基于数字图像处理技术的岩体裂隙信息快速采集处理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩体是地质体,其在构造过程中形成的裂隙是衡量岩体力学性能和渗透特性的关键因素。裂隙几何参数(包括产状、开度、迹长等)的获取,对岩体的力学性能和渗透特性研究分析来说十分重要。
     传统的岩体裂隙信息的提取方法,是人工借助测量工具进行实地测量统计。该方法虽然原理简单,但是耗时低效而且受外界环境条件影响较大。相比之下,将数字近景摄影测量技术运用到岩体裂隙的测量和统计上来,具有快速、高效和信息量大等优点。
     本文在前人研究的基础上,以金山店铁矿张福山矿区具代表性外露岩体为研究实例,运用数字近景摄影测量和数字图像处理技术,对岩体裂隙参数的快速提取方法进行了探讨和研究。其主要工作包括图像获取,图像纠偏,图像分析三个方面。
     图像获取方面,在总结和对比已有数字图像采集方法的基础上,结合本文研究对象和其现场条件,选取二维正直投影方式,借助数码相机等工具获取了岩体结构面的数字图像。
     图像纠偏方面,提出了一种新的纠偏方法来对二维数字图像进行整体几何纠偏。该方法包括确定岩体结构面控制点的三维坐标,将三维坐标转换至与图像空间对应的二维坐标,计算图像空间和实体空间之间的转换矩阵,图像重采样内插等步骤。并以一张岩体结构面的数字图像作为例子按该方法进行纠偏,以证明该方法的有效性。
     图像分析方面,针对裂隙数字图像的复杂性,提出了一种基于半自动化检测识别技术的裂隙参数提取统计方法。该方法以已有的数字图像处理技术为理论基础,依次对岩体裂隙图像进行数字化、半自动化裂隙边缘检测识别、边缘坐标提取重生成二值图像、裂隙参数计算统计。上述过程以实际岩体裂隙图像为研究实例,运用MATLAB软件编程实现以图像的相关处理。最终得到了岩体结构面裂隙几何参数数据。
Rock masses naturally have several kinds of discontinuities, including the most common one, rock joint. The joints in rock mass is the crucial factor of rock stability and permeability. Therfore, to obtain geometric properties of joints in rock mass, such as orientation, aperture, and consistence etc, becomes a crucial impotant step in the process of rock mass analysis.
     The traditional method for extracting geometric properties of joints on exposure of the rock mass is manual measuring with the help of measuring tools. Obviously, it is time-consuming, low effcient and sensitive to the external environment. By contrast, digital close photogrammetry can be more efficient in extraction of joints information.
     After reffering the current literatures, this paper uses digital close range photogrammetry to acquire joints information from exposure of the rock mass, focusing on rapid extracting joints information on exposure of the rock mass. This study is carried out in Jinshandian Iron Mine, The content of research in this paper is mainly divided into three steps: image acquisition, geometric correction and image analysis statistical.
     For image acquisition, based on the existing ways about method of digital image acquisition, a digital camera is used to collect digital image for exposure on the rock mass. By consideraing the research objectives in this paper and field conditions, a suitable method, two-dimensional normal projection method is selected as the image acquisition method.
     In terms of geometric correction for digital image, a new geometric correction method in processing close range digital photograph is proposed. The correction method covers four main points, determing of control points on the exposure of the rock mass, converting the coordinate value on the exposure of rock mass into the plane coordinate value which correspond with digital image space, mathematically solving the transformation matrix, geometrically correcting and resampling the digital photograph. Detailes for the correction method are presented in the process of geometrically correcting the digital photograph taken from the outcrop of a rock mass in Jinshandian. From the illustrative example, it has been found that the geometric correction method is effective in processing close range digital photograph.
     In respect of image analysis, by consideraing the complexity of the digital image from the exposure of rock mass, a semi-automated extraction and statistical method is proposed. The method includes image digitization, semi-automated detection and recognition for edge of joints edge, extracting edge coordinate values and redrawing binary image relation with joints, computing statistical data for joints parameters. MATLAB software is used in this process, and finally obtaining the statistical data for rock joints from the exposure on the rock mass. Detailes for the semi-automated extraction and statistical method are presented in the process of processing the same digital photograph taken from the outcrop of a rock mass in Jinshandian. It has been found that the method is fast and effective.
引文
[1]高磊.矿山岩石力学[M].北京:机械工业出版社,1987:76-78.
