located at the cross-point of carbon and nitrogen metabolism, suggesting its important role in NUE improving engeering, through which inorganic nitrogen can be transformed into organic nitrogen. Researches focused on GOGAT genes are less, which lead to an indistinct understanding of its fuction in nitrogen assimilation. Another problem in GS-GOGAT pathway is that the origin of carbon skeleton (2OG, a-ketoglutarate) provided for this pathway in nitrogen assimilation is still unclear. In this research, biological functions of NADH-GOGAT in carbaon and nitrogen metabolism and the roles of cytosolic ICDH (NADP-dependent isocitrate dehydrogenase) in providing2OG for ammonium assimilation were systematically investigated, through testing the carbon and nitrogen metabolites contents, related enzyme activities and selected genes transcription levels, using NADH-GOGAT or cytosolic ICDH cosuppressed transgenic rice plants. In addition, molecular characterization, expression and functional analysis of rice amino acid transporter (OsAAT) gene family were also conducted in this research. The main results are as follows:
     1. Constitutive expression of OsNADH-GOGAT in japonica rice caused cosuppression of both OsNADH-GOGAT1and OsNADH-GOGAT2. In nitrogen sufficient field condition, NADH-GOGAT cosuppressed transgenic lines exhibited nitrogen deficient phenotype, such as decreased tiller number, plant height, yeild of per plant and thousand kernel weight. Metabolic analysis showed that suppression of NADH-GOGAT caused a decrese of the contents of leaf soluble sugars, total nitrogen and most of nitrogenous compounds, and an increase of the contents of2OG, isocitrate and free ammounium. The activities of some carbon and nitrogen metabolism related enzymes were also affected. These results proved that NADH-GOGAT playing an important role in rice carbon and nitrogen metabolism, and it is indispensible in the process of improving NUE in rice.
     2. Constitutive expression of OsICDH2in rice caused cosuppression of both OsICDH1and OsICDH2. Compared with wild type, ICDH activity in leaves and roots of cosuppression lines decreased43.5%-76.6%and19.4%-56.4%, respectively. Under sufficient nitrogen conditions, ICDH cosuppressed plants showed a retarded growth phenotype, yield of per plant in field were significantly reduced, which suggests that ICDH is essential for rice to maintaining the high production.
     3. When exposed to high temperature for3-6days, ICDH cosuppressed plants become chlorosis and eventurally died, while the wild type grows normally. Biochemical and physiological analysis showed that, under high temperature condition, when compared with wild type, ICDH cosuppressed lines showed decreased contents of leaf chlorophyll, nitrate, some organic acids and solulble sugars, and increased contents of leaf free ammonium, total free amino acids, asparagine and glucose-6-phosphate, increased activities of glutamate dehydrogenase, aspartate aminotransferase, glucose-6-phosphate dehydrogenase, fructokinase and glucokinase, and decreased GS activities, higher expression levels of OsGDHl and OsGDH2, and lower expression levels of OsGS2and OsFd-GOGAT1. We suggest that both NAD-IDHs (NAD-dependent isocitrate dehydrogenase) and cytosolic ICDH can provides2OG for GS-GOGAT cycle for nitrogen assimilation, NAD-IDHs are responsible for the major source of2OG, whereas the2OG produced by cytosolic ICDHs might act as an important compensation, especially in circumstances, such as high temperature, in which the rate of2OG production by mitochondria is inadequate. Glutamate dehydrogenase, aspartate aminotransferase, and2OG translocators may also help to supplement the inadequate supply of2OG under high temperatures.
     4. Totally65OsAAT genes were identified in rice genome. Among them,49were supported by full length cDNA, some of OsAAT genes exhibited tissue preferential or nitrogen starvation induced expression patterns. T-DNA insertion mutant lines of11OsAAT members were identified and characterized, some of them exhibited modified carbon and nitrogen contens, suggesting these genes play significant roles in carbon and nitrogen distribution in rice.
引文
1.蔡红梅,肖景华,张启发,练兴明.抑制表达谷氨酰胺合成酶基因对水稻氮代谢和生长发育的影响.科学通报,2010,55:875-886
    2. 陈范骏,米国华,刘向生等.玉米氮效率性状的配合力分析。中国农业科学,2003,36:134-139
    3.范仲学,王璞,梁振兴.谷类作物的氮肥利用效率及其提高途径研究进展.山东农业科学.2001,4:47-50
    4.胡霭堂主编.植物营养学(下部).北京:中国农业大学出版社,1995
    5.李合生主编.植物生理生化实验原理和技术.北京:高等教育出版社,2000
    6.陆景陵主编。植物营养学(上部).北京:中国农业大学出版社,1994
    7.马宏卫,陈卫明,马建宏,张桂萍.水稻追肥合理施用技术研究.土壤,2001,2:70-72
    8.潘瑞炽,董愚得.植物生理学.北京:高等教育出版社,1995
    9.彭少兵,黄见良,钟旭华等.提高中国稻田氮肥利用率的研究策略.中国农业科学,2002,35:1095-1103
    10.沈同,王镜岩等.生物化学.北京:高等教育出版社,1990
    11.孙传范,曹卫星,戴廷波.土壤—作物系统中氮肥利用率的研究进展.土壤,2001,2:64-69
    12.王光火,张奇春,黄昌勇.提高氮肥利用率,控制氮肥污染的新途径—SSNM.浙江大学学报,2003,29:67-70
    13.吴平,印莉萍,胡彬.植物营养分子生理学.北京:科学出版社,2001,1-98
    14.余叔文,汤章城主编.植物生理与分子生物学(第二版).北京:科学出版社,1998
    15.张启发主编.绿色超级稻的构想与实践.北京:科学出版社,2009
    16.张小琼,林拥军.利用DNA shuffling技术构建5个cry基因的突变体库以筛选搞毒力杀虫蛋白.华中农业大学学报,2011,30:13-17
    17.钟代斌,陆雅海,郭龙彪等.植物遗传资源科学.2001,2:16-20
    18. Abiko T, Obara M, Ushioda A, Hayakawa T, Hodges M, Yamaya T. Localization of NAD-isocitrate dehydrogenase and glutamate dehydrogenase in rice roots: candidates for providing carbon skeletons to NADH-glutamate synthase. Plant Cell Physiol, 2005,46:1724-1734
    19. Agarwal M, Hao Y, Kapoor A, Dong CH, et al. A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chem,2006,281:37636-37645
    20. Andrews M, Lea PJ, Raven JA, et al. Can genetic manipulation of plant nitrogen assimilation enzymes result in increased crop yield and greater N-use efficiency? An assessment. Ann Appl Biol, 2004, 145:25-40
    21. Atkin OK, Tjoelker MG. Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci, 2003,8:343-351
    22. Avila C, Marquez AJ, Pajuelo P, Cannell ME, Wallsgrove RM, Forde BG. Cloning and sequence analysis of a cDNA for barley ferredoxin-dependent glutamate synthase and molecular analysis of photorespiratory mutants deficient in the enzyme. Planta, 1993,189:475-483
    23. Bao A, Zhao Z, Ding G, Shi L, Xu F, et al. Accumulated Expression Level of Cytosolic Glutamine Synthetase 1 Gene (OsGS1;1 or OsGS1;2) Alter Plant Development and the Carbon-Nitrogen Metabolic Status in Rice. PLoS ONE, 2014,9:e95581
