中国人数字化标准脑图谱的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人脑是人体内结构和功能最为复杂的器官。长期以来,人类对脑的结构和功能进行了大量的研究工作;随着1997年“人类脑计划”在美国的正式启动,人们对大脑的探索进入了一个新的高度。将脑科学与信息学结合起来,建立数据库,绘制相应的脑图谱是该计划的一项重要内容。
     脑图谱是对人脑进行探索的一项重要的工具。从文艺复兴时期的著名解剖学家Vesalius对大脑结构进行详细的描述开始,大量的神经解剖描述,图片和图像陆续出现。随着技术的进步,数字化脑图谱层出不穷,其中绝大部分脑图谱是建立在一个或者是数量极其有限的个体标本上,这些包括Vox-man脑图谱,Roland脑图谱,数字解剖学家计划脑图谱,哈佛脑图谱等等,其中当前世界上应用比较广泛的是Talairach and Tournoux脑图谱,此图谱标注Brodmann分区,许多学者依据该图谱开发出了计算机脑图谱系统用于临床;另外,Talairach坐标系统也经常被用于脑皮质的标准化。ICBM计划首次提出了概率性脑图谱的概念,概率性脑图谱的研究主要是通过将大量的个体影像数据置于一个共用的标准空间来建立可以代表人群共性的大标本脑图谱,很多学者都在致力于这方面的研究。当前常用的标准脑模板是ICBM152,其数据来自152名23岁左右健康成年人的MR扫描,因此,ICBM152是152名健康成年人脑的平均脑,更能代表大多数人脑的特征,它为个体人脑MRI图像的研究提供了一个标准的空间,便于不同研究对象之间的比较。2001年5月美国科学家联盟(FAS)提出了数字人计划,并且把人类脑计划作为其重要的组成部分,获得人脑数据以后建立了人类可视化脑图谱,这类脑图谱有明确的定位,也可通过多种方式识别,可以通过表面重建的方式来分析人脑皮质的结构和功能,主要用于解剖结构的标识。还有学者在三维的脑图谱研究中加上时间的因素,建立四维脑图谱,用来研究人脑的发展变化。也有学者利用组织学的方法来研究一些局部的大脑结构,例如海马、皮质下结构等,建立特定区域的脑图谱。现有的数字化标准脑图谱在一定程度上增加了人们对大脑的认识和研究,但是都有相应的不足之处并有待于进一步改善,并且这些脑图谱基本上是来源于西方人的数据,不具备东方人的特征。大量的研究表明,由于人种和生长环境的影响,东西方人脑会有比较显著的差别,在神经科学的研究中,假如我们直接把上述的脑图谱作为标准脑模板的话,可能会出现一些误差。因此,建立具有东方人特征且具有人群代表性的数字化标准脑图谱有其必要性。
     本研究中,首先利用3.0 T磁共振扫描仪获取35例中国人高分辨率三维脑结构数据,并从ICBM数据库中选择年龄和性别完全匹配的35例Caucasian高分辨率三维脑结构数据,运用整体比较、大脑结构比较、局部大脑结构信息比较等多种方法对这两组的东西方人脑数据进行对比分析研究,发现东西方人脑在形状和结构上都有有明显的差异,这为我们下一步的研究奠定了坚实的理论依据。脑图谱的研究分为两步:1.利用3.0T磁共振扫描仪对56名健康成年男性进行扫描,获得高分辨率三维结构数据,对原始数据进行预处理,借鉴ICBM152的建立模式建立基于MRI图像的中国人数字化标准脑模板。2.利用数控冷冻铣切技术获得高质量的连续薄层脑断面数据,通过图像处理以后进行三维重建,获得真彩色的三维重建人脑,接着利用一系列的转换获得灰度几何人脑数据,最后把三维人脑数据配准到基于MRI的中国人数字化标准脑模板中,获得既有很高的空间分辨率,又有详细的结构信息的数字化标准脑图谱。
     本研究分为三个部分,摘要如下:
     第一部分中国人和Caucasian大脑结构的差别研究
     第一章:基于结构分析的中国人和Caucasian大脑形态差异研究
     目的:利用高分辨率结构MRI数据研究中国人和Caucasian大脑整体和大脑结构的差异。
     材料和方法:选择年龄和性别完全匹配的健康右利中国和Caucasian年轻志愿者各35人,利用高分辨率结构MRI扫描仪进行扫描,获得高分辨率三维结构MRI数据。首先在BrainSuite软件中对大脑的整体特征进行评价,具体测量大脑的连合间线(AC-PC)长度,整个大脑的长、宽、高。利用LONI Brain Parser软件对大脑的56个结构进行分割,计算每一个结构的体积,获得精确的测量数据,利用统计学方法对两组不同的数据进行比较,找出两者的差别。
     结果:
     1.中国人和Caucasian在大脑的形状和尺寸上有一定的区别,中国人大脑的长、宽、高以及AC-PC线长度平均值分别是160.99mm、142.64mm、110.72mm和26.28mm,Caucasian大脑的长、宽、高以及AC-PC线长度平均值分别为171.68mm、127.48mm、106.31mm和28.13mm。中国人大脑的宽/长、高/长以及高/宽平均值分别为0.89、0.69、0.78;Caucasian则为0.74、0.62、0.83,因此可以看出中国人和Caucasian的大脑形状有差异,中国人大脑更圆一些,这一结果可能是因为大脑结构的不同造成,对上述数据进行统计分析发现中国人大脑的长、宽、高以及AC-PC线长度与Caucasian有明显差异,p<0.01。
     2.通过对两组大脑56个结构的体积测量结果分析,中国人和Caucasian在大脑结构上有一定的区别。左侧半球有明显区别(p<0.01)的结构为:眶额回,直回,顶上回,枕中回,颞下回,颞中回,楔前叶,海马旁回,扣带回,岛叶皮质,壳和尾状核;右侧半球有明显区别(p<0.01)的结构为:额上回,眶额回,中央后回,枕上回,枕中回,颞上回,颞中回,颞下回,中央前回,直回,楔前叶,海马旁回,岛叶皮质,壳和尾状核。
     结论:中国人和Caucasian在大脑形态大小以及结构上有一定的差异性,这为我们建立中国人数字化标准脑图谱提供了坚实的理论基础。
     第二章:中国人和Caucasian大脑局部结构差异:基于张量的形态测定研究
     目的:利用基于张量的形态测定法(TBM)研究中国人和Caucasian在大脑局部结构上的差异。
     材料和方法:选择年龄和性别完全匹配的健康右利中国和Caucasian年轻志愿者各35人,利用高分辨率结构MRI扫描仪进行扫描,获得高分辨率三维结构MRI数据。首先对原始数据进行预处理,利用BET软件自动去除颅骨和其他非脑组织,对自动处理结果进行手工矫正后获得去颅骨后大脑;将两组数据分别采取12参数线性转换仿射到lpba40.air.icbm452w5.brain.avg标准空间以调整个体大脑之间的位置和刻度差异,对两组数据分别建立最小变形目标脑模板(MDT),将每一个大脑数据分别仿射到MDT中,经过一系列的步骤建立每一个个体大脑的Jacobian脑图谱用以分析个体局部容积的差别;分别利用每组35个个体Jacobian图谱建立平均脑图谱,最后通过叠加表达以后对每一个体素的量值以及有效度进行评价,对感兴趣区域(ROI)进行分析,得到通过颜色标注两个个体大脑之间或者两个平均脑图谱之间的差异的脑图谱,分析说明中国人和Caucasian在相应大脑局部结构上的差异。
     结果:通过对两组Jacobian平均脑图谱的对照研究以及对感兴趣大脑区域的分析,发现中国人和Caucasian在大脑额叶,大脑顶叶,大脑颞叶和大脑枕叶都有明显的差别(p<0.01)。
     结论:中国人和Caucasian在大脑的局部结构上都有明显的区别,这为我们建立中国人数字化标准脑图谱提供了理论基础。
     第二部分:基于MRI数据的中国人数字化标准脑模板的建立
     目的:利用高分辨率三维结构MRI数据建立中国人数字化标准脑模板。
     材料和方法:利用3.0T磁共振扫描仪对56个年龄在20到30岁之间(平均年龄=24.03±2.06)的健康右利中国志愿者进行扫描,获取高分辨率三维结构MRI数据,对数据进行预处理。选择其中一个人脑作为目标脑,将所有的56个大脑利用12参数转换模式空间标准化到目标脑中并进行平均化处理后获得密度平均脑模型,然后再一次将所有的56个大脑仿射到该密度平均脑中,进行平均化后获得密度和空间都平均化的线性转换脑模板。将56个原始脑MRI数据线性(6参数)转换到起初的目标脑中获得56个与平均脑模板具有相同空间坐标的脑体积数据,以上述线性转换脑模板为目标脑,利用“align warp”的方法将此56个大脑非线性转换配准到目标脑中获得结构细节更加清楚的非线性转换脑模板。利用BET软件自动去除56个大脑的颅骨和非脑组织,对于自动处理结果进行手工矫正,获得56个去除颅骨以后的大脑体积数据,重复上述步骤,只是在相应的步骤做一下参数调整,最后获得去除颅骨的线性转换和非线性转换平均脑模板。
     结果:通过对上述步骤的重复运行,调整好相应步骤中的关键性参数,获得基于MRI数据的两组数字化标准脑模板,分别为整个大脑脑模板和去颅骨后脑模板。其中每一组又有两个部分:线性转换平均脑模板和非线性转换平均脑模板。相对于非线性转换平均脑模板而言,线性转换平均脑模板缺少详细的结构信息,但是具有标准的空间坐标信息,尤其是整脑线性转换平均脑模板,因此也被称为平均脑模型;非线性转换平均脑模板具有比较清楚的大脑结构细节,因此可以用来更深一步的脑图谱研究,并且可以作为参考图谱来对一些具体的大脑结构进行对比分析。
     结论:建立基于MRI数据的中国人数字化标准脑模板,为基于中国人数据的神经影像学研究提供基本的参考。
     第三部分:基于标本断面数据的中国人数字化标准脑图谱的建立
     目的:利用连续薄层断面数据对人脑进行三维重建,并将三维脑体积通过空间标准化配准到基于MRI数据的中国人数字化脑模板中建立基于连续薄层断面数据的中国人数字化标准脑图谱。
     材料和方法:从4例尸体标本中选择1例作为研究对象,利用数字化冷冻铣切技术获取层厚为0.1毫米的连续薄层脑断面数据,将原始数据转换成JPEG格式,在Photoshop软件中进行数据裁减、分割,获得分辨率为512×512的二维图像共1506张,保存为TIFF格式。利用SHIVA软件将TIFF格式文件转换为ANALYZE格式文件,在UNIX系统服务器上用“cat”命令将1506个文件重建成为3D脑体积文件,将3D脑体积转换成几何三维模型和灰度三维脑模型,然后将灰度三维脑模型利用12参数转换模式空间标准化到已经建立的中国人数字化标准MRI脑模板中获得基于连续薄层断面数据的数字化标准脑图谱,去除颅骨和其他非脑组织后获得具有更加详细结构信息的数字化脑图谱
     结果:获得三维重建以后的三维脑模型,建立基于标本断面数据的中国人数字化脑图谱,包括全脑图谱和去除颅骨后的脑图谱,该脑图谱不仅具有详细的解剖结构信息和组织学信息,而且具有MRI脑模板的空间特征。
     结论:建立基于标本断面数据的中国人数字化标准脑图谱,该脑图谱不仅可以作为解剖结构信息描述的参考,而且可以用来作为神经影像学研究中的脑模板。
     结论和意义
     一、首次利用较大样本的活体脑MRI数据,采用多种计算机图像分析方法对中国人和Caucasian大脑进行差异性研究,发现中国人和Caucasian在大脑结构上具有明显的差异,这为建立中国人数字化标准脑图谱提供了理论依据,为深入探讨东西方人脑的结构和功能差异提供了解剖学基础。
     1.获取两组较大样本(年龄和性别完全匹配的中国男性右利青年和Caucasian男性右利青年各35例)的3D结构MRI数据,采用当前常用的图像分析方法直观地测量每个个体大脑的长、宽、高以及AC-PC线长度,对数据进行比较分析以后发现中国人和Caucasian的大脑形态和大小具有明显的区别,中国人大脑比Caucasian大脑更圆,因此大脑结构会有一定的区别。
     2.利用LONI Brain Parser Pipeline对大脑的56个结构进行分割,手动校正,测量每个结构的体积,对比分析以后发现中国人和Caucasian在一些大脑结构上有明显的不同,进一步证实了以前关于中国人和Caucasian大脑功能存在显著差异的研究结果。
     3.利用基于张量的形态测定法(TBM)研究中国人和Caucasian在大脑局部结构上的差异,对个体大脑MRI图像的每一个体素进行分析运算,发现中国人和Caucasian在大脑额叶、顶叶、颞叶、枕叶都有一定的区别。为将来进行中国人大脑结构和功能的研究提供科学的理论依据,激励研究人员进一步探索不同种群人脑之间的结构和功能差异。
     二、首次获取较大样本(56例)的中国人活体大脑3.0 T MRI三维结构数据,并利用国际上最先进的脑图像计算机处理方法和脑图谱建立方法建立具有中国人群特征的数字化标准脑模板。相比较ICBM152等已存在的脑模板来说,本模板具有更高的分辨率和更详细结构信息,而且更加适合中国人大脑研究;同时为全球性的ICBM的研究添加了中国人的数据。
     三、利用先进的数控冷冻铣切技术获取成人大脑标本的高质量的连续薄层断面数据,采用当前世界上常用的图像处理方法对数据进行预处理,并进行三维重建,获得大脑的三维重建模型,利用计算机和数学技术对三维脑模型进行一系列转换和空间标准化,首次建立了基于标本断面数据的中国人数字化标准脑图谱。该脑图谱不仅具有详细的解剖结构信息,而且具有MRI脑模板的空间特征,具有更加广泛的应用价值,为将来大脑结构和功能的探索提供详细的解剖学基础和值得借鉴的方法。
Human brain is the unique organ in human body with the most complicated structures and functions. Ever since a long time ago, much work has been done to explore the structures and functions of the human brain. With the development of "Human Brain Project" which was initiated in the United States of America in 1997, the research of exploration to the human brain entered into a new stage. To construct comprehensive brain atlas with the data originated from the integration of neuroscience and informatics science is one important part of this project.
     Atlases of human neuroanatomy play important roles in the exploration of human brain e.g. in the interpretation of results, in the visualization of information and in the processing of data. Beginning with the detailed drawing of brain structures produced during the Renaissance by Vesalius, numerous paper atlas comprising collections of neuroanatomical illustrations, photographs, and other images have been constructed. As technology advanced, digital atlases extended these efforts by providing interactive collections of brain data. Most of these brain atlases were based on single subjects or on very limited numbers of individuals. These included the Voxel-Man atlas, the Roland Human Brain Atlas, the Digital Anatomist project, the Harvard Brain Atlas etc. In these days, the most popularly used brain atlas around the world is the Talairach and Tournoux Brain Atlas, which has the mark of Brodmann area. Many researchers have developed computerized brain atlas system for clinic applications based on this atlas; moreover, the coordinate system of Talairach brain is always be used for the normalization of cerebral cortex. One of the early descriptions of a multi-subject atlas was presented by Mazziotta et al (1995), who proposed the development of a comprehensive probabilistic brain atlas under the banner of the International Consortium for Brain Mapping (ICBM). This project has collected data from more than 7000 subjects, including images of the brain using various magnetic resonance imaging (MRI) modalities, genetic materials, and demographic information. Multi-subject studies such as ICBM project require methods that can bring the image data from different subjects into a common coordinate frame, numerous research efforts have been made to meet these demands. The first average intensity template termed MNI-305 was produced by co-registering the MRI volumes using a nine-parameter linear transformation and then being averaged at each voxel, a second template was produced by registering a subset of 152 brains to the MNI-305 tempalte, again using a 9-parameter linear transformation, to generate the ICBM152 template. ICBM152 is the average brain atlas originated from 152 human brains therefor it can mostly represent the character of the human brain. Various analysis tools such as SPM and FLS use version of ICBM152 template as an anatomical reference because it provides a registration target. The Federation of American Scientists (FAS) proposed the Digital Human Project in May, 2001, and Human Brain Project became a very important ingredient of it. It dedicated to collect various brain data so as to create visible human brain atlases. This kind of atlases have well-defined location and are mainly used for the identification of anatomical structures, they can also be identified by many methods as well as be analyzed the structures and functions of the cerebral cortex by using surface reconstruction. The concept of four-dimensional brain atlas was proposed in 2001 by Mazziotta et al., it will create new data and insights into the organization of the human nervous system in health and disease, its developments, and its evolution. When successful, the atlas will provide previously unprecedented tools for organizing, storing, and communicating information about the human brain throughout development, maturation, adult life, and old age. Some other researchers used histological methods to delineate the local brain structures e.g. hippocampus and subcortical structures, and to construct some special brain atlases with detailed local structure information. In a certain degree, the existed brain atlases have done a lot for people's recognization and understanding of human brain, and they become more and more important in neuroscience research. But they still have some disadvantages and need to be improved, the most important reason is that most of the brain atlases were constructed with the data originated from Caucasians, which is different from Chinese. A lot of work indicated that there would be some obvious difference between the Chinese human brain and Caucasian human brain because of the race and the different living styles. There will be some errors if we straightly take the above Caucasian brain atlases as the standard brain template in the neuroscience research of Chinese human brain. So it's very necessary to construct a digital standard Chinese brain atlas with the character of Chinese, perfect and precious marks of different structures and fine group representation.
     In this project, the differences between Chinese brain and Caucasian brain were compared firstly. 35 healthy right-handed Chinese young male (aged 20-30) volunteers were selected and scanned with a 3.0T GE scanner to acquire high resolution 3D T1 structure MRI data, 35 healthy right-handed Caucasian subjects with the same age and gender were drawn from the ICBM(International Consortium for Brain Mapping) datasets and high resolution 3D structure brain MRI data were acquired. After comparing the brain global shape and size and 56 different brain structures of the human brain in these two groups as well as the local structure information difference, we found conspicuous differences on the brain shape and structure information between the two kinds of human brain, which also can illustrate that there will be some differences in the human brain functions. All of these findings provide the theory base of our further research. The construction of digital standard Chinese brain atlas was divided into two parts: 1. 56 healthy right-handed Chinese young male (aged 20-30) volunteers were selected and scanned with a 3.0T GE scanner to acquire high resolution 3D T1 structure MRI data, after some steps of data preprocessing, the digital standard Chinese brain template based on MRI data were constructed with the "AIR Make Atlas" Pipeline in LONI. 2. High quality 0.1mm sectional image data of human brain specimens were obtained using computerized freezing milling technique, after some steps of image processing, the human brain was 3D reconstructed with real color. Subsequently, the 3D reconstructed human brain was transfered into gray scale volume and geometric brain model using some softwares, then the gray scale brain volume was linearly aligned to the digital standard Chinese brain template and get a more precious digital human brain atlas, this kind of brain atlas not only can be used widely like the 3D MRI brain template, but also has a higher spatial resolution and more detailed structure information. Our research has three parts and the abstract was as followed:
     Part 1: The Morphological Brain Differences between Chinese and Caucasian
     Section 1: The morphological brain differences between Chinese and Caucasian
     based on the structure analysis
     Purpose: To compare and analyze the morphological differences of global brain and brain structures between Chinese and Caucasian using high resolution 3D structure MRI image data.