    [2] Priest S D, Hudson J A. Estimation of Discontinuity Spacing and Trace using Scanline Surveys[J]. International Journal Mechanics Mining Science and Geomechanics Abstract, 1981, 18(4):183-197.
    [3]刘子侠.基于数字近景摄影测量的岩体结构面信息快速采集的研究应用[D].长春:吉林大学博士论文,2009.
    [4] Sanjab, Ghost K. Photogrammetry for Police Use:Experience in Japan[J]. Photogrammetric Engineering and Remote Sensing, 1980, 46(3).
    [5] Maas H G, Hampel U. Photogrammetric Techniques in Civil Engineering Material Testing and Structure Monitoring[J]. Photogrammetric Engineering & Remote Sensing, 2006, 72(1):39-45.
    [6] Rieke-Zapp D H, Nearing M A. Digital Close Range Photogrammetry for Measurement of Soil Erosion[J]. The Photogrammetric Record, 2005, 20(109):69-87.
    [7] Arias P, Herraez J and Lorenzo H et al. Control of Structural Problems in Cultural Heritage Monuments using Close-range Photogrammetry and Computer Methods[J]. Computers&Structures, 2005, 83(21-22):1754-1766.
    [8]李元海,彭辉,靖洪文.数字照相量测在岩土工程中的应用新进展[C]//中国岩石力学与工程学会.第十届全国岩石力学与工程学术大会论文集. 2008:527-535.
    [9]李浩,张友静,吴继敏.用近景摄影测量方法进行边坡地质编录[J].工程地质计算机应用,1999,2(6):18-20.
    [10]陈强.交通事故现场勘查快速测绘系统的研究[D].成都:西华大学硕士论文,2007:2-4.
    [11]盛金昌,刘继山,赵坚.基于数字化技术的裂隙岩体非稳态渗流分析[J].岩石力学与工程学报,2006,25(7):1402-1407.
    [12]于庆磊,唐春安,朱万成等.基于数字图像处理的岩石细观破裂力学分析[J].力学与实践,2006,28(4):60-64.
    [13]汤竞煌,聂智龙.遥感图像的几何校正[J].测绘与空间地理信息,2007,30(2):100-103.
    [14]杨亚萍.甘肃北山花岗岩裂隙几何学特征研究[D].北京:中国地震局地质研究所硕士论文,2005.
    [15] Peter J, Robert S B. Correction for Geometric Distortion in Echo Planar Images from B0 Field Variations[J]. Magnetic Resonance in Medicine, 1995, 34(1):65-73.
    [16] Alghoniemy M, Tewfik A H. Geometric distortion correction through image normalization[C]//Multimedia and Expo, ICME 2000. 2000 IEEE International Conference. 2000:1291-1294.
    [17] Hutton C, Andreas B, Oliver J et al. Image Distortion Correction in fMRI: A Quantitative Evaluation[J]. NeuroImage, 2002. 16(1):217-240.
    [18]王学平.遥感图像几何校正原理及效果分析[J].计算机应用与软件,2008,25(9):102-105.
    [19]万斌,赵全富,吴祥等.地质罗盘在测量断层产状上的误差分析[J].煤矿现代化,2004,(6):55-56.
    [20] Ross—Brown D.M, Atkinson K B. Terrestrial Photogrammetry in Open-pits: 1—Description and Use of the Phototheodolite in Mine Surveying[J]. Inst. Mining&meteallurgy, 1972, 81(1):7-11.
    [21] Crosta G. Evaluating Rock Mass Geometry From Photographic Images[J]. Rock Mechanics and Rock Engineering, 1997, 30(1):35-58.
    [22] Lemy F, Hadjigeorgiou J. A Digital Face Mapping Case Study in An Underground Hard Rock Mine[M/OL]. Canada NRC Research Press, 2004 [2004-2-13]. http://cgj.nrc.ca.
    [23] Lemy F, Hadjigeorgiou J. Discontinuity Trace Map Construction Using Photographs of Rock Exposures[J]. Rock Mechanics & Minning Sciences, 2003(40):903-917.
    [24] Ferrero A M, Forlani G, Roncella R et al. Advanced Geostructural Survey Methods Applied to Rock Mass Characterization[J]. Rock Mechanics and Rock Engineering, 2009, 42(4):631-665.