    24. Behal RH, Oliver DJ. NADH-dependent isocitrate dehydrogenase from Arabidopsis thaliana. Characterization of two closely related subunits. Plant Mol Biol, 1998,36:691-698
    25. Ben-Naim O, Eshed R, Parnis A, Teper-Bamnolker P, Shalit A, et al. The CCAAT binding factor can mediate interactions between CONSTANS-like proteins and DNA. Plant J, 2006, 46:462-476
    26. Bernard SM, Habash DZ. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling. New Phytol, 2009,182:608-620
    27. Blanco L, Reddy PM, Silvente S, et al. Molecular cloning, characterization and regulation of two different NADH-glutamate synthase cDNAs in bean nodules. Plant Cell Environ,2008,31:454-472
    28. Boex-Fontvieille ER, Gauthier PP, Gilard F, Hodges M, Tcherkez GG. A new anaplerotic respiratory pathway involving lysine biosynthesis in isocitrate dehydrogenase-deficient Arabidopsis mutants. New Phytol, 2013,199:673-682
    29. Boiffin V, Hodges M, Galvez S, Balestini B, Bonfante P, et al. Eucalypt NADP-dependent isocitrate dehydrogenase:cDNA cloning and expression in ectomycorrhiza. Plant Physiol, 1998,117:939-948
    30. Borsani J, Budde CO, Porrini L, et al. Carbon metabolism of peach fruit after harvest:changes in enzymes involved in organic acid and sugar level modifications. J Exp Bot, 2009,60:1823-1837
    31. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein binding. Anal Biochem, 1976,72,248-254
    32. Bravo A, Gomez I, Porta H, Garcia-Gomez BI, Rodriguez-Almazan C, et al. Evolution of Bacillus thuringiensis Cry toxins insecticidal activity. Micro Biotechnol, 2013,6:17-26
    33. Brestic M, Zivcak M, Olsovska K, Shao HB, Kalaji HM, Allakhverdiev SI. Reduced glutamine synthetase activity plays a role in control of photosynthetic responses to high light in barley leaves. Plant Physiol Biochem, 2014, [Epub ahead of print]
    34. Bright SWJ, Lea PJ, Arruda P, Hall NP, Kendall AC, et al. Manipulation of key pathways in photorespiration and amino acid metabolism by mutation and selection. In The Genetic Manipulation of Plants and Its Application to Agriculture, ed. PJ Lea, GR Stewart, Oxford: Oxford Univ Press, 1984, 141-169
    35. Cai X, Ballif J, Endo S, Davis E, Liang M, et al. A putative CCAAT-binding transcription factor is a regulator of flowering timing in Arabidopsis. Plant Physiol, 2007, 145:98-105
    36. Canales J, Rueda-Lopez M, Craven-Bartle B, Avila C, Canovas FM. Novel insights into regulation of asparagine synthetase in conifers. Front Plant Sci, 2012, 3:100
    37. Carginale V, Maria G, Capasso C, Ionata E, et al. Identification of genes expressed in response to phytoplasma infection in leaves of Prunus armeniaca by messenger RNA differential display. Gene, 2004, 332:29-34
    38. Cavalar M, Phlippen Y, Kreuzaler F, Peterhansel C. A drastic reduction in DOF1 transcript levels does not affect C4-specific gene expression in maize. J Plant Physiol, 2007, 164:1665-1674
    39. Chen N, Zhang X, Wei P, Chen Q, Ren F, et al. AtHAP3b Plays a crucial role in the regulation of flowering time in Arabidopsis during osmotic stress. J Biochem Mol Biol, 2007,40:1083-1089
    40. Chen R. Plant NADP-dependent isocitrate dehydrogenases are predominantly localized in the cytosol. Planta, 1998,207:280-285
    41. Chen RD, Gadal P. Do mitochondria provide the 2-oxoglutarate needed for glutamate synthesis in higher plant chloroplasts? Plant Physio and Biochem, 1990, 28:141-145
    42. Chichkova S, Arellano J, Vance CP, et al. Transgenic tobacco plants that overexpress alfalfa NADH-glutamate synthase have higher carbon and nitrogen content. J Exp Bot, 2001,52:2079-2087
    43. Choi IY, Sup KI, Kim HJ, Park JW. Thermosensitive phenotype of Escherichia coli mutant lacking NADP+-dependent isocitrate dehydrogenase. Redox report, 2003,8:51-56
    44. Combier JP, Frugier F, de Billy F, Boualem A, El-Yahyaoui F, et al. MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula. Genes Dev, 2006, 20:3084-3088
    45. Coruzzi G, Bush DR. Nitrogen and carbon nutrient and metabolite signaling in plants. Plant Physiol, 2001,125:61-64
    46. Coschigano KT, Melo-Oliveira R, Lim J, et al. Arabidopsis gls mutants and distinct Fd-GOGAT genes:implications for photorespiration and primary nitrogen assimilation, Plant Cell, 1998, 10:741-752
    47. Dai GZ, Qiu BS, Forchhammer K. Ammonium tolerance in the cyanobacterium Synechocystis sp. strain PCC 6803 and the role of the psbA multigene family. Plant Cell Environ,2013,37: 840-51
    48. Dechorgnat J, Nguyen CT, Armengaud P, Jossier M, Diatloff E, et al. From the soil to the seeds:the long journey of nitrate in plants. J Exp Bot, 2011,62: 1349-1359
    49. De Datta SK, Broadbent FE. Nitrogen-use efficiency of 24 rice genotypes on an N-deficient soil. Field Crops Res, 1990, 23:81-92
    50. Diindar E, Bush D. BAT1, a bidirectional amino acid transporter in Arabidopsis. Planta, 2009,229:1047-1056
    51. Dutilleul C, Lelarge C, Prioul JL, Paepe RD, Foyer CH, et al. Mitochondria-driven changes in leaf NAD status exert a crucial influence on the control of nitrate assimilation and the integration of carbon and nitrogen metabolism. Plant Physiol, 2005, 139:64-78
    52. Elmayan T, Balzergue S, Beon F, Bourdon V, Daubremet J, et al. Arabidopsis mutants impaired in cosuppression. Plant Cell,1998, 10:1747-1758
    53. Ferrario-Mery S, Besin E, Pichon O, Meyer C, Hodges M. The regulatory PII protein controls arginine biosynthesis in Arabidopsis. FEBS Lett, 2006, 580: 2015-2020
    54. Ferrario-Mery S, Bouvet M, Leleu O, Savino G, Hodges M, Meyer C. Physiological characterisation of Arabidopsis mutants affected in the expression of the putative regulatory protein PII. Planta, 2005, 223:28-39
    55. Ferrario-Mery S, Meyer C, Hodges M. Chloroplast nitrite uptake is enhanced in Arabidopsis PII mutants. FEBS Lett, 2008, 582:1061-1066
    56. Ferrario-Mery S, Valadier MH, Hodges M, Hirel B, Foyer CH. Photorespiration-dependent increases in phosphoenolpyruvate carboxylase, isocitrate dehydrogenase and glutamate dehydrogenase in transformed tobacco plants deficient in Fd-GOGAT. Planta, 2002,214: 877-886.