     Materials and methods: 35 healthy right-handed Chinese young male (aged 20-30) volunteers were selected and scanned with a 3.0T GE scanner to acquire high resolution 3D T1 structure MRI data, 35 healthy right-handed Caucasian subjects with the same age and gender were drawn from the ICBM (International Consortium for Brain Mapping) datasets and high resolution 3D structure brain MRI data were acquired. The general features of human brains e.g. Length, width, height of the whole brains and AC-PC line length were measured using the BrainSuites software package, as it can provide a rigorous value of every voxel and the ability to display stimultaneous views of three orthogonal planes through the MRI volumes which will help the users to determine the boundary of every structure. For each subject MRI volume, a total of 50 cortical structures, 4 subcortical areas, the brainstem and the cerebellum were delineated with the LONI Brain Parsering pipeline by using a learning-based approach and a pre-trained model target at common structures of interest, all the structure volumes were measured automatically and preciously, after comparing the acquired data of the two groups we found the differences.
     Results:
     1. There are some differences in the brain shape and size between Chinese and Caucasian, the mean values of length、width、height and AC-PC line distance of Chinese human brain are 160.99mm、142.64mm、110.72mm and 26.28mm; while the mean values of Caucasian human brain are 171.68mm、127.48mm、106.31mm and 28.13mm. The ratios of width/length、height/length and height/width of Chinese human brain are 0.89、0.69 and 0.78; while the ratios of Caucasian human brain are 0.74、0.62 and 0.83. So the Caucasian human brain is a bit longer but the Chinese human brain is a bit more round. After statistic the analysis of these data we found the differences of shape and size of human brain between Chinese and Caucasian were significant, P<0.01.
     2. After analyzing the volumes of all the 56 structure in two different group, we found that some brain structures were significantly different (p<0.01) between Chinese and Caucasian: left middle orbitofrontal gyrus, left gyrus rectus, left precuneus, left middle temporal gyrus, left parahippocampal gyrus, left cingulated gyrus, left lateral orbitofrontal gyrus, left superior parietal gyrus, left middle occipital gyrus, left inferior temporal gyrus, left insular cortex, left insular cortex, left putamen, right superior frontal gyrus, right precentral gyrus, right lateral orbitofrontal gyrus, right gyrus rectus, right postcentral gyrus, right precuneus, right superior occipital gyrus, right middle occipital gyrus, right superior temporal gyrus, right middle temporal gyrus,right inferior temporal gyrus, right parahippocampal gyrus, right insular cortex, right caudate and right putamen.
     Conclusions: There are some significant differences in the brain general features and local structures between Chinese and Caucasian, which provide a solid base for us to construct the digital standard Chinese brain atlas.
     Section 2: The differences of brain structure shape between Chinese and
     Caucasian: a study of Tensor-based Morphology (TBM)
     Purpose: To explore the differences of local brain structures between Chinese and Caucasian using Tensor-based Morphology (TBM).
     Materials and methods: 35 healthy right-handed Chinese young male (aged 20-30) volunteers were selected and scanned with a 3.0T GE scanner to acquire high resolution 3D T1 structure MRI data, 35 healthy right-handed Caucasian subjects with the same age and gender were drawn from the ICBM (International Consortium for Brain Mapping) datasets and high resolution 3D structure brain MRI data were acquired. After Skull stripping and some other preprocessing steps, all individual brains in the two groups were linearly aligned to the lpba40.air.icbm452w5.brain.avg brain template using 12 parameters transformation and resampled. We then constructed a minimal deformation target (MDT) which was based on the initial scans of every subject, and a LONI pipeline module was used to construct Jacobian map for every individual subject. And the Jacobian maps were aligned to the standard space defined by the MDT template, thus the regional comparison and group analysis of the subjects were able to be performed, permutation testing was used to assess the overall significance of group differences, corrected for multiple comparisons.
     Results: After comparing the two groups and calculating the mean Jacobian within each region of interest (ROI) to show the computed overall volume differences for each lobe, we found there were some significant differences in the frontal lobe, occipital lobe, temporal lobe and parietal lobe between the two groups (p<0.01) .
     Conclusions: There are some significant differences in the local brain structures between Chinese and Caucasian, which provide a solid base for us to construct the digital standard Chinese brain atlas.
     Part 2: The Construction of Digital Standard Chinese Brain Template Based on
     Purpose: To construct the digital standard Chinese brain template using high resolution 3D structure MRI volume data.
     Materials and methods: 56 healthy right-handed Chinese young male (aged 20-30) volunteers were selected and scanned with a 3.0T GE scanner to acquire high resolution 3D T1 structure MRI data. After some preprocessing steps, one of the brain volumes was selected as the target brain and all the 56 brains were linearly aligned to the target brain using 12-parameter transformation, then steps of Define Common and Soft Mean were used to get a intensity average brain template with a common standard position. Taking the intensity average brain template as target brain and repeated the above step we got a spatial standardized brain template with average intensity, which called linear aligned brain template. All the 56 brains were rigid registered to the first target brain using 6-parameter transformation to get 56 new brains with the same spatial coordinate and scale to the average brain template, then all these 56 new brains were nonlinear aligned to the linear average brain template using "align wrap" to get a nonlinear brain template with more structure information. Non-brain tissues were removed by automatic BET and manual corrections to get 56 skull-stripped brain volumes. Repeated the above procedure and adjusted some parameters in some steps we got both skull-stripped linear brain template and skull -stripped nonlinear brain template.
     Results: We got two groups of digital brain templates: the brain templates before skull stripping and the brain templates after skull stripping. Every group includes two kinds of brain templates: linear aligned average brain template and nonlinear aligned brain template. Although the linear aligned brain templates were lack of precious structure information, they had standardized spatial coordinate, especially the template before skull stripping, so it was called average brain template and always used for spatial normalization in neuroimaging research. The nonlinear aligned average brain templates had more detailed structure information so they were always used for the reference of individual brain volume and the comparison of local structures between different groups.
     Conclusions: Digital standard Chinese brain templates based on MRI were constructed, which will be a reference for the neuroimaging research based on Chinese brain data.
     Part 3: The Construction of Digital Standard Chinese Brain Atlas Based on the
     Serial Thin Sectional Data
     Purpose: To 3D reconstruct Chinese human brain using serial thin sectional image data and construct digital standard Chinese brain atlas based on serial thin sectional data by registering the 3D brain volume to the digital standard Chinese MRI brain template.
     Materials and methods: One human brain specimen was selected from four subjects and 0.1mm continous sectional image data were acquired using computerized freezing milling technique. After the format conversion from raw files to JPEG files, Photoshop was used to crop and segment the files into 1506 2D images with a resolution of 512x512, and the files were saved as TIFF format. SHIVA was used to convert all the 1506 TIFF files to ANALYZE files, on the UNIX system workstation, the 1506 serial 2D images were reconstructed into a 3D brain volume, then the brain volume was transformed into geometric 3D model and gray-scale brain template, subsequently, the gray-scale brain template was linear registered to the Chinese MRI brain template using 12-parameter transformation to get a brain atlas based on the serial thin sectional data, semi-automatic method was used to remove the skull and other non-brain tissue and get a skull-stripped brain atlas.
     Results: A new brain model was established after the 3D reconstruction. We also got the digital standard Chinese brain atlas based on the serial thin sectional image data, which included the whole brain atlas and the skull-stripped brain atlas, these kind of brain atlas not only have detailed anatomical structure information and histological information, but also have the spatial character of MRI brain template, so they can be used more widely.
     Conclusions: The digital standard Chinese brain atlas based on the serial thin sectional data was constructed, and it can not only be used as a reference for the delineation of anatomic structures but also be used as another brain template in the research of neuroimaging.
     Conclusions and Significances
     1. A big sample of in vivo 3D structure MRI data was firstly used to explore the brain structure differences between Chinese and Caucasian. Using many computered measuring and analysis methods, some significant differences in the brain structures between the two groups were founed, which is the theory base of the construction of digital standard Chinese brain atlas, and it will provide detailed and practical morphologic basis for the exploration of Chinese brain structures and functions, the imaging diagnosis and clinic treatments of nervous system diseases of Chinese people as well as the diagnosis and treatments of psychological and psychiatric diseases.
     1.1 Some advanced image analysis methods were used to measure the brain length、width、height and AC-PC distance for every individual brain subject, after comparing the acquired data in the two groups, some significant differences of the brain shape and size between Chinese and Caucasian were founded, Chinese brain was more round than Caucasian's, which maybe lead to the differences of brain structures between the two human populations.
     1.2 56 brain structures of every individual brain subject were segmented automatically by using LONI Brain Parser Pipeline, annual method was used to correct the minor errors. Comparing the volumes of 56 structures between the two groups, we found some brain structures are significantly different between Chinese and Caucasian, which further approved the previous research results of the brain function differences between Chinese and Caucasian.
     1.3 Tensor-based Morphology (TBM) was firstly used to delineate the local brain structure differences between Chinese and Caucasian, by analyzing and computing every voxel of the individual brain MRI images, we found there were some significant differences in the frontal lobe、parietal lobe、temporal lobe and occipital lobe between Chinese and Caucasian. Which will provide scientific theoretical basis of the exploration to the Chinese human brain structures and functions, it can also stimulate the researchers to find the brain structure and function differences between different populations.
     2. Some advanced methods throughout the world were firstly used to construct the digital standard brain template with the character of Chinese human population based on a big sample of Chinese in vivo 3D high resolutional brain structure MRI data. Comparing to the existed brain template e.g. ICBM152, our brain template has higher resolution and more detailed structure information, and it is more suitable for the brain research of Chinese people. Furthermore, the construction of Chinese brain template will be a good supplement for the ICBM.
     3. High quality serial thin sectional images of brain specimen were acquired by using advanced computerized freezing milling technique, after the preprocess of the data with advanced image processing methods, we 3D reconstructed the human brain and got the 3D brain template. Subsequently, series of transformations to the 3D brain template using some computer and mathematics techniques were made, and a geometric brain template and a digital standard Chinese brain atlas based on the serial thin sectional data were constructed. This kind of brain atlas not only has more detailed anatomic structure information and histological information, but also has the spatial character of MRI brain template, so it has a wider application value and will provide precious anatomic basis and reference for the exploration of the brain structures and functions in the future.
引文
1.Mazziotta,J.C.,et al.,The myth of the normal,average human brain-the ICBM experience:(1) subject screening and eligibility.Neuroimage,2009.44(3):p.914-22.
    2.Ventegodt,S.,et al.,Human development Ⅻ:a theory for the structure and function of the human brain.Scientific World Journal,2008.8:p.621-42.
    3.Lipska,B.K.,et al.,Functional genomics in postmortem human brain:abnormalities in a DISC1 molecular pathway in schizophrenia.Dialogues Clin Neurosci,2006.8(3):p.353-7.
    4.Toga,A.W.,et al.,Towards multimodal atlases of the human brain.Nat Rev Neurosci, 2006. 7(12): p. 952-66.
    