    [25] Hadjigeorgiou J, Lemy F, CǒtéP et al. An Evaluation of Image Analysis Algorithms for Constructing Discontinuity Trace Maps.[J]. Rock Mechanics and Rock Engineering, 2003, 36(2):163-179.
    [26] Sturzenegger M, Stead D. Close-range Terrestrial Digital Photogrammetry and Terrestrial Laser Scanning for Discontinuity Characterization on Rock Cuts[J/OL].Engineering Geology, 2009, 106: 163-182[2009-3-15]. http://www. elsevier.com/locate/enggeo.
    [27] Deb D, Hariharan S, Rao U M, et al. Automatic Detection and Analysis of Discontinuity Geometry of Rock Mass from Digital Images[J/OL].Computers&Geosciences, 2008, 34:115-126[2007-2-15]. http://www.iamg. org/CGEditor/index.htm.
    [28] Reid T R, Harrison J P. A Semi-automated Methodology for Discontinuity Trace Detection in Digital Images of Rock Mass Exposures[J]. Rock Mechanics & Minning Sciences 2000, 37:1073-1089.
    [29]吴志勇,聂德新,李雪峰等.基于数码图像的岩体结构信息采集处理研究[J].岩石力学与工程学报,2003,22(增2):2568-2571.
    [30]范留明,李宁.基于数码摄影技术的岩体裂隙测量方法初探[J].岩石力学与工程学报,2005,24(5):792-797.
    [31]范留明,李宁.基于模式识别技术岩体裂隙图像的智能解译方法研究[J].自然科学进展,2004,14(2):236-240.
    [32]范留明,王中锋,李宁.基于近景摄影测量法计算掘进隧洞中切穿顶拱的裂隙面产状[J].地球科学与环境学报,2008,30(3):283-286.
    [33]王凤艳,陈剑平,付学慧等.基于VirtuoZo的岩体结构面几何信息获取研究[J].岩石力学与工程学报,2008,27(1):169-175.
    [34] Snow D T. Anisotropic permeability of fractured media[J]. Water Resources Research. 1969, 5(6):1273–1289.
    [35] Snow D T. Rock fracture spacing, openings, and porosities[J]. Journal of Soil Mechanics & Foundations Div, 1968, 94(SM1):73-91
    [36]王卫星,段姣.基于数字图像处理技术的岩石节理宽度测量[J].微型机与应用,2005(10):51-52.
    [37]赵芳,王卫星,金文标.基于角点分段算法的岩石裂隙宽度测量及分析[J].计算机应用研究,2006(11):137-140.
    [38] Zhang L, Einstein H H. Estimating the Mean Trace Length of Discontinuities[J]. Rock Mechanics and Rcok Engineering, l998, 31(4):2l7-235.
    [39]张文丽.裂隙迹长非确定性统计模型的应用研究—以双江口水电站为例[D].成都:成都理工大学硕士学位论文,2007:15-18.
    [40]王凤艳,陈剑平,庞贺民.应用数字近景摄影测量提取岩体裂隙迹长信息方法研究[J].世界地质,2006,25(1):39-42.
    [41] MVTec Software GmbH. HALON9.0[CP/DK]. Munich, Germany, [s. n.], 2008.
    [42]冯文灏.近景摄影测量—物体外形与运动状态的摄影法测定[M].武昌:武汉大学出版社,2002:60-61.
    [43]马瑞金,张继贤,洪钢.用于影像几何纠正的图形图像控制点[J].测绘科技动态,1999(2):21-24.
    [44]戴昌达,姜小先,唐伶俐.遥感图像应用处理与分析[M].北京:清华大学出版社,2004:95-96.
    [45] Marr D, Hildreth E C. Theory of Edge Detection[J]. Proc. Royal Society, 1980, 207:187-217.
    [46]秦襄培. MATLAB图像处理与界面编程[M].北京:电子工业出版社,2009:328-361.
    [47]张引,李虹,肖春虹等.数字图像处理[M].北京:机械工业出版社,2009.
    [48] Gonzalez R C, Woods R E. Digital Image Processing second edition[M]. Beijing: Publishing House of Electronics Industry, 2006.
    [49] Chodorowski A, Mattsson U, Langille M et al. Color Lesion Boundary Detection using Live Wire[J] SPIE Medical Imaging, 2005, 5474:1589-1596.
    [50] Canny J F. A Computational Approach to Edge Detection[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 1986(8):679-698.