    57. Fieuw S, Muller-Rober B, Galvez S, Willmitzer L. Cloning and expression analysis of the cytosolic NADPH-dependent isocitrate dehydrogenase from potato. Plant Physiol, 1995,107:905-913
    58. Fischer RA, Byerlee D, Edmeades GO. Can technology deliver on the yield challenge to 2050? FAO Expert Meeting on How to Feed the World in 2050, 2009, 24-26
    59. Fischer WN, Andree B, Rentsch D, Krolkiewicz S. et al. Amino acid transport in plants. Trends Plant Sci, 1998,3:188-195
    60. Fontaine JX, Terce-Laforgue T, Armengaud P, Clement G, Renou JP, et al. Characterization of a NADH-dependent glutamate dehydrogenase mutant of arabidopsis demonstrates the key role of this enzyme in root carbon and nitrogen metabolism. Plant Cell,2012,24:4044-4065
    61. Foyer CH, Noctor G, Hodges M. Respiration and nitrogen assimilation:targeting mitochondria-associated metabolism as a means to enhance nitrogen use efficiency. JExp Bot, 2011,62:1467-1482
    62. Funayama K, Kojima S, Tabuchi-Kobayashi M, Sawa Y, Nakayama Y, et al. Cytosolic glutamine synthetasel;2 is responsible for the primary assimilation of ammonium in rice roots. Plant Cell Physiol, 2013,54:934-943
    63. Gallais A, Hirel B. An approach to the genetics of nitrogen use efficiency in maize. J Exp Bot, 2004,55:295-306
    64. Gallardo F, Galvez S, Gadal P, Canovas FM. Changes in NADP-linked isocitrate dehydrogenase during fruit ripening. Characterization of the predominant cytosolic enzyme from green and ripe pericarp. Planta, 1995,196:148-154
    65. Galvez S, Bismuth E, Sarda C, Gadal P. Purification and characterization of chloroplast NADP-isocitrate dehydrogenase from mixotrophic tobacco cells. Comparison with the cytosolic isoenzyme. Plant Physiol, 1994, 105:593-600.
    66. Galvez S, Hodges M, Decottignes P, Bismuth E, Lancien M, et al. Identification of a tobacco cDNA encoding a cytosolic NADP-isocitrate dehydrogenase. Plant Mol Biol, 1996,30:307-320
    67. Galvez S, Lancien M, Hodges M. Are isocitrate dehydrogenases and 2-oxoglutarate involved in the regulation of glutamate synthesis? Trends Plant Sci, 1999,4:484-490
    68. Galvez S, Roche O, Bismuth E, Brown S, Gadal P, Hodges M. Mitochondrial localization of a NADP-dependent isocitrate dehydrogenase isoenzyme by using the green fluorescent protein as a marker. Proc Natl Acad Sci USA,1998,95: 7813-7818
    69. Garcia-Gutierrez A, Canton FR, Gallardo F, Sanchez-Jimenez F, Ceanovas FM. Expression of ferredoxin-dependent glutamate synthase in dark grown pine seedlings. Plant Mol Biol, 1995,27:115-128
    70. Gibon Y, Blaesing OE, Hannemann J, Carillo P, Hohne M, et al. A robot-based platform to measure multiple enzyme activities in Arabidopsis using a set of cycling assays:comparison of changes of enzyme activities and transcript levels during diurnal cycles and in prolonged darkness. Plant Cell, 2004, 16:3304-3325
    71. Gibon Y, Larher F. Cycling assay for nicotinamide adenine dinucleotides:NaCl precipitation and ethanol solubilization of the reduced tetrazolium. Anal Biochem, 1997,251:153-157
    72. Gibon Y, Vigeolas H, Tiessen A, Geigenberger P, Stitt M. Sensitive and high throughput metabolite assays for inorganic pyrophosphate, ADPGlc, nucleotide phosphates, and glycolytic intermediates based on a novel enzymic cycling system. Plant J, 2002, 30: 221-235
    73. Glass AD, Britto DT, Kaiser BN, Kinghorn JR, Kronzucker HJ, et al. The regulation of nitrate and ammonium transport systems in plants. J Exp Bot, 2002, 53:855-864
    74. Good A G, Shrawat AK, Muench DG Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci, 2004,9:597-605
    75. Goto S, Akagawa T, Kojima S, Hayakawa T, Yamaya T. Organization and structure of NADH-dependent glutamate synthase gene from rice plants. Biochim BiophysActa, 1998, 1387:298-308
    76. Granot D, Kelly G, Stein O, David-Schwartz R. Substantial roles of hexokinase and fructokinase in the effects of sugars on plant physiology and development. J Exp Bot, 2014,65:809-819
    77. Gray GR, Villarimo AR, Whitehead CL, McIntosh L. Transgenic tobacco (Nicotiana tabacum L.) plants with increased expression levels of mitochondrial NADP+-dependent isocitrate dehydrogenase:evidence implicating this enzyme in the redox activation of the alternative oxidase. Plant Cell Physiol, 2004,45: 1413-1425
    78. Gregerson RG, Miller SS, Twary SN, Gantt JS, Vance CP. Molecular characterization of NADH-dependent glutamate synthase from alfalfa nodules. Plant Cell, 1993,5:215-226
    79. Guo MG Molecular and genomic analysis of nitrogen regulation of amino acid permease I (AAP1) in Arabidopsis. PhD dissertation, University of Illinois at Urbana-Champaign, Urbana, IL, 2004
    80. Guruprasad K, Reddy BV, Pandit MW. Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng, 1990, 4:155-161
    81. Hammes UZ, Nielsen E, Honaas LA, Taylor CG, et al. AtCAT6, a sink tissue localized transporter for essential amino acids in Arabidopsis. Plant J, 2006, 48: 414-426
    82. Hayakawa T, Hopkins L, Peat L J, et al. Quantitative intercellular localization of NADH-dependent glutamate synthase protein in different types of root cells in rice plants. Plant Physiol, 1999, 119: 409-416
    83. Hayakawa T, Nakamura T, Hattori F, et al. Cellular localization of NADH dependent glutamate synthase protein in vascular bundles of unexpanded leaf blades and young grains of rice plants. Planta, 1994, 193:455-460
    84. Hayakawa T, Yamaya T, Mae T, et al. Changes in the content of two glutamate synthase proteins in spikelets of rice (Oryza sativa) plants during ripening. Plant Physiol, 1993,101:1257-1262
    85. He H, Liang G, Li Y, Wang F, Yu D. Two young MicroRNAs originating from target duplication mediate nitrogen starvation adaptation via regulation of glucosinolate synthesis in Arabidopsis thaliana. Plant Physiol, 2014,164: 853-865
    86. Hecht U, Oelmuller R, Schmidt S, et al. Action of light, nitrate and ammonium on the levels of NADH- and ferredoxin-dependent glutamate synthases in the cotyledons of mustard seedlings. Planta, 1988,175:130-138