    5. Gore, J.C., et al., Integration of fMRI, NIROT and ERP for studies of human brain function. Magn Reson Imaging, 2006. 24(4): p. 507-13.
    
    6. Laird, A.R., J.L. Lancaster, and P.T. Fox, BrainMap: the social evolution of a human brain mapping database. Neuroinformatics, 2005. 3(1): p. 65-78.
    
    7. Frackowiak, R.S., Forthergillian Lecture. Imaging human brain function. Trans Med Soc Lond, 2000. 117: p. 53-63.
    
    8. Thompson, P., T.D. Cannon, and A.W. Toga, Mapping genetic influences on human brain structure. Ann Med, 2002. 34(7-8): p. 523-36.
    
    9. Kennedy, D.N., et al., Structural and functional brain asymmetries in human situs inversus totalis. Neurology, 1999. 53(6): p. 1260-5.
    
    10. Gazzaniga, M.S., Organization of the human brain. Science, 1989. 245(4921): p. 947-52.
    
    11. De Schutter, E., GA. Ascoli, and D.N. Kennedy, On the future of the human brain project. Neuroinformatics, 2006. 4(2): p. 129-30.
    
    12. Brinkley, J.F. and C. Rosse, Imaging and the Human Brain Project: a review. Methods Inf Med, 2002. 41(4): p. 245-60.
    
    13. Shepherd, G.M., et al., The Human Brain Project: neuroinformatics tools for integrating, searching and modeling multidisciplinary neuroscience data. Trends Neurosci, 1998. 21(11): p. 460-8.
    
    14. Huerta, M.F., S.H. Koslow, and A.I. Leshner, The Human Brain Project: an international resource. Trends Neurosci, 1993.16(11): p. 436-8.
    
    15. Roberts, L, A call to action on a human brain project. Science, 1991. 252(5014): p. 1794.
    
    16. Talairach, J. and P. Tournoux, Co-planar stereotaxic atlas of the human brain. Stuttgart, New York:Thieme. 1988.
    
    17. Luo, S.Q., Study on digitized atlas of the human brain. Zhongguo Yi Liao Qi Xie Za Zhi, 2001. 25(2): p. 91-4, 90.
    
    18. Thompson, P.M. and A.W. Toga, Detection, visualization and animation of abnormal anatomic structure with a deformable probabilistic brain atlas based on random vector field transformations. Med Image Anal, 1997. 1(4): p. 271-94.
    
