立方阵数据分析算法及其在三维荧光等复杂测试体系中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文的绪论部分,首先简要地介绍了有关化学计量学的产生以及发展情况,随后,重点阐述了化学计量学中极具特色的三维数据分辨和校正研究方向的发展情况,分别简述了三维数据模型和三维数据分辨和校正算法的发展,以及介绍了近年来,三维分辨算法在环境等不同领域中的实际应用。
     论文的第二章,提出利用拉格朗日乘子法的原理来构造目标函数的三线性分解改进算法基本思路。该算法对传统的PARAFAC算法进行了改进,克服了传统PARAFAC算法收敛速度慢以及对成分数估计敏感的缺陷,并利用模拟数据以及实际数据进行对比分析证明了该算法的可行性和有效性。
     论文的第三章,阐述了利用激发-发射荧光法(EEMs)对组分复杂的煤焦油实际样品中的三种多环芳烃:蒽、芘和(艹屈)的同时分辨和定量测定方法。首先利用三维荧光进行测定,然后,利用平行因子法(PARAFAC)对模拟体系和实际体系的数据进行分辨。实验结果表明相对于以往测定多环芳烃的方法而言,该方法可避免或减少烦琐的样品预处理和分离过程,对煤焦油实际样品中的待测多环芳烃组分实现了快速和简单的测定。
     论文的第四章,发展了在无须预分离的情况下,利用三维激发-发射荧光法测定中药秦皮中的两种主要成分秦皮甲素和秦皮乙素的方法。利用三维荧光进行测定,然后利用交替三线性分解算法(ATLD)对该数据进行分解,模拟样本和实际样本分辨和回归结果表明,在秦皮中其它荧光背景干扰共存下,可实现对秦皮萃取液中两种主要成分秦皮甲素和秦皮乙素的同时分辨和定量测定。
     论文的第五章,建议了对存在于环境以及能源原料中的五种二甲基苯酚异构体的复杂混合体系进行同时分辨和定量测定的方法。该色谱和光谱严重重叠的复杂体系,经高效液相色谱-光二极管阵列检测联用仪(HPLC-DAD)检测后,结合选取较佳保留时间及较佳光谱波长范围的办法选取数据,然后,利用化学计量学中的交替三线性分解算法(ATLD)对选取的实验数据进行解析,在二甲基苯酚的五种异构体复杂混合体系中实现了同时分辨及定量测定。
In the introduction section of this thesis, the history of chemometrics has been stated in brief at first, then, the development of trilinear data resolution and calibration in chemometrics was emphasized, which involving the three-way models trilinear decomposition algorithms as well as the applications of these algorithms to the real system in different fields.
    In chapter 2, the theory of an improved trilinear decomposition algorithm based on a lagrange operator (LO) has been described. The traditional parallel factor algorithm (PARAFAC) was improved to converge faster and overcome the sensibility to estimate the number of components by this method, which were proved to be feasible and efficient by a simulated data and a measured data.
    In chapter 3, a method for simultaneous resolution and determination of three components ( pyrene, chrysene and anthracene) in complex coal tar system has been introduced. The simulated and real systems were measured by excitation-emission matrix fluospectroscopy (EEMs) and the measured data were resolved by parallel factor analysis method. This method was proved to be a fast and simple way in the determination of polycyclic aromatic hydrocarbons (PAHs) without any pretreatment and separation in the complex coal tar samples.
    In chapter 4, a new procedure for simultaneous resolution and determination of two components (aesulin and aesculetin) in complex cortex fraxini system has been developed. The two components were measured by excitation-emission matrix fluospectroscopy (EEMs) both in simulated and real system. The results of measured data, which were resolved by alternating trilinear decomposition method (ATLD) . It was shown that it was feasible and simple method in the determination of two main components in the complex cortex fraxini without pretreatment and separation.
    In chapter 5, a method for the simultaneous resolution and determination of the five isomers of dimethylphenols contained in the environments and energy has been stated. The simulated system, whose spectra and chromatograms were overlapped seriously, was measured by HPLC-DAD. The measured data, which were selected in the better region of the chromatograms and spectra, were resolved by alternating
    
    
    trilinear decomposition method (ATLD). The results of the experiment shown that the simultaneous resolution and of the five isomers of dimethylphenols were realized.
引文
[1] 俞汝勤.化学计量学导论.长沙:湖南教育出版社,1991
    [2] 梁逸曾.白灰黑复杂多组分分析体系及其化学计量学算法.长沙:湖南科学技术出版社.1996
    [3] Lorber A. Quantifying chemical composition from two-dimensional data arrays. Anal Chim Acta, 1984. 164:293-297
    [4] Grung B, Kvalheim O M. Detection and qualification of embodied minor analystes in three-way multicomponent profiles by evolving projections and internal rank annihilation. Chemom Intell Lab Syst, 1995, 29(2): 213-221
    [5] Wilson B E, Sanchez E, Kowalski B R. An improve algorithm for the generalized rank annihilation method. J Chemom, 1988, 3(3): 493-498
    [6] Sanchez E, Kowalski B R. Generalized rank annihilation factor analysis. Anal Chem, 1986, 58(2): 496-499
    [7] Millican D W, McGown L B. Fluorescence lifetime resolution of spectra in the frequency domain using multi-way analysis. Anal Chem, 1990, 62(20): 2242-2247
    [8] Booksh K S, Lin Z, Wang Z, Kowalski B R. Extension of trilinear decomposition method with an application to the flow probe sensor. Anal Chem, 1994, 66(15): 2561-2569
    [9] Appellof C J, Davidson E R. Strategies for analyzing data from video fluorometric monitoring of liquid chromatographic effluents. Anal Chem, 1981, 53(13): 2053-2056
    [10] Mitchell B C, Burdick D S. Slowly converging PARAFAC sequences: swamps and two-factor degeneracies. J Chemom, 1994, 8(2): 155-168
    [11] Kiers H A L, Smilde A K. Some theoretical results on second-order calibration methods for data with and without rank overlap. J Chemom, 1995, 9(3): 179-195.
    [12] Bro R. PARAFAC: Tutorial and