    87. Hernandez H, Aranda C, Lopez G, Riego L, Gonzalez A. Hap2-3-5-Gln3 determine transcriptional activation of GDH1 and ASN1 under repressive nitrogen conditions in the yeast Saccharomyces cerevisiae. Microbiol, 2011,157: 879-889
    88. Hiei Y, Ohta S, Komari T, Kumashiro T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J, 1994, 6:271-282
    89. Hirner A, Ladwig F, Stransky H, Okumoto S, et al. Arabidopsis LHT1 is a high-affinity transporter for cellular amino acid uptake in both root epidermis and leaf mesophyll. Plant Cell, 2006,18:1931-1946
    90. Ho CH, Lin SH, Hu HC, Tsay YF. CHL1 functions as a nitrate sensor in plants. Cell,2009,138:1184-94
    91. Hodges M. Enzyme redundancy and the importance of 2-oxoglutarate in plant ammonium assimilation. JExp Bot, 2002,53:905-916
    92. Hsieh M, Lam H, Van de loo FJ, Coruzzi G. A PII-like protein in Arabidopsis: putative role in nitrogen sensing. Proc Natl Acad Sci USA,1998,95: 13965-13970
    93. Hsu LC, Chiou TJ, Chen L, Bush DR. Cloning a plant amino acid transporter by functional complementation of a yeast amino acid transport mutant. Proc Natl Acad Sci USA,1993,90:7441-7445
    94. Hu HC, Wang YY, Tsay YF. AtCIPK8, a CBL-interacting protein kinase, regulates the low-affinity phase of the primary nitrate response. Plant J, 2009, 57: 264-278
    95. Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X. Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet, 2009, 41: 494-497
    96. Huerta-Ocampo JA, Leon-Galvan MF, Ortega-Cruz LB, Barrera-Pacheco A, De Leon-Rodriguez A, et al. Water stress induces up-regulation of DOF1 and MIF1 transcription factors and down-regulation of proteins involved in secondary metabolism in amaranth roots (Amaranthus hypochondriacus L.). Plant Biol, 2011,13:472-482
    97. Hunt E, Gattolin S, Newbury HJ, Bale JS, et al. A mutation in amino acid permease AAP6 reduces the amino acid content of the Arabidopsis sieve elements but leaves aphid herbivores unaffected. JExp Bot, 2010, 61:55-64
    98. Ishiyama K, Hayakawa T, Yamaya T. Expression of NADH-dependent glutamate synthase protein in the epidermis and exodermis of rice roots in response to the supply of ammonium ions. Planta, 1998, 204: 288-294
    99. Ishiyama K, Kojima S, Takahashi H, Hayakawa T, Yamaya T. Cell type distinct accumulations of Mrna and proterin for NADH-dependent glutamate synthase in rice roots in response to the supply of NH+4. Plant Physiol Biochem, 2003,41: 643-647
    100.Ishizaki T, Ohsumi C, Totsuka K, Igarashi D. Analysis of glutamate homeostasis by overexpression of Fd-GOGAT gene in Arabidopsis thaliana. Amino Acids, 2010,38:943-50
    101.Jain M, Khurana P, Tyagi AK, Khurana JP. Genome-wide analysis of intronless genes in rice and Arabidopsis. Funct Integr Genomics, 2008, 8:69-78
    102.Jeanneau M, Vidal J, Gousset-Dupont A, Lebouteiller B, Hodges M, Gerentes D, Perez P. Manipulating PEPC levels in plants. JExp Bot, 2000, 53:1837-1845
    103.Jenner HL, Winning BM, Millar AH, Tomlinson KL, Leaver CJ, Hill SA. NAD malic enzyme and the control of carbohydrate metabolism in potato tubers. Plant Physiol,2001,126:1139-1149
    104 Jo SH, Son MK, Koh HJ, Lee SM, Song IH, et al. Control of mitochondrial redox balance and cellular defense against oxidative damage by mitochondrial NADP+-dependent isocitrate dehydrogenase. J Biol Chem, 2001,276: 16168-16176
    105.Kant S, Bi Y, Rothstein SJ. Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency. J Exp Bot, 2011,62: 1499-1509
    106.Keys AJ, Bird IF, Cornelius MJ, Lea PJ, Wallsgrove RM, Miflin BJ. Photorespiratory nitrogen cycle. Nature, 1978,275:741-43
    107.Keys DA, McAlister-Henn L. Subunit structure, expression and function of NAD(H)-specific isocitrate dehydrogenase in Saccharomyces cerevisiae. J Bacteriol, 1990, 172:4280-4287
    108.Kil IS, Shin SW, Lee YS, Park JW. Mitochondrial NADP+-dependent isocitrate dehydrogenase protects cadmium-induced apoptosis. Mol Pharm, 2006, 70: 1053-1061
    109. Kim YO, Koh HJ, Kim SH, Jo SH, Huh JW, et al. Identification and functional characterization of a novel, tissue-specific NAD+-dependent isocitrate dehydrogenasepsubunit isoform. JBiol Chem, 1999, 274:36866-36875
    110. Kinoshita H, Nagasaki J, Yoshikawa N, Yamamoto A, Takito S, et al. The chloroplastic 2-oxoglutarate/malate transporter has dual function as the malate valve and in carbon/nitrogen metabolism. Plant J, 2011,65:15-26
    111. Kissen R, Winge P, Tran DH, Jorstad TS, Storseth TR, et al. Transcriptional profiling of an Fd-GOGATl/GLU1 mutant in Arabidopsis thaliana reveals a multiple stress response and extensive reprogramming of the transcriptome. BMC Genomics, 2010, 11:190
    112. Kogami H, Shono M, Koike T, Yanagisawa S, et al. Molecular and physiological evaluation of transgenic tobacco plants expressing a maize phosphoenolpyruvate carboxylase gene under the control of the cauliflower mosaic virus 35S promoter. Transgenic Res, 1994, 3:287-296
    113. Konishi N, Ishiyama K, Matsuoka K, Maru I, Hayakawa T, et al. NADH-dependent glutamate synthase plays a crucial role in assimilating ammonium in the Arabidopsis root. Physiol Plant, 2014 [Epub ahead of print]
    114. Kruse A, Fieuw S, Heineke D, Muller-Rober B. Antisense inhibition of cytosolic NADP-dependent isocitrate dehydrogenase in transgenic potato plants. Planta, 1998,205:82-91
    115. Ku MS, Agarie S, Nomura M, Fukayama H, Tsuchida H, et al. High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nat Biotechnol,1999,17:76-80
    116. Kunz C, Schob H, Leubner-Metzger G, et al. β-1,3-Glucanase and chitinase transgenes in hybrids show distinctive and independent patterns of posttranscriptional gene silencing. Planta, 2001,212:243-249
    117. Kurai T, Wakayama M, Abiko T, Yanagisawa S, Aoki N, Ohsugi R. Introduction of the ZmDof1 gene into rice enhances carbon and nitrogen assimilation under low-nitrogen conditions. Plant Biotechnol J, 2011,9:826-837