    19. Toga, A.W., et al., Postmortem cryosectioning as an anatomic reference for human brain mapping. Comput Med Imaging Graph, 1997. 21(2): p. 131-41.
    
    20. Mazziotta, J., et al., A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philos Trans R Soc Lond B Biol Sci, 2001. 356(1412): p. 1293-322.
    
    21. Mazziotta, J., et al., A four-dimensional probabilistic atlas of the human brain. J Am Med Inform Assoc, 2001. 8(5): p. 401-30.
    
    22. Lancaster, J.L., et al., Bias between MNI and Talairach coordinates analyzed using the ICBM-152 brain template. Hum Brain Mapp, 2007. 28(11): p. 1194-205.
    
    23. Mazziotta, J.C., et al., A probabilistic atlas of the human brain: theory and rationale for its development. The International Consortium for Brain Mapping (ICBM). Neuroimage, 1995. 2(2): p. 89-101.
    
    24. Nowinski, W.L., Anatomical targeting in functional neurosurgery by the simultaneous use of multiple Schaltenbrand-Wahren brain atlas microseries. Stereotact Funct Neurosurg, 1998. 71(3): p. 103-16.
    
    25. Toh, M.Y., R.B. Falk, and J.S. Main, Interactive brain atlas with the Visible Human Project data: development methods and techniques, Radiographics, 1996. 16(5): p. 1201-6.
    
    26. O'Rahilly, R., F. Muller, and J. Bossy, Atlas of stages of development of the human embryonic brain with graphic reconstructions of the median plane. Arch Anat Histol Embryol, 1989. 72: p. 3-34.
    
    27. Van Essen, D.C., et al., Functional and structural mapping of human cerebral cortex: solutions are in the surfaces. Proc Natl Acad Sci U S A, 1998. 95(3): p. 788-95.
    
    28. Van Essen, D.C. and H.A. Drury, Structural and functional analyses of human cerebral cortex using a surface-based atlas. J Neurosci, 1997. 17(18): p. 7079-102.
    29. Drury, H.A. and D.C. Van Essen, Functional specializations in human cerebral cortex analyzed using the Visible Man surface-based atlas. Hum Brain Mapp, 1997. 5: p. 233-7.
    
    30. Bazin, P.L. and D.L. Pham, Statistical and topological atlas based brain image segmentation. Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv, 2007.10(Pt 1): p. 94-101.
    
    31. Carmichael, O.T., et al., Atlas-based hippocampus segmentation in Alzheimer's disease and mild cognitive impairment. Neuroimage, 2005. 27(4): p. 979-90.
    
    32. Lein, E.S., X. Zhao, and F.H. Gage, Defining a molecular atlas of the hippocampus using DNA microarrays and high-throughput in situ hybridization. J Neurosci, 2004. 24(15): p. 3879-89.
    
    33. Chakravarty, M.M., et al., The creation of a brain atlas for image guided neurosurgery using serial histological data. Neuroimage, 2006. 30(2): p. 359-76.
    
    34. Nowinski, W.L., D. Belov, and A.L. Benabid, A community-centric internet portal for stereotactic and functional neurosurgery with a probabilistic functional atlas. Stereotact Funct Neurosurg, 2002. 79(1): p. 1-12.
    
    35. Nowinski, W.L., D. Belov, and A.L. Benabid, An algorithm for rapid calculation of a probabilistic functional atlas of subcortical structures from electrophysiological data collected during functional neurosurgery procedures. Neuroimage, 2003. 18(1): p. 143-55.
    
    36. Fotenos, A.F., et al., Normative estimates of cross-sectional and longitudinal brain volume decline in aging and AD. Neurology, 2005. 64(6): p. 1032-9.
    
    37. Lee, T.O., et al., Inter-racial, gender and aging influences in the length of anterior commissure-posterior commissure line. J Korean Neurosurg Soc, 2008. 43(2): p. 79-84.
    
    38. Kochunov, P., et al., Localized morphological brain differences between English-speaking Caucasians and Chinese-speaking Asians: new evidence of anatomical plasticity. Neuroreport, 2003. 14(7): p. 961-4.
    39. Kao, K.P. and K.P. Lin, Congenital muscular dystrophy of a non-Fukuyama type with white matter hyperlucency on CT scan. Brain Dev, 1992. 14(6): p. 420-2.
    1.Mazziotta JC,Woods R,Iacoboni M,Sicotte N,Yaden K,Tran M,Bean C,Kaplan J,Toga AW:The myth of the normal,average human brain-the ICBM experience:(1) subject screening and eligibility.Neuroimage 2009,44(3):914-922.
    2.Ventegodt S,Hermansen TD,Kandel I,Merrick J:Human development Ⅻ:a theory for the structure and function of the human brain.ScientificWorldJournal 2008,8:621-642.
    3. Lipska BK, Mitkus SN, Mathew SV, Fatula R, Hyde TM, Weinberger DR, Kleinman JE: Functional genomics in postmortem human brain: abnormalities in a DISCI molecular pathway in schizophrenia. Dialogues Clin Neurosci 2006, 8(3):353-357.
    
    4. Toga AW, Thompson PM, Mori S, Amunts K, Zilles K: Towards multimodal atlases of the human brain. Nat Rev Neurosci 2006, 7(12):952-966.
    
    5. Gore JC, Horovitz SG, Cannistraci CJ, Skudlarski P: Integration of fMRI, NIROT and ERP for studies of human brain function. Magn Reson Imaging 2006, 24(4):507-513.
    
    6. Laird AR, Lancaster JL, Fox PT: BrainMap: the social evolution of a human brain mapping database. Neuroinformatics 2005, 3(1):65-78.
    
    7. Frackowiak RS: Forthergillian Lecture. Imaging human brain function. Trans Med Soc Lond 2000, 117:53-63.
    
    8. Thompson P, Cannon TD, Toga AW: Mapping genetic influences on human brain structure. Ann Med 2002, 34(7-8):523-536.
    
    9. Kennedy DN, O'Craven KM, Ticho BS, Goldstein AM, Makris N, Henson JW: Structural and functional brain asymmetries in human situs inversus totalis. Neurology 1999, 53(6): 1260-1265.
    
    10. Gazzaniga MS: Organization of the human brain. Science 1989, 245(4921):947-952.
    
    11. Lee TO, Hwang HS, De Salles A, Mattozo C, Pedroso AG, Behnke E: Inter-racial, gender and aging influences in the length of anterior commissure-posterior commissure line. J Korean Neurosurg Soc 2008, 43(2):79-84.
    
    12. Kochunov P, Fox P, Lancaster J, Tan LH, Amunts K, Zilles K, Mazziotta J, Gao JH: Localized morphological brain differences between English-speaking Caucasians and Chinese-speaking Asians: new evidence of anatomical plasticity. Neuroreport 2003, 14(7):961-964.
    
    13. Kao KP, Lin KP: Congenital muscular dystrophy of a non-Fukuyama type with white matter hyperlucency on CT scan. Brain Dev 1992, 14(6):420-422.
    14. Ariyaratnam R, Casas JP, Whittaker J, Smeeth L, Hingorani AD, Sharma P: Genetics of ischaemic stroke among persons of non-European descent: a meta-analysis of eight genes involving approximately 32,500 individuals. PLoS Med 2007, 4(4):el31.
    
    15. Ng WH, Chan YL, Au KS, Yeung KW, Kwan TF, To CY: Morphometry of the corpus callosum in Chinese children: relationship with gender and academic performance. Pediatr Radiol 2005, 35(6):565-571.
    
    16. Tan LH, Laird AR, Li K, Fox PT: Neuroanatomical correlates of phonological processing of Chinese characters and alphabetic words: a meta-analysis. Hum Brain Mapp 2005, 25(1):83-91.
    
    17. Lee CY, Tsai JL, Kuo WJ, Yeh TC, Wu YT, Ho LT, Hung DL, Tzeng OJ, Hsieh JC: Neuronal correlates of consistency and frequency effects on Chinese character naming: an event-related fMRI study. Neuroimage 2004, 23(4):1235-1245.
    
    18. Liu Y, Perfetti CA: The time course of brain activity in reading English and Chinese: an ERP study of Chinese bilinguals. Hum Brain Mapp 2003, 18(3):167-175.
    
    19. Tu Z, Narr KL, Dollar P, Dinov I, Thompson PM, Toga AW: Brain anatomical structure segmentation by hybrid discriminative/generative models. IEEE Trans Med Imaging 2008, 27(4):495-508.
    
    20. Shattuck DW, Mirza M, Adisetiyo V, Hojatkashani C, Salamon G, Narr KL, Poldrack RA, Bilder RM, Toga AW: Construction of a 3D probabilistic atlas of human cortical structures. Neuroimage 2008, 39(3):1064-1080.
    
    21. Hua X, Leow AD, Parikshak N, Lee S, Chiang MC, Toga AW, Jack CR, Jr., Weiner MW, Thompson PM: Tensor-based morphometry as a neuroimaging biomarker for Alzheimer's disease: an MRI study of 676 AD, MCI, and normal subjects. Neuroimage 2008, 43(3):458-469.
    
    22. Leow AD, Klunder AD, Jack CR, Jr., Toga AW, Dale AM, Bernstein MA, Britson PJ, Gunter JL, Ward CP, Whitwell JL et al: Longitudinal stability of MRI for mapping brain change using tensor-based morphometry. Neuroimage 2006, 31(2):627-640.
    
    23. Miyati T, Mase M, Kasai H, Hara M, Yamada K, Shibamoto Y, Soellinger M, Baltes C, Luechinger R: Noninvasive MRI assessment of intracranial compliance in idiopathic normal pressure hydrocephalus. J Magn Reson Imaging 2007, 26(2):274-278.
    
    24. Moffat BA, Chenevert TL, Lawrence TS, Meyer CR, Johnson TD, Dong Q, Tsien C, Mukherji S, Quint DJ, Gebarski SS et al: Functional diffusion map: a noninvasive MRI biomarker for early stratification of clinical brain tumor response. Proc Natl Acad Sci U S A 2005,102(15):5524-5529.
    
    25. Skolnick AA: New MRI techniques allow noninvasive peek inside the thinking human brain. Jama 1992, 268(11):1387-1388.
    
    26. Hua X, Lee S, Yanovsky I, Leow AD, Chou YY, Ho AJ, Gutman B, Toga AW, Jack CR, Jr., Bernstein MA et al: Optimizing power to track brain degeneration in Alzheimer's disease and mild cognitive impairment with tensor-based morphometry: an ADNI study of 515 subjects. Neuroimage 2009, 48(4):668-681.
    