    118. Laloi M. Plant mitochondrial carriers:an overview. Cell Mol Life Sci, 1999, 56: 918-944
    119. Lalonde S, Wipf D, Frommer WB. Transport mechanisms for organic forms of carbon and nitrogen between source and sink. Annu Rev Plant Biol, 2004,55: 341-372
    120. Lam HM, Coschigano KT, Oliveira IC, Melo-Oliveira R, Coruzzi GM. The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Annu Rev Plant Physiol Plant Mol Bio, 1996,47:569-593
    121. Lam HM, Hsieh MH, Coruzzi G. Reciprocal regulation of distinct asparagine synthetase genes by light and metabolites in Arabidopsis thaliana. Plant J, 1998, 16:3453-3453
    122. Lancien M, Ferrario-Mery S, Roux Y, Bismuth E, Masclaux C, et al. Simultaneous expression of NAD-dependent isocitrate dehydrogenase and other Krebs cycle genes after nitrate re-supply to short-term starved Nicotiana tabacum. Plant Physiol, 1999, 120:717-726
    123. Lancien M, Gadal P, Hodges M. Enzyme Redundancy and the Importance of 2-Oxoglutarate in Higher Plant Ammonium Assimilation. Plant Physiol, 2000, 123:817-824
    124. Lancien M, Gadal P, Hodges M. Molecular characterization of higher plant NAD-dependent isocitrate dehydrogenase:evidence for a heteromeric structure by the complementation of yeast mutants. Plant J, 1998,16:325-333
    125. Lancien M, Martin M, Hsieh M H, et al. Arabidopsis gltl-T mutant defines a role for NADH-GOGAT in the non-photorespiratory ammonium assimilatory pathway. Plant J, 2002, 29:347-358
    126. Lea PJ, Ireland RJ. Nitrogen metabolism in higher plants. Plant amino acids. Biochemistry and biotechnology, CRC Press, 1999, 1-47
    127. Lemaitre T, Hodges M. Expression analysis of Arabidopsis thaliana NAD-dependent isocitrate dehydrogenase genes shows the presence of a functional subunit that is mainly expressed in the pollen and absent from vegetative organs. Plant cell physiol, 2006, 47:634-643
    128. Lemaitre T, Urbanczyk-Wochniak E, Flesch V, Bismuth E, Fernie AR, Hodges M. NAD-dependent isocitrate dehydrogenase mutants of Arabidopsis suggest the enzyme is not limiting for nitrogen assimilation. Plant physiol, 2007, 144: 1546-1558
    129. Lian X, Xing Y, Yan H, Xu C, Li X, Zhang Q. QTLs for low nitrogen tolerance at seedling stage identified using a recombinant inbred line population derived from an elite rice hybrid. Theor Appl Genet, 2005,112:85-96
    130. Liang G, He H, Yu D. Identification of Nitrogen Starvation-Responsive MicroRNAs in Arabidopsis thaliana. PLoS ONE, 2012, 7:e48951
    131. Liu X, Bush DR. Expression and transcriptional regulation of amino acid transporters in plants. Amino Acids, 2006, 30:113-120
    132. Liu Y J, Nunes-Nesi A, Wallstrom S V, et al. A redox-mediated modulation of stem bolting in transgenic Nicotiana sylvestris differentially expressing the external mitochondrial NADPH dehydrogenase. Plant Physiol, 2009, 150: 1248-1259
    133. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△C T method. Methods, 2001,25,402-408
    134. Lynch M, Conery JS. The evolutionary fate and consequences of duplicate genes. Science,2000,290:1151-1155
    135. Makino A, Shimada T, Takumi S, Kaneko K, Matsuoka M, et al. Does decrease in ribulose-I, 5-bisphosphate carboxylase by antisense RbcS lead to a higher N-use efficiency of photosynthesis under conditions of saturating CO, and light in rice plants? Plant Physiol, 114:483-491
    136. Martinez-Rivas JM, Vega JM. Purification and characterization of NAD-isocitrate dehydrogenase from Chlamydomonas reinhardtii. Plant Physiol, 1998,118: 249-255
    137. Martin A1, Lee J, Kichey T, Gerentes D, Zivy M, et al. Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production. Plant Cell, 2006, 18:3252-3274
    138. Marvier AC, Neelam A, Bick JA, Hall JL, et al. Cloning of a cDNA coding for an amino acid carrier from Ricinus communis (RcAAP1) by functional complementation in yeast: kinetic analysis, inhibitor sensitivity and substrate specificity. Biochim Biophys Acta, 1998,1373:321-331
    139. Masclaux-Daubresse C, Daniel-Vedel F, Dechorgnat J, Chardon F, Gaufichon L Nitrogen uptake, assimilation and remobilization in plants:challenges for sustainable and productive agriculture. Ann Bot, 2010,105:1141-1157
    14O. Masclaux-Daubresse C, Reisdorf-Cren M, Pageau K, Lelandais M, et al. Glutamine synthetase-glutamate synthase pathway and glutamate dehydrogenase play distinct roles in the sink-source nitrogen cycle in tobacco. Plant Physiol, 2006,140:444-456
    141. Masumoto C, Miyazawa SI, Ohkawa H, Fukuda T, Taniguchi Y, et al. Phosphoenolpyruvate carboxylase intrinsically located in the chloroplast of rice plays a crucial role in ammonium assimilation. Proc Natl Acad Sci USA,2010, 107:5226-5231
    142. McAllister CH, Beatty PH, Good AG. Engineering nitrogen use efficient crop plants:the current status. Plant Biotechnol J,2012, 10:1011-1025
    143. McIntosh CA. Partial purification and characteristics of membrane-associated NADP-dependent isocitrate dehydrogenase activity from etiolated pea mitochondria. Plant Science,1997,129:9-20
    144. McKinnon DJ, Brzezowski P, Wilson KE, Gray GR. Mitochondrial and chloroplastic targeting signals of NADP+-dependent isocitrate dehydrogenase. Biochem Cell Biol,2009,87:963-974
    145. Mhamdi A, Mauve C, Gouia H, Saindrenan P, Hodges M, Noctor G. Cytosolic NADP-dependent isocitrate dehydrogenase contributes to redox homeostasis and the regulation of pathogen responses in Arabidopsis leaves. Plant Cell Environ, 2010,33:1112-1123
    146. Miflin BJ, Lea PJ. Ammonia assimilation. In: Miflin BJ, ed. Biochemistry of plants. New York: Academic Press, 1980, 5:169-202
    147. Migge A, Carrayol E, Kunz C, Hirel B, Fock H, Becker T. The expression of the tobacco genes encoding plastidic glutamine synthetase or ferredoxin-dependent glutamate synthase does not depend on the rate of nitrate reduction, and is unaffected by suppression of photorespiration. JExp Bot, 1997, 48:1175-1181
    148. Miller AJ, Fan X, Orsel M, Smith SJ, Wells DM. Nitrate transport and signalling. JExp Bot, 2007a, 58:2297-2306
    149. Miller AJ, Fan X, Shen Q, Smith SJ. Amino acids and nitrate as signals for the regulation of nitrogen acquisition. JExp Bot, 2007b, 59:111-119
    150. Minard KI and McAlister-Henn L. Antioxidant function of cytosolic sources of NADPH in yeast. Free Radic Biol Med, 2011,31:832-843
    151. Montamat F, Maurousset L, Tegeder M, Frommer W, et al. Cloning and expression of amino acid transporters from broad bean. Plant Mol Biol, 1999, 41: 259-268
    152. Moorhead GBG, Smith C. Interpreting the Plastid Carbon, Nitrogen, and Energy Status. A Role for PII? Plant Physiol, 2003,133:492-498
    153. Morcuende R, Krapp A, Hurry V, Stitt M. Sucrose feeding leads to increased rates of nitrate assimilation, increased rates of 2-oxoglutarate synthesis and increased synthesis of a wide spectrum of amino acids in tobacco leaves. Planta, 1998,206: 394-409
    154. Mulvaney RL, Khan SA, Ellsworth TR. Synthetic nitrogen fertilizers deplete soil nitrogen:a global dilemma for sustainable cereal production. J Environ Qual, 2009,38:2295-2314
    155. Mustroph A, Boamfa EI, Laarhoven LJ, Harren FJ, Albrecht G, Grimm B. Organ-specific analysis of the anaerobic primary metabolism in rice and wheat seedlings. I:Dark ethanol production is dominated by the shoots. Planta, 2006, 225:103-114
    156. Nalbantoglu B, Hirasawa M, Moomaw C, Nguyen H, Knaff DB, Allen R. Cloning and sequencing of the gene encoding spinach ferredoxin-dependent glutamate synthase. Biochim Biophys Acta, 1994,1183:557-561
    157. Napoli C, Lemieux C, Jorgensen R. Introduction of a chimeric chalcone synthase gene into Petunia results in reversible co-suppression of homologous genes in trans. Plant cell,1990,2:279-289
    158. Nasholm T, Kielland K, Ganeteg U. Uptake of organic nitrogen by plants. New Phytol,2009,182:31-48
    159. Nekrutenko A, Hillis DM, Patton JC, Bradley RD, Baker RJ. Cytosolic isocitrate dehydrogenase in humans, mice, and voles and phylogenetic analysis of the enzyme family. Mol Biol Evol, 1998,15:1674-1684
    160. Nelson DE, Repetti PP, Adams TR, Creelman RA, Wu J, et al. Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc Natl Acad Sci USA,2007, 104:16450-16455
    161. Nigro D, Gu YQ, Huo N, Marcotuli I, Blanco A, et al. Structural analysis of the wheat genes encoding NADH-dependent glutamine-2-oxoglutarate amidotransferases and correlation with grain protein content. PLoS ONE, 2013,8: e73751
    162. Ninfa AJ, Atkinson MR. PII signal transduction proteins. Trends in Microbiol, 2000,8:172-179
    163. Noctor G, Queval G, Gakiere B. NAD(P) Synthesis and pyridine nucleotide cycling in plants and their potential importance in stress conditions. J Exp Bot, 2000,57:1603-1620
    164. Nunes-Nesi A, Carrari F, Gibon Y, Sulpice R, Lytovchenko A, et al. Deficiency of mitochondrial fumarase activity in tomato plants impairs photosynthesis via an effect on stomatal function. Plant J, 2007, 50:1093-1106
    165. Obara M, Kajiura M, Fukuta Y, Yano M, Hayashi M, et al. Mapping of QTLs associated with cytosolic glutamine synthetase and NADH-glutamate synthase in rice (Oryza sativa L.). J Exp Bot, 2001,52:1209-1217
    166. Okumoto S, Koch W, Tegeder M, Fischer WN, et al. Root phloem-specific expression of the plasma membrane amino acid proton co-transporter AAP3. J Exp Bot, 2004,55:2155-2168
    167. O'Leary B, Park J, Plaxton WC. The remarkable diversity of plant PEPC (phosphoenolpyruvate carboxylase):recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs. Biochem J, 2011,436:15-34
    168. Oliveira I C, Brears T, Knight T J, et al. Overexpression of cytosolic glutamine synthetase. relation to nitrogen, light, and photorespiration. Plant Physiol, 2002, 129:1170-1180
    169. Oliver G, Gosset G, Sanchez-Pescador R, Lozoya E, Ku LM, et al. Determination of the nucleotide sequence for the glutamate synthase structural genes of Escherichia coli K-12, Gene,1987,60:1-11
    17O. Palauqui JC, Vaucheret H. Transgenes are dispensable for the RNA degradation step of cosuppression. Proc Natl Acad Sci USA,1998,95:9675-9680
    171. Palomo J, Gallardo F, Suarez MF, Canovas FM. Purification and characterization of NADP-linked isocitrate dehydrogenase from Scots pine. Evidence for different physiological roles of the enzyme in primary development. Plant Physiol, 1998, 118:617-626
    172. Panisko EA, McAlister-Henn L. Subunit interactions of yeast NAD+-specific isocitrate dehydrogenase. Journal Biol Chem, 2001,276:1204-1210
    173. Popova OV, Dietz KJ, Golldack D. Salt-dependent expression of a nitrate transporter and two amino acid transporter genes in Mesembryanthemum crystallinum. Plant Mol Biol, 2003,52:569-578
    174. Popova TN, Pinheiro de, Carvalho MA. Citrate and isocitrate in plant metabolism. Biochim Biophys Acta, 1998,1364:307-325
    175. Porter JR, Semenov MA. Crop responses to climatic variation. Philos T R Soc B, 2005,360:2021-2035
    176. Queval G, Noctor G. A plate reader method for the measurement of NAD, NADP, glutathione, and ascorbate in tissue extracts:application to redox profiling during Arabidopsis rosette development. Anal Biochem, 2007, 363:58-69
    177. Quraishi UM, Abrouk M, Murat F, Pont C, Foucrier S, et al. Cross-genome map based dissection of a nitrogen use efficiency ortho-meta QTL in bread wheat unravels concerted cereal genome evolution. Plant J, 2011,65:745-756
    178. Reich PB, Hobbie SE, Lee T, Ellsworth DS, West JB, et al. Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature,2006, 440: 922-925
    179. Renne P, Dressen U, Hebbeker U, Hille D, Flugge UI, et al. The Arabidopsis mutant dct is deficient in the plastidic glutamate/malate translocator DiT2. Plant J, 2003,35:316-331
    180. Rentsch D, Schmidt S, Tegeder M. Transporters for uptake and allocation of organic nitrogen compounds in plants. FEBSLett, 2007, 581:2281-2289