    27. Lee AD, Leow AD, Lu A, Reiss AL, Hall S, Chiang MC, Toga AW, Thompson PM: 3D pattern of brain abnormalities in Fragile X syndrome visualized using tensor-based morphometry. Neuroimage 2007, 34(3):924-938.
    1.Mazziotta,J.C.,et al.,The myth of the normal,average human brain-the ICBM experience:(1) subject screening and eligibility.Neuroimage,2009.44(3):p.914-22.
    2.Ventegodt,S.,et al.,Human development Ⅻ:a theory for the structure and function of the human brain.ScientificWorldJournal,2008.8:p.621-42.
    3.Lipska,B.K.,et al.,Functional genomics in postmortem human brain:abnormalities in a DISC1 molecular pathway in schizophrenia.Dialogues Clin Neurosci,2006.8(3):p.353-7.
    4.Toga,A.W.,et al.,Towards multimodal atlases of the human brain.Nat Rev Neurosci,2006.7(12):p.952-66.
    5.Gore,J.C.,et al.,Integration of fMRI,NIROT and ERP for studies of human brain function.Magn Reson Imaging,2006.24(4):p.507-13.
    6.Laird,A.R.,J.L.Lancaster,and P.T.Fox,BrainMap:the social evolution of a human brain mapping database.Neuroinformatics,2005.3(1):p.65-78.
    7.Frackowiak,R.S.,Forthergillian Lecture.Imaging human brain function.Trans Med Soc Lond,2000.117:p.53-63.
    8.Thompson,P.,T.D.Cannon,and A.W.Toga,Mapping genetic influences on human brain structure.Ann Med,2002.34(7-8):p.523-36.
    9.Kennedy,D.N.,et al.,Structural and functional brain asymmetries in human situs inversus totalis.Neurology,1999.53(6):p.1260-5.
    10.Gazzaniga,M.S.,Organization of the human brain.Science,1989.245(4921):p.947-52.
    11.Kling-Petersen,T.and M.Rydmark,The BRAIN project:an interactive learning tool using desktop virtual reality on personal computers. Stud Health Technol Inform, 1997. 39: p. 529-38.
    
    12. Talairach, J.a.P.T., Co-planar stereotaxic atlas of the human brain. Stuttgart, New York:Thieme, 1988.
    
    13. Li, D.F., et al., A Cartesian coordinate system for human cerebral cortex. J Neurosci Methods, 2003. 125(1-2): p. 137-45.
    
    14. Chiavaras, M.M., et al., Three-dimensional probabilistic atlas of the human orbitofrontal sulci in standardized stereotaxic space. Neuroimage, 2001. 13(3): p. 479-96.
    
    15. Chiavaras, M.M. and M. Petrides, Orbitofrontal sulci of the human and macaque monkey brain. J Comp Neurol, 2000. 422(1): p. 35-54.
    
    16. Toga, A.W., et al., Postmortem cryosectioning as an anatomic reference for human brain mapping. Comput Med Imaging Graph, 1997. 21(2): p. 131-41.
    
    17. Mazziotta, J.C., et al., A probabilistic atlas of the human brain: theory and rationale for its development. The International Consortium for Brain Mapping (ICBM). Neuroimage, 1995. 2(2): p. 89-101.
    
    18. Mazziotta, J., et al., A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philos Trans R Soc Lond B Biol Sci, 2001. 356(1412): p. 1293-322.
    
    19. Hammers, A., et al., Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe. Hum Brain Mapp, 2003. 19(4): p. 224-47.
    
    20. Shattuck, D.W., et al., Construction of a 3D probabilistic atlas of human cortical structures. Neuroimage, 2008. 39(3): p. 1064-80.
    
    21. Nowinski, W.L., et al., A probabilistic functional atlas of the human subthalamic nucleus. Neuroinformatics, 2004. 2(4): p. 381-98.
    
    22. Mazziotta, J., et al., A four-dimensional probabilistic atlas of the human brain. J Am Med Inform Assoc, 2001. 8(5): p. 401-30.
    
    23. Collins, D.L., et al., Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr, 1994. 18(2): p. 192-205.
    
    24. Evans AC, C.D., Mills SR, Brown ED, Kelly RL, Peters TM, 3D statistical neuroanatomical models from 305 MRI volumes. Proc IEEE Nucl Science Symp Medl Imaging Conf, 1993: p. 1813-1817.
    
    25. Toga, A.W. and P.M. Thompson, Maps of the brain. Anat Rec, 2001. 265(2): p. 37-53.
    
    26. Carmack, P.S., et al., Improved agreement between Talairach and MNI coordinate spaces in deep brain regions. Neuroimage, 2004. 22(1): p. 367-71.
    
    27. Shen, S., A. Sterr, and A. Szameitat, A template effect study on voxel-based morphometry in statistic parametric mapping. Conf Proc IEEE Eng Med Biol Soc, 2005. 3: p. 3051-4.
    
    28. Tzourio-Mazoyer, N., et al., Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage, 2002. 15(1): p. 273-89.
    
    29. Okamoto, M., et al., Structural atlas-based spatial registration for functional near-infrared spectroscopy enabling inter-study data integration. Clin Neurophysiol, 2009. 120(7): p. 1320-8.
    
    30. Carmichael, O.T., et al., Atlas-based hippocampus segmentation in Alzheimer's disease and mild cognitive impairment. Neuroimage, 2005. 27(4): p. 979-90.
    
    31. Kochunov, P., et al., Localized morphological brain differences between English-speaking Caucasians and Chinese-speaking Asians: new evidence of anatomical plasticity. Neuroreport, 2003. 14(7): p. 961-4.
    
    32. Chee, M.W., et al., Cognitive function and brain structure correlations in healthy elderly East Asians. Neuroimage, 2009. 46(1): p. 257-69.
    
    33. Kazemi, K., et al., A neonatal atlas template for spatial normalization of whole-brain magnetic resonance images of newborns: preliminary results. Neuroimage, 2007. 37(2): p. 463-73.
    
    34. Jones, D.K., et al., Spatial normalization and averaging of diffusion tensor MRI data sets. Neuroimage, 2002. 17(2): p. 592-617.
    35. Hoeksma, M.R., et al., Variability in spatial normalization of pediatric and adult brain images. Clin Neurophysiol, 2005. 116(5): p. 1188-94.
    
    36. Gispert, J.D., et al., Influence of the normalization template on the outcome of statistical parametric mapping of PET scans. Neuroimage, 2003. 19(3): p. 601-12.
    
    37. Crinion, J., et al., Spatial normalization of lesioned brains: performance evaluation and impact on fMRI analyses. Neuroimage, 2007. 37(3): p. 866-75.
    
    38. Brett, M., et al., Spatial normalization of brain images with focal lesions using cost function masking. Neuroimage, 2001. 14(2): p. 486-500.
    
    39. Ashburner, J. and K.J. Friston, Nonlinear spatial normalization using basis functions. Hum Brain Mapp, 1999. 7(4): p. 254-66.
    
    40. Chong, B.W., et al., A magnetic resonance template for normal cerebellar development in the human fetus. Neurosurgery, 1997. 41(4): p. 924-8; discussion 928-9.
    
    41. Lee, J.S., et al., Development of Korean standard brain templates. J Korean Med Sci, 2005. 20(3): p. 483-8.
    
    42. Thompson, P.M., et al., Mathematical/computational challenges in creating deformable and probabilistic atlases of the human brain. Hum Brain Mapp, 2000. 9(2): p. 81-92.
    
    43. Hua, X., et al., Tensor-based morphometry as a neuroimaging biomarker for Alzheimer's disease: an MRI study of 676 AD, MCI, and normal subjects. Neuroimage, 2008. 43(3): p. 458-69.
    1. Mazziotta, J.C., et al., The myth of the normal, average human brain—the ICBM experience: (1) subject screening and eligibility. Neuroimage, 2009. 44(3): p. 914-22.
    
    2. Ventegodt, S., et al., Human development XII: a theory for the structure and function of the human brain. ScientificWorldJournal, 2008. 8: p. 621-42.
    
    3. Lipska, B.K., et al., Functional genomics in postmortem human brain: abnormalities in a DISC1 molecular pathway in schizophrenia. Dialogues Clin Neurosci, 2006. 8(3): p. 353-7.
    
    4. Toga, A.W., et al., Towards multimodal atlases of the human brain. Nat Rev Neurosci, 2006. 7(12): p. 952-66.
    
    5. Gore, J.C., et al., Integration of fMRI, NIROT and ERP for studies of human brain function. Magn Reson Imaging, 2006. 24(4): p. 507-13.
    
    6. Laird, A.R., J.L. Lancaster, and P.T. Fox, BrainMap: the social evolution of a human brain mapping database. Neuroinformatics, 2005. 3(1): p. 65-78.
    
    7. Frackowiak, R.S., Forthergillian Lecture. Imaging human brain function. Trans Med Soc Lond, 2000. 117: p. 53-63.
    
    8. Thompson, P., T.D. Cannon, and A.W. Toga, Mapping genetic influences on human brain structure. Ann Med, 2002. 34(7-8): p. 523-36.
    
    9. Kennedy, D.N., et al., Structural and functional brain asymmetries in human situs inversus totalis. Neurology, 1999. 53(6): p. 1260-5.
    
    10. Gazzaniga, M.S., Organization of the human brain. Science, 1989. 245(4921): p. 947-52.
    
    11. Kling-Petersen, T. and M. Rydmark, The BRAIN project: an interactive learning tool using desktop virtual reality on personal computers. Stud Health Technol Inform, 1997. 39: p. 529-38.
    
    12. Talairach, J.a.P.T., Co-planar stereotaxic atlas of the human brain. Stuttgart, New York:Thieme, 1988.
    
    13. Rademacher, J., U. Burgel, and K. Zilles, Stereotaxic localization, intersubject variability, and interhemispheric differences of the human auditory thalamocortical system. Neuroimage, 2002. 17(1): p. 142-60.
    
    14. Nowinski, W.L., Modified Talairach landmarks. Acta Neurochir (Wien), 2001. 143(10): p. 1045-57.
    
    15. Sorlie, C.,et al., Matching of digitised brain atlas to magnetic resonance images. Med Biol Eng Comput, 1997. 35(3): p. 239-45.
    
    16. Drury, H.A. and D.C. Van Essen, Functional specializations in human cerebral cortex analyzed using the Visible Man surface-based atlas. Hum Brain Mapp, 1997. 5: p. 233-7.
    
    17. Nowinski, W.L., et al., Multiple brain atlas database and atlas-based neuroimaging system. Comput Aided Surg, 1997. 2(1): p. 42-66.
    
    18. Migneco, O., et al., Computerized localization of brain structures in single photon emission computed tomography using a proportional anatomical stereotactic atlas. Comput Med Imaging Graph, 1994. 18(6): p. 413-22.
    
    19. Lancaster, J.L., et al., Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp, 2000. 10(3): p. 120-31.
    
    20. Toga, A.W., et al., Postmortem cryosectioning as an anatomic reference for human brain mapping. Comput Med Imaging Graph, 1997. 21(2): p. 131-41.
    
    21. Chiavaras, M.M., et al., Three-dimensional probabilistic atlas of the human orbitofrontal sulci in standardized stereotaxic space. Neuroimage, 2001. 13(3): p. 479-96.
    
    22. Li, D.F., et al., A Cartesian coordinate system for human cerebral cortex. J Neurosci Methods, 2003. 125(1-2): p. 137-45.
    
    23. Fukuyama, H., SPM analysis on PET and SPECT data. Rinsho Shinkeigaku, 1999. 39(1): p. 36-8.
    
    24. Tzourio-Mazoyer, N., et al., Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage, 2002.15(1): p. 273-89.
    
    25. Carmack, P.S., et al., Improved agreement between Talairach and MNI coordinate spaces in deep brain regions. Neuroimage, 2004. 22(1): p. 367-71.
    26. Shen, S., A. Sterr, and A. Szameitat, A template effect study on voxel-based morphometry in statistic parametric mapping. Conf Proc IEEE Eng Med Biol Soc,2005. 3: p. 3051-4.
    
    27. Mazziotta, J., et al., A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philos Trans R Soc Lond B Biol Sci, 2001. 356(1412): p. 1293-322.
    
    28. Luo SQ, Y.H., Digitized Atlas of the Human Brain with Multi-Browsers. Chinese Journal of Medical Imaging Technology, 2001.17(9): p. 826-829.
    
    29. Schiemann, T., et al., Exploring the Visible Human using the VOXEL-MAN framework. Comput Med Imaging Graph, 2000. 24(3): p. 127-32.
    
    30. Van Essen, D.C. and H.A. Drury, Structural and functional analyses of human cerebral cortex using a surface-based atlas. J Neurosci, 1997. 17(18): p. 7079-102.
    
    31. Van Essen, D.C., et al., Functional and structural mapping of human cerebral cortex: solutions are in the surfaces. Proc Natl Acad Sci U S A, 1998. 95(3): p. 788-95.
    
    32. Mazziotta, J., et al., A four-dimensional probabilistic atlas of the human brain. J Am Med Inform Assoc, 2001. 8(5): p. 401-30.
    
    33. Carmichael, O.T., et al., Atlas-based hippocampus segmentation in Alzheimer's disease and mild cognitive impairment. Neuroimage, 2005. 27(4): p. 979-90.
    
    34. Okamoto, M., et al., Structural atlas-based spatial registration for functional near-infrared spectroscopy enabling inter-study data integration. Clin Neurophysiol, 2009. 120(7): p. 1320-8.
    
    35. Chee, M.W., et al., Cognitive function and brain structure correlations in healthy elderly East Asians. Neuroimage, 2009. 46(1): p. 257-69.
    
    36. Kochunov, P., et al., Localized morphological brain differences between English-speaking Caucasians and Chinese-speaking Asians: new evidence of anatomical plasticity. Neuroreport, 2003. 14(7): p. 961-4.
    
    37. Liu, S., Sectional Anatomy. Higher Education Press, Beijing, 2004: p. 93-101.
    38. Spitzer, V., et al., The visible human male: a technical report. J Am Med Inform Assoc, 1996. 3(2): p. 118-30.
    
    39. Nowinski, W.L., et al., A probabilistic functional atlas of the human subthalamic nucleus. Neuroinformatics, 2004. 2(4): p. 381-98.
    
    40. Hammers, A., et al., Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe. Hum Brain Mapp, 2003.19(4): p. 224-47.
    
    41. Ganser, K.A., et al., A deformable digital brain atlas system according to Talairach and Tournoux. Med Image Anal, 2004. 8(1): p. 3-22.
    1. Mazziotta, J.C., et al., The myth of the normal, average human brain—the ICBM experience: (1) subject screening and eligibility. Neuroimage, 2009. 44(3): p. 914-22.
    
    2. Ventegodt, S., et al., Human development XII: a theory for the structure and function of the human brain. ScientificWorldJournal, 2008. 8: p. 621-42.
    
    3. Lipska, B.K., et al., Functional genomics in postmortem human brain: abnormalities in a DISCI molecular pathway in schizophrenia. Dialogues Clin Neurosci, 2006. 8(3): p. 353-7.
    
    4. Toga, A.W., et al., Towards multimodal atlases of the human brain. Nat Rev Neurosci, 2006. 7(12): p. 952-66.
    
    5. Gore, J.C., et al., Integration of fMRI, NIROT and ERP for studies of human brain function. Magn Reson Imaging, 2006. 24(4): p. 507-13.
    
    6. Laird, A.R., J.L. Lancaster, and P.T. Fox, BrainMap: the social evolution of a human brain mapping database. Neuroinformatics, 2005. 3(1): p. 65-78.
    
    7. Frackowiak, R.S., Forthergillian Lecture. Imaging human brain function. Trans Med Soc Lond, 2000. 117: p. 53-63.
    
    8. Thompson, P., T.D. Cannon, and A.W. Toga, Mapping genetic influences on human brain structure. Ann Med, 2002. 34(7-8): p. 523-36.
    
    9. Kennedy, D.N., et al., Structural and functional brain asymmetries in human situs inversus totalis. Neurology, 1999. 53(6): p. 1260-5.
    
    10. Gazzaniga, M.S., Organization of the human brain. Science, 1989. 245(4921): p. 947-52.
    
    11. Kling-Petersen, T. and M. Rydmark, The BRAIN project: an interactive learning tool using desktop virtual reality on personal computers. Stud Health Technol Inform, 1997. 39: p. 529-38.
    
    12. Talairach, J.a.P.T., Co-planar stereotaxic atlas of the human brain. Stuttgart, New York:Thieme, 1988.
    
    13. Rademacher, J., U. Burgel, and K. Zilles, Stereotaxic localization, intersubject variability, and interhemispheric differences of the human auditory thalamocortical system. Neuroimage, 2002. 17(1): p. 142-60.
    
    14. Nowinski, W.L., Modified Talairach landmarks. Acta Neurochir (Wien), 2001. 143(10): p. 1045-57.
    
    15. Sorlie, C.,et al., Matching of digitised brain atlas to magnetic resonance images. Med Biol Eng Comput, 1997. 35(3): p. 239-45.
    
    16. Drury, H.A. and D.C. Van Essen, Functional specializations in human cerebral cortex analyzed using the Visible Man surface-based atlas. Hum Brain Mapp, 1997. 5: p. 233-7.
    
    17. Nowinski, W.L., et al., Multiple brain atlas database and atlas-based neuroimaging system. Comput Aided Surg, 1997. 2(1): p. 42-66.
    
    18. Migneco, O., et al., Computerized localization of brain structures in single photon emission computed tomography using a proportional anatomical stereotactic atlas. Comput Med Imaging Graph, 1994. 18(6): p. 413-22.
    
    19. Lancaster, J.L., et al., Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp, 2000. 10(3): p. 120-31.
    
    20. Toga, A.W., et al., Postmortem cryosectioning as an anatomic reference for human brain mapping. Comput Med Imaging Graph, 1997. 21(2): p. 131-41.
    
    21. Chiavaras, M.M., et al., Three-dimensional probabilistic atlas of the human orbitofrontal sulci in standardized stereotaxic space. Neuroimage, 2001. 13(3): p. 479-96.
    
    22. Li, D.F., et al., A Cartesian coordinate system for human cerebral cortex. J Neurosci Methods, 2003. 125(1-2): p. 137-45.
    
    23. Fukuyama, H., SPM analysis on PET and SPECT data. Rinsho Shinkeigaku, 1999. 39(1): p. 36-8.
    
    24. Tzourio-Mazoyer, N., et al., Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage, 2002. 15(1): p. 273-89.
    
    25. Carmack, P.S., et al., Improved agreement between Talairach and MNI coordinate spaces in deep brain regions. Neuroimage, 2004. 22(1): p. 367-71.
    26. Schiemann, T., et al., Exploring the Visible Human using the VOXEL-MAN framework. Comput Med Imaging Graph, 2000. 24(3): p. 127-32.
    
    27. Van Essen, D.C. and H.A. Drury, Structural and functional analyses of human cerebral cortex using a surface-based atlas. J Neurosci, 1997. 17(18): p. 7079-102.
    
    28. Van Essen, D.C, et al., Functional and structural mapping of human cerebral cortex: solutions are in the surfaces. Proc Natl Acad Sci U S A, 1998. 95(3): p. 788-95.
    
    29. Hohne KH, B.M., Reimer M, et al., A 3D anatomical atlas based on a volume model. Graphycs Applicat, 1992(12): p. 72-78.
    
    30. Pommert A, S.R., Riemer M, et al., Symbolic modeling of human anatomy for visualization and simulation. Visual Biomed Comput, 1994(2359): p. 412-423.
    
    31. Tiede, U., et al., A computerized three-dimensional atlas of the human skull and brain. AJNR Am J Neuroradiol, 1993. 14(3): p. 551-9; discussion 560-1.
    
    32. Evans AC, C.D., Mills SR, Brown ED, Kelly RL, Peters TM, 3D statistical neuroanatomical models from 305 MRI volumes. Proc IEEE Nucl Science Symp Medl Imaging Conf, 1993: p. 1813-1817.
    
    33. Collins, D.L., et al., Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr, 1994. 18(2): p. 192-205.
    
    34. Toga, A.W. and P.M. Thompson, Maps of the brain. Anat Rec, 2001. 265(2): p. 37-53.
    
    35. Shen, S., A. Sterr, and A. Szameitat, A template effect study on voxel-based morphometry in statistic parametric mapping. Conf Proc IEEE Eng Med Biol Soc,2005. 3: p. 3051-4.
    
    36. Mazziotta, J.C., et al., A probabilistic atlas of the human brain: theory and rationale for its development. The International Consortium for Brain Mapping (ICBM). Neuroimage, 1995. 2(2): p. 89-101.
    
    37. Mazziotta, J., et al., A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philos Trans R Soc Lond B Biol Sci, 2001. 356(1412): p. 1293-322.
    
    38. Iosifescu, D.V., et al., An automated registration algorithm for measuring MRI subcortical brain structures. Neuroimage, 1997. 6(1): p. 13-25.
    
    39. Greitz, T., et al., A computerized brain atlas: construction, anatomical content, and some applications. J Comput Assist Tomogr, 1991. 15(1): p. 26-38.
    
    40. Mano, I., et al., Computerized three-dimensional normal atlas. Radiat Med, 1990. 8(2): p. 50-4.
    
    41. Lemaitre, H., et al., Age- and sex-related effects on the neuroanatomy of healthy elderly. Neuroimage, 2005. 26(3): p. 900-11.
    
    42. Kovalev, V. and F. Kruggel, Texture anisotropy of the brain's white matter as revealed by anatomical MRI. IEEE Trans Med Imaging, 2007. 26(5): p. 678-85.
    