    181. Roy SW, Penny D. Patterns of intron loss and gain in plants:intron loss-dominated evolution and genome-wide comparison of O. sativa and A. thaliana. Mol Biol Evol,2007,24:171-181
    182. Sakakibara H, Matanabe M, Hase T, Sugiyama T. Molecular cloning and characterization of complementary DNA encoding for ferredoxin dependent glutamate synthase in maize leaf. J Biol Chem, 1991,266:2028-2035
    183. Sambrook J, Russell DW. Molecular Cloning:A Laboratory Manual.3rd ed. New York:Cold Spring Harbor Laboratory, 2001, 1.31-1.119
    184. Sanders A, Collier R, Trethewy A, Gould G, et al. AAP1 regulates import of amino acids into developing Arabidopsis embryos. Plant J, 2009, 59:540-552
    185. Sato T, Maekawa S, Yasuda S, Domeki Y, Sueyoshi K, et al. Identification of 14-3-3 proteins as a target of ATL31 ubiquitin ligase, a regulator of the C/N response in Arabidopsis. Plant J, 2011,68:137-146
    186. Scheible WR, Gonzalez-Fontes A, Lauerer M, Muller-Rober B, Caboche M, Stitt M. Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco. Plant Cell,1997,9:783-798
    187. Schneidereit J, Hausler RE, Fiene G, Kaiser WM, Weber AP. Antisense repression reveals a crucial role of the plastidic 2-oxoglutarate/malate translocator DiTl at the interface between carbon and nitrogen metabolism. Plant J, 2006,45: 206-224
    188. Schoenbeck MA, Temple SJ, Trepp GB, et al. Decreased NADH glutamate synthase activity in nodules and flowers of alfalfa (Medicago sativa L.) transformed with an antisense glutamate synthase transgene. J Exp Bot, 2000, 51: 29-39
    189. Schwacke R, Grallath S, Breitkreuz KE, Stransky E, et al. LeProTl, a transporter for proline, glycine betaine, and gamma-amino butyric acid in tomato pollen. Plant Cell, 1999, 11:377-391
    190. Shin R, Jez JM, Basra A, Zhang B, Schachtman DP. 14-3-3 Proteins fine-tune plant nutrient metabolism. FEBS Lett, 2011,585:143-147
    191. Shin SW, Kil IS, Park JW. Silencing of mitochondrial NADP+-dependent isocitrate dehydrogenase by small interfering RNA enhances heat shock-induced apoptosis. Biochem Biophys Res Commun, 2007,366:1012-1018
    192. Sienkiewicz-Porzucek A, Sulpice R, Osorio S, Krahnert I, Leisse A, et al. Reductions in mitochondrial NAD-dependent isocitrate dehydrogenase activity result in altered nitrate assimilation and pigmentation but do not impact growth. Mol Plant, 2010,3:156-173
    193. Smith BE. Nitrogenase reveals its inner secrets. Science, 2002, 297:1654-1655
    194. Smith C, Weljie AM, Moorhead GBG. Molecular properties of the putative nitrogen sensor PII from Arabidopsis thaliana. Plant J, 2003,33:353-360
    195. Sohlenkamp C, Shelden M, Howitt S, Udvardi M. Characterization of Arabidopsis AtAMT2, a novel ammonium transporter in plants. FEBS Lett, 2000, 467:273-278
    196. Somerville CR, Ogren WL. Inhibition of photosynthesis in Arabidopsis mutants lacking leaf glutamate synthase activity. Nature, 1980, 286:257-59.
    197. Stitt M. Nitrate regulation of metabolism and growth. Curr Opin Plant Biol, 1999, 2:178-186
    198. Strain HH, Cope BT, Svec WA. Analytical procedures for the isolation, identification, estimation and investigation of the chlorophylls. Methods Enzymol, 1971,23:452-476
    199. Sugiyama K, Hayakawa T, Kudo T, Ito T, Yamaya T. Interaction of N-Acetylglutamate Kinase with a PII-Like Protein in Rice. Plant Cell Physiol, 2004,45:1768-1778
    200. Sulpice R, Sienkiewicz-Porzucek A, Osorio S, Krahnert I, Stitt M, Fernie AR, Nunes-Nesi A. Mild reductions in cytosolic NADP-dependent isocitrate dehydrogenase activity result in lower amino acid contents and pigmentation without impacting growth. Amino Acids, 2010,39:1055-1066
    201. Sun H, Qian Q, Wu K, Luo J, Wang S, et al. Heterotrimeric G proteins regulate nitrogen-use efficiency in rice. Nat Genet, 2014, [Epub ahead of print]
    202. Suzuki A, Vidal J, Gadal P. Glutamate synthase isoforms in rice:immunological studies of enzymes in green leaf, etiolated leaf, and root tissues. Plant Physiol, 1982,70:827-832
    203. Suzuki Y, Ohkubo M, Hatakeyama H, Ohashi K, et al. Increased Rubisco content in transgenic rice transformed with the "Sense"rbcS Gene. Plant Cell Physiol, 2007,48:626-637
    204. Tabuchi M, Abiko T, Yamaya T. Assimilation of ammonium ions and reutilization of nitrogen in rice (Oryza sativa L.). JExp Bot, 2007, 58:2319-2327
    205. Tamura K, Dudley J, Nei M, Kumar S. Mega4:molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol, 2007,24:1596-1599
    206. Tandeau de Marsac N, Lee HM. Regulation of carbon and nitrogen metabolism in the unicellular cyanobacteria Synechococcus spp. In:Peschek et al., eds. The phototrophic prokaryotes. New York: Kluwer AcademicuPlenum Publishers, 1999, 539-548
    207. Tanigushi M, Sugiyama T. Isolation, characterization and expression of cDNA clones encoding a mitochondrial malate translocator from Panicum miliaceum L Plant Mol Biol,1996,30:51-64
    208. Taylor L, Nunes-Nesi A, Parsley K, Leiss A, Leach G, et al. Cytosolic pyruvate, orthophosphate dikinase functions in nitrogen remobilization during leaf senescence and limits individual seed growth and nitrogen content. Plant J, 2010, 62:641-52
    209. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface:Xexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res,1997, 25: 4876-4882
    210. Turano FJ, Dashner R, Upadhyaya A, Caldwell CR. Purification of mitochondrial glutamate dehydrogenase from dark-grown soybean seedlings. Plant Physiol, 1996,112:1357-1364
    211. Uhrig RG, Ng KKS, Moorhead GBG. PⅡ in higher plants:a modern role for an ancient protein. Trends Plant Sci, 2009,14:505-511
    212. Van Roermund CWT, Hettema EH, Kal AJ, van den Berg M, Tabak HF, Wanders RJA. Peroxisomal β-oxidation of polyunsaturated fatty acids in Saccharomyces cerevisiae:isocitrate dehydrogenase provides NADPH for reduction of double bonds at even positions. The EMBO Journal, 1998,17:677-687
    213. Van Sanford DA, Mackown CT. Variation in nitrogen use efficiency among soft red winter wheat genotypes. Theor Appl Genet, 1986,72:158-163