    43. Kovalev, V.A., F. Kruggel, and D.Y. von Cramon, Gender and age effects in structural brain asymmetry as measured by MRI texture analysis. Neuroimage, 2003. 19(3): p. 895-905.
    
    44. Kovalev, V.A., et al., Three-dimensional texture analysis of MRI brain datasets. IEEE Trans Med Imaging, 2001. 20(5): p. 424-33.
    
    45. Smith, C.D., et al., Age and gender effects on human brain anatomy: a voxel-based morphometric study in healthy elderly. Neurobiol Aging, 2007. 28(7): p. 1075-87.
    
    46. Shattuck, D.W., et al., Construction of a 3D probabilistic atlas of human cortical structures. Neuroimage, 2008. 39(3): p. 1064-80.
    
    47. Mazziotta, J., et al., A four-dimensional probabilistic atlas of the human brain. J Am Med Inform Assoc, 2001. 8(5): p. 401-30.
    
    48. Hoeksma, M.R., et al., Variability in spatial normalization of pediatric and adult brain images. Clin Neurophysiol, 2005. 116(5): p. 1188-94.
    
    49. Carmichael, O.T., et al., Atlas-based hippocampus segmentation in Alzheimer's disease and mild cognitive impairment. Neuroimage, 2005. 27(4): p. 979-90.
    
    50. Okamoto, M., et al., Structural atlas-based spatial registration for functional near-infrared spectroscopy enabling inter-study data integration. Clin Neurophysiol, 2009. 120(7): p. 1320-8.
    
    51. Lee, J.S., et al., Development of Korean standard brain templates. J Korean Med Sci, 2005. 20(3): p. 483-8.
    
    52. Luo SQ, Y.H., Digitized Atlas of the Human Brain with Multi-Browsers. Chinese Journal of Medical Imaging Technology, 2001. 17(9): p. 826-829.
    
    53. Evans, A.C., et al., Anatomical-functional correlation using an adjustable MRI-based region of interest atlas with positron emission tomography. J Cereb Blood Flow Metab, 1988. 8(4): p. 513-30.
    
    54. Minoshima, S., et al., Stereotactic PET atlas of the human brain: aid for visual interpretation of functional brain images. J Nucl Med, 1994. 35(6): p. 949-54.
    
    55. Ingham, R.J., et al., Functional-lesion investigation of developmental stuttering with positron emission tomography. J Speech Hear Res, 1996. 39(6): p. 1208-27.
    
    56. Rizzo, G.,et al., Matching a computerized brain atlas to multimodal medical images. Neuroimage, 1997. 6(1): p. 59-69.
    
    57. Crivello, F., et al., Comparison of spatial normalization procedures and their impact on functional maps. Hum Brain Mapp, 2002. 16(4): p. 228-50.
    
    58. Pascual-Marqui, R.D., et al., Functional imaging with low-resolution brain electromagnetic tomography (LORETA): a review. Methods Find Exp Clin Pharmacol, 2002. 24 Suppl C: p. 91-5.
    
    59. Casteels, C.,et al., Construction and evaluation of multitracer small-animal PET probabilistic atlases for voxel-based functional mapping of the rat brain. J Nucl Med, 2006. 47(11): p. 1858-66.
    
    60. Kikinis, R., et al., Computer-assisted interactive three-dimensional planning for neurosurgical procedures. Neurosurgery, 1996. 38(4): p. 640-9; discussion 649-51.
    
    61. Gee, J.C., M. Reivich, and R. Bajcsy, Elastically deforming 3D atlas to match anatomical brain images. J Comput Assist Tomogr, 1993. 17(2): p. 225-36.
    
    62. Kochunov, P., et al., Localized morphological brain differences between English-speaking Caucasians and Chinese-speaking Asians: new evidence of anatomical plasticity. Neuroreport, 2003. 14(7): p. 961-4.
    
    63. Chee, M.W., et al., Cognitive function and brain structure correlations in healthy elderly East Asians. Neuroimage, 2009. 46(1): p. 257-69.
    1. Aydin S, Cavallo LM, Messina A, Dal Fabbro M, Cappabianca P, Barlas O, De Divitis E(2007) The endoscopic endonasal trans-sphenoidal approach to the sellar and suprasellar area. Anatomic study. J Neurosurg Sci 51(3): 129-138
    
    2. Bedford MA (1966) The "Cavernous sinus". Br J Ophthalmol 50(1):41
    
    3. Butler H (1957) The development of certain human dural venous sinuses. J Anat 91:510
    
    4. Cheung DK, Attia EL, Kirkpartrick DA, Marcarian B, Wright B (1993) An anatomic and CT scan study of the lateral wall of the sphenoid sinus as related to the transnasal transethmoid endoscopic approach. J Otolaryngology 22(1 ):63
    
    5. Das K, Spencer W, Nwagwu CI, Schaeffer S, Wenk E, Weiss MH, Couldwell WT (2001) Approaches to the sellar and parasellar region: Anatomic comparison of endonasal-transphenoidal sublabial-transsphenoidal,and transeth moidal approaches. Neurological Research 23:51-54
    
    6. Felix U, Hilel N (1982) The lateral wall of the cavernous sinus. J Neurosurg 56:228
    
    7. Gardner E, Gray DJ, Rahilly R (1975) Anatomy. Ed4. Philadelphia, WB sauders, pp 609
    
    8. Grouzet G, Cinquin AM, Camuset J P, Vasdev A, Le Bas JF(1986) MRI anatomy of the the sellar region. J Neuroradiology 13(1):73
    
    9. Harris FS, Rhoton AL (1976) Anatomy of the cavernous sinus: a microsurgical study. J Neurosurg 45:169
    
    10. Heilman CB, Shucart WA, Rebeiz EE (1997) Endoscopic sphenoidotomy approach to the sella. Neurosurgery 41:602-607
    
    11. Inoue T, Rhoton AL Jr, Theele D, Barry ME (1990) Surgical approaches to the cavernous sinus: a microsurgical study. Neurosurgery 26(6): 903-932
    
    12. Iqbal J, Kanaan I, AlHomsi (1999) Non-Neoplastic cysticlesions of the the sellar region presentation, diagnosis and management of eight cases and review of the literature. Acta Neurochir (Wien) 141:389-398
    
    13. Lei J, Jiang JB (1990) Sectional anatomic research of sella turcica. Research and Teaching of Anatomy 1(1):7
    
    14. Li YS, Tian DR, Yu CS, Yu ZQ (2000) Application of celloidin embedding in manufacture of sectional anatomic specimen. Chin J Clin Anat 18(1):91
    
    15. Liu SW (2004) Sectional Anatomy. Higher Education Press, Beijing, pp 93-101
    
    16. Mc Grath P (1977) The cavernous sinus:An anatomical survey. Aust NZJ Surg 47(6):601
    
    17. Parksin D (1965) A surgical approach to the cavernous portion of the carotid artery: anatomical studies and case report. J Neurosurg 23(5):474-483
    
    18. Rennert J, Doerfler A (2007) Imaging of sellar and parasellar lesions. Clin Neurol Neurosurg 109: 111-124
    
    19. Rudnik A, Zawadzki T, Wojtacha M, Bazowski P, Gamrot J, Galuszka-Ignasiak B, Duda 1(2005) Endoscopic transnasal transsphenoidal treatment of pathology of the the sellar region. Minim Invasive Neurosurgery 48(2): 101 -107
    
    20. Ruscalleda J (2005) Imaging of parasellar lesions. Eur Radio 15:549-559
    
    21. Spitzer VM, Ackerman MJ, Scherzinger AL, Whitlock D (1996) The visible human male: a technical report. J Am Med Inform Assoc 3(2): 118-130
    
    22. Taptas JN (1982) The so-called cavernous sinus: a review of the controversy and its implications for neurosurgeons. Neurosurgery 11(5): 712-717
    
    23. Weiglein A (1993) Plastination & 4th biennial meeting of the International Society for Plastination. Surg Radiol Anat 15: 324
    
    24. Zhang SX, Liu ZJ, Ho Gwangtsi (1996) Plastination technique. Chin J Clin Anat 14(1):60-70
    
    25. Zhang SX, Liu ZJ, Ho Gwangtsi (1998) 3D thin sectional anatomy of sella turcica region with plastination. Acta Anatomica Sinica 29(4):337-341
    Ahsan, R.L., Allom, R., Gousias, I.S., Habib, H., Turkheimer, F.E., Free, S., Lemieux, L., Myers, R., Duncan, J.S., Brooks, D.J., Koepp, M.J., Hammers, A., 2007. Volumes, spatial extents and a probabilistic atlas of the human basal ganglia and thalamus. Neuroimage 38, 261-270.
    Altaye, M., Holland, S.K., Wilke, M., Gaser, C.,2008. Infant brain probability templates for MRI segmentation and normalization. Neuroimage 43, 721-730.
    Ashburner, J., Friston, K.J., 1999. Nonlinear spatial normalization using basis functions. Hum Brain Mapp 7, 254-266.
    Buckner, R.L., Head, D., Parker, J., Fotenos, A.F., Marcus, D., Morris, J.C., Snyder, A.Z., 2004. A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: reliability and validation against manual measurement of total intracranial volume. Neuroimage 23, 724-738.
    Carmack, P.S., Spence, J., Gunst, R.F., Schucany, W.R., Woodward, W.A., Haley, R.W., 2004. Improved agreement between Talairach and MNI coordinate spaces in deep brain regions. Neuroimage 22, 367-371.
    Chau, W., McIntosh, A.R., 2005. The Talairach coordinate of a point in the MNI space: how to interpret it. Neuroimage 25, 408-416.
    Chee, M.W., Chen, K.H., Zheng, H., Chan, K.P., Isaac, V., Sim, S.K., Chuah, L.Y., Schuchinsky, M., Fischl, B., Ng, T.P., 2009. Cognitive function and brain structure correlations in healthy elderly East Asians. Neuroimage 46, 257-269.
    Clark, C.P., Brown, G.G., Frank, L., Thomas, L., Sutherland, A.N., Gillin, J.C., 2006. Improved anatomic delineation of the antidepressant response to partial sleep deprivation in medial frontal cortex using perfusion-weighted functional MRI. Psychiatry Res 146, 213-222.
    Collins, D.L., Neelin, P., Peters, T.M., Evans, A.C., 1994. Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr 18, 192-205.
    Demetriades, A.K., 2002. Functional neuroimaging in Alzheimer's type dementia. J Neurol Sci 203-204, 247-251.
    Deppe, M., Duning, T., Mohammadi, S., Schwindt, W., Kugel, H., Knecht, S., Ringelstein, E.B., 2007. Diffusion-tensor imaging at 3 T: detection of white matter alterations in neurological patients on the basis of normal values. Invest Radiol 42, 338-345.
    Evans, A.C., Beil, C., Marrett, S., Thompson, C.J., Hakim, A., 1988. Anatomical-functional correlation using an adjustable MRI-based region of interest atlas with positron emission tomography. J Cereb Blood Flow Metab 8, 513-530.
    Evans AC, C.D., Mills SR, Brown ED, Kelly RL, Peters TM, 1993. 3D statistical neuroanatomical models from 305 MRI volumes. Proc IEEE Nucl Science Symp Medl Imaging Conf, 1813-1817.
    Fox, P.T., Perlmutter, J.S., Raichle, M.E., 1985. A stereotactic method of anatomical localization for positron emission tomography. J Comput Assist Tomogr 9, 141-153.
    Friston KJ, H.A., Worsley KJ, Poline JP, Frith CD, Frackowiak RS, 1995. Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp, 189-210.
    Giraud, A.L., Truy, E., Frackowiak, R., 2001. Imaging plasticity in cochlear implant patients. Audiol Neurootol 6, 381-393.
    Goldstein, R.Z., Volkow, N.D., 2002. Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatry 159, 1642-1652.
    Hasan, K.M., Kamali, A., Kramer, L.A., 2009. Mapping the human brain white matter tracts relative to cortical and deep gray matter using diffusion tensor imaging at high spatial resolution. Magn Reson Imaging 27, 631-636.
    Holmes, C.J., Hoge, R., Collins, L., Woods, R., Toga, A.W., Evans, A.C., 1998. Enhancement of MR images using registration for signal averaging. J Comput Assist Tomogr 22, 324-333.
    
    Jackson, F.L., 1992. Race and ethnicity as biological constructs. Ethn Dis 2, 120-125.
    Kalbitzer, J., Svarer, C.,Frokjaer, V.G., Erritzoe, D., Baare, W.F., Madsen, J., Hasselbalch, S.G., Knudsen, G.M., 2009. A Probabilistic Approach to Delineating Functional Brain Regions. J Nucl Med Technol 37, 91-95.
    Kasai, K., Iwanami, A., Yamasue, H., Kuroki, N., Nakagome, K., Fukuda, M., 2002. Neuroanatomy and neurophysiology in schizophrenia. Neurosci Res 43, 93-110.
    Kim, H.P., Lee, J.M., Lee, D.S., Koo, B.B., Kim, J.J., Kim, I.Y., Kwon, J.S., Yoo, T.W., Chang, K.H., Kim, S.I., 2005. Development of a groupspecific average brain atlas: a comparison study between Korean and Occidental groups. J Biomed Eng Res 26, 7-13.
    Kochunov, P., Fox, P., Lancaster, J., Tan, L.H., Amunts, K., Zilles, K., Mazziotta, J., Gao, J.H., 2003. Localized morphological brain differences between English-speaking Caucasians and Chinese-speaking Asians: new evidence of anatomical plasticity. Neuroreport 14, 961-964.
    Kubicki, M., Park, H., Westin, C.F., Nestor, P.G., Mulkern, R.V., Maier, S.E., Niznikiewicz, M., Connor, E.E., Levitt, J.J., Frumin, M., Kikinis, R., Jolesz, F.A., McCarley, R.W., Shenton, M.E., 2005. DTI and MTR abnormalities in schizophrenia: analysis of white matter integrity. Neuroimage 26, 1109-1118.
    
    Kuo, W.J., Yeh, T.C., Duann, J.R., Wu, Y.T., Ho, L.T., Hung, D., Tzeng, O.J., Hsieh, J.C., 2001. A left-lateralized network for reading Chinese words: a 3 T fMRI study. Neuroreport 12, 3997-4001.
    Kuo, W.J., Yeh, T.C., Lee, C.Y., Wu, Y.T., Chou, C.C., Ho, L.T., Hung, D.L., Tzeng, O.J., Hsieh, J.C., 2003. Frequency effects of Chinese character processing in the brain: an event-related fMRI study. Neuroimage 18, 720-730.
    Lancaster, J.L., Fox, P.T., Downs, H., Nickerson, D.S., Hander, T.A., El Mallah, M., Kochunov, P.V., Zamarripa, F., 1999. Global spatial normalization of human brain using convex hulls. J Nucl Med 40, 942-955.
    Lee, D.S., Lee, J.S., Oh, S.H., Kim, S.K., Kim, J.W., Chung, J.K., Lee, M.C., Kim, C.S., 2001. Cross-modal plasticity and cochlear implants. Nature 409, 149-150.
    Lee, J.S., Lee, D.S., Kim, J., Kim, Y.K., Kang, E., Kang, H., Kang, K.W., Lee, J.M., Kim, J.J., Park, H.J., Kwon, J.S., Kim, S.I., Yoo, T.W., Chang, K.H., Lee, M.C., 2005. Development of Korean standard brain templates. J Korean Med Sci 20, 483-488.
    
    Mazziotta, J., Toga, A., Evans, A., Fox, P., Lancaster, J., Zilles, K., Woods, R., Paus, T, Simpson, G.,Pike, B., Holmes, C.,Collins, L., Thompson, P., MacDonald, D., Iacoboni, M., Schormann, T., Amunts, K., Palomero-Gallagher, N., Geyer, S., Parsons, L., Narr, K., Kabani, N., Le Goualher, G.,Boomsma, D., Cannon, T., Kawashima, R., Mazoyer, B., 2001. A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philos Trans R Soc Lond B Biol Sci 356, 1293-1322.
    
    Miller, M.I., Qiu, A., 2009. The emerging discipline of Computational Functional Anatomy. Neuroimage 45, SI6-39.
    
    Mori, S., Oishi, K., Jiang, H., Jiang, L., Li, X., Akhter, K., Hua, K., Faria, A.V., Mahmood, A., Woods, R., Toga, A.W., Pike, G.B., Neto, P.R., Evans, A., Zhang, J., Huang, H., Miller, M.I., van Zijl, P., Mazziotta, J., 2008. Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. Neuroimage 40, 570-582.
    
    Moriguchi, Y., Ohnishi, T., Kawachi, T., Mori, T., Hirakata, M., Yamada, M., Matsuda, H., Komaki, G.,2005. Specific brain activation in Japanese and Caucasian people to fearful faces. Neuroreport 16, 133-136.
    
    Munte, T.F., Altenmuller, E., Jancke, L., 2002. The musician's brain as a model of neuroplasticity. Nat Rev Neurosci 3, 473-478.
    Oldfield, R.C., 1971. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9, 97-113.
    Peng, H., Orlichenko, A., Dawe, R.J., Agam, G.,Zhang, S., Arfanakis, K., 2009. Development of a human brain diffusion tensor template. Neuroimage 46, 967-980.
    Rex, D.E., Ma, J.Q., Toga, A.W., 2003. The LONI Pipeline Processing Environment. Neuroimage 19, 1033-1048.
    Shattuck, D.W., Leahy, R.M., 2002. BrainSuite: an automated cortical surface identification tool. Med Image Anal 6, 129-142.
    Shattuck, D.W., Mirza, M., Adisetiyo, V., Hojatkashani, C.,Salamon, G.,Narr, K.L., Poldrack, R.A., Bilder, R.M., Toga, A.W., 2008. Construction of a 3D probabilistic atlas of human cortical structures. Neuroimage 39, 1064-1080.
    Shen, S., Sterr, A., Szameitat, A., 2005. A template effect study on voxel-based morphometry in statistic parametric mapping. Conf Proc IEEE Eng Med Biol Soc 3, 3051-3054.
    Smith, C.D., Chebrolu, H., Wekstein, D.R., Schmitt, F.A., Markesbery, W.R., 2007. Age and gender effects on human brain anatomy: a voxel-based morphometric study in healthy elderly. Neurobiol Aging 28, 1075-1087.
    Smith, S.M., 2002. Fast robust automated brain extraction. Hum Brain Mapp 17, 143-155.
    Talairach J, T.P., 1988. Co-planar stereotaxic atlas of the human brain: 3-dimensional proportional system-an approach to cerebral imaging. Thieme Medical Publishers New York.
    Tan, L.H., Feng, C.M., Fox, P.T., Gao, J.H., 2001a. An fMRI study with written Chinese. Neuroreport 12, 83-88.
    Tan, L.H., Liu, H.L., Perfetti, C.A., Spinks, J.A., Fox, P.T., Gao, J.H., 2001b. The neural system underlying Chinese logograph reading. Neuroimage 13, 836-846.
    Tan, L.H., Spinks, J.A., Feng, C.M., Siok, W.T., Perfetti, C.A., Xiong, J., Fox, P.T., Gao, J.H., 2003. Neural systems of second language reading are shaped by native language. Hum Brain Mapp 18, 158-166.
    Tan, L.H., Spinks, J.A., Gao, J.H., Liu, H.L., Perfetti, C.A., Xiong, J., Stofer, K.A., Pu, Y., Liu, Y., Fox, P.T., 2000. Brain activation in the processing of Chinese characters and words: a functional MRI study. Hum Brain Mapp 10, 16-27.
    Theodore, W.H., Gaillard, W.D., 2002. Neuroimaging and the progression of epilepsy. Prog Brain Res 135, 305-313.
    
    Thompson, P.M., Woods, R.P., Mega, M.S., Toga, A.W., 2000. Mathematical/computational challenges in creating deformable and probabilistic atlases of the human brain. Hum Brain Mapp 9, 81-92.
    Toga, A.W., Thompson, P.M., 2001. Maps of the brain. Anat Rec 265, 37-53.
    Tu, Z., Narr, K.L., Dollar, P., Dinov, I., Thompson, P.M., Toga, A.W., 2008. Brain anatomical structure segmentation by hybrid discriminative/generative models. IEEE Trans Med Imaging 27, 495-508.
    Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., Joliot, M., 2002. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15, 273-289.
    Wilke, M., Holland, S.K., Altaye, M., Gaser, C.,2008. Template-O-Matic: a toolbox for creating customized pediatric templates. Neuroimage 41,903-913.
    Woods, R.P., Grafton, S.T., Holmes, C.J., Cherry, S.R., Mazziotta, J.C., 1998a. Automated image registration: I. General methods and intrasubject, intramodality validation. J Comput Assist Tomogr 22, 139-152.
    Woods, R.P., Grafton, S.T., Watson, J.D., Sicotte, N.L., Mazziotta, J.C., 1998b. Automated image registration: II. Intersubject validation of linear and nonlinear models. J Comput Assist Tomogr 22, 153-165.
    Yoon, U., Fonov, V.S., Perusse, D., Evans, A.C., 2009. The effect of template choice on morphometric analysis of pediatric brain data. Neuroimage 45, 769-777.
    Zhang, K., Ginzburg, I., McNaughton, B.L., Sejnowski, T.J., 1998. Interpreting neuronal population activity by reconstruction: unified framework with application to hippocampal place cells. J Neurophysiol 79, 1017-1044.
    Zilles, K., Kawashima, R., Dabringhaus, A., Fukuda, H., Schormann, T., 2001. Hemispheric shape of European and Japanese brains: 3-D MRI analysis of intersubject variability, ethnical, and gender differences. Neuroimage 13, 262-271.