    214. Vance CP, Miller SS, Gregerson RG, Samac DA, Robinson DL, Gantt JS. Alfalfa NADH-dependent glutamate synthase:structure of the gene and importance in symbiotic N2 fixation. Plant J, 1995,8:345-358
    215. Velot C, Mixon MB, Teige M, Drere PA. Model of a quinary structure between Krebs TCA cycle enzymes:a model for the metabolon. Biochem, 1997, 36: 14271-14277
    216. Vitousek PM, Naylor R, Crews T, David MB, Drinkwater LE, et al. Nutrient imbalances in agricultural development. Science,2009,324:1519-1520
    217. von Wiren N, Gazzarrini S, Gojon A, Frommer WB. The molecular physiology of ammonium uptake and retrieval. Curr Opin Plant Biol, 2000,3:254-261
    218. Wallsgrove RM, Turner JC, Hall NP, Kendall AC, Bright SW. Barley mutants lacking chloroplast glutamine synthetase-biochemical and genetic analysis. Plant Physiol, 1987, 83:155-158
    219. Wang D, Pei K, Fu Y, Sun Z, et al. Genome-wide analysis of the auxin response factors ARF gene family in rice (Oryza sativa). Gene, 2007, 394:13-24
    22O. Wang L, Xie W, Chen Y, Tang W, Yang J, et al. A dynamic gene expression atlas covering the entire life cycle of rice. Plant J, 2010, 61:752-766
    221. Weber A, Flugge UI. Interaction of cytosolic and plastidic nitrogen metabolism in plants. J Exp Bot, 2002,53: 865-874
    222. Weber A, Menzlaff E, Arbinger B, Gutensohn M, Eckerskorn C, Flugge UI. The 2-oxoglutarate/malate translocator of chloroplast envelope membranes:molecular cloning of a transporter containing a 12-helix motif and expression of the functional protein in yeast cells. Biochem, 1995,34:2621-2627
    223. Welch JR, Vincent JR, Auffhammer M, Moya PF, Dobermann A, Dawe D. Rice yields in tropical/subtropical Asia exhibit large but opposing sensitivities to minimum and maximum temperatures. Proc Natl Acad Sci USA,2010,107: 14562-14567
    224. Wenkel S, Turck F, Singer K, Gissot L, Le Gourrierec J, Samach A, Coupland G. CONS TANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis. Plant Cell, 2006,18:2971-2984
    225. Werner T, Holst K, Pors Y, et al. Cytokinin deficiency causes distinct changes of sink and source parameters in tobacco shoots and roots. J Exp Bot, 2008,59: 2659-2672
    226. Wingler A, Lea PJ, Quick WP, Leegood RC. Photorespiration: metabolic pathways and their role in stress protection. Philos Trans R Soc Lond B Biol Sci, 2000,355:1517-1529
    227. Wong HK, Chan HK, Coruzzi GM, Lam HM. Correlation of ASN2 gene expression with ammonium metabolism in Arabidopsis. Plant Physiol, 2004, 134: 332-338
    228. Wuebbles DJ. Nitrous oxide: no laughing matter. Science, 2009, 326:56-57
    229. Xie Z, Zhang ZL, Zou X, Huang J, et al. Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells. Plant Physiol, 2005, 137:176-189
    23O. Xu G, Fan X, Miller AJ. Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol, 2012, 63:153-182
    231. Yamaya T, Hayakawa T, Tanasawa K, et al. Tissue distribution of glutamate synthase and glutamine synthetase in rice leaves: occurrence of NADH-dependent glutamate synthase protein and activity in the unexpanded, nongreen leaf blades. Plant Physiol, 1992, 100:1427-1432
    232. Yamaya T, Kusano M. Evidence supporting distinct functions of three cytosolic glutamine synthetases and two NADH-glutamate synthases in rice. J Exp Bot, 2014 [Epub ahead of print].
    233. Yamaya T, Obara M, Nakajima H, et al. Genetic manipulation and quantitative-trait loci mapping for nitrogen recycling in rice. J Exp Bot, 2002, 53: 917-925
    234. Yamaya T, Tanno H, Hirose N, et al. A supply of nitrogen causes increase in the level of NADH-dependent glutamate synthase protein and in the activity of the enzyme in roots of rice seedlings. Plant Cell Physiol, 1995, 36:1197-1204
    235. Yan M, Fan X, Feng H, Miller AJ, Shen Q, Xu G. Rice OsNAR2.1 interacts with OsNRT2.1, OsNRT2.2 and OsNRT2.3a nitrate transporters to provide uptake over high and low concentration ranges. Plant Cell Environ, 2011,34:1360-1372
    236. Yanagisawa S, Akiyama A, Kisaka H, Uchimiya H, Miwa T. Metabolic engineering with Dofl transcription factor in plants:improved nitrogen assimilation and growth under low-nitrogen conditions. Proc Natl Acad Sci USA, 101:7833-7838
    237. Yanagisawa S. Dofl and Dof2 transcription factors are associated with expression of multiple genes involved in carbon metabolism in maize. Plant J, 2000, 21: 281-288
    238. Yang H, Bogner M, Stierhof YD, Ludewing U. H+-independent glutamine transport in plant root tips. PLoS ONE, 2000, 5:e8917
    239. Yoshida S, Forno D, Cock J. Laboratory manual for physiological studies of rice. Manila, The Phillipines: Gomez International Rice Research Institute, 1976, 61-65
    240. Yuan L, Loque D, Kojima S, Rauch S, Ishiyama K, Inoue E, Takahashi H, von Wiren N. The organization of high-affinity ammonium uptake in Arabidopsis roots depends on the spatial arrangement and biochemical properties of AMT1-type transporters. Plant Cell,2007, 19: 2636-2652
    241. Zehnacker C, Becker TW, Suzuki A, Carrayol E, Caboche M, Hirel B. Purification and properties of tobacco ferredoxin-dependent glutamate synthase, and isolation of corresponding cDNA clones. Planta, 1992, 187:266-274
    242. Zhang QF. Strategies for developing green super rice. Proc Natl Acad Sci USA, 2007,104:16402-16409
    243. Zhao M, Ding H, Zhu JK, Zhang F, Li WX. Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis. New Phytol, 2011,190: 906-915
    244. Zhao WN, McAlister-Henn L. Expression and gene disruption analysis of the isocitrate dehydrogenase family in yeast. Biochem, 1996, 35:7873-7878
    245. Zheng ZL. Carbon and nitrogen nutrient balance signaling in plants.-Plant Signal Behav, 2009,4:584-591
    246. Zhou Y, Cai H, Xiao J, Li X, Zhang Q, Lian X. Over-expression of aspartate aminotransferase genes in rice resulted in altered nitrogen metabolism and increased amino acid content in seeds. Theor Appl Genet, 2009, 118:1381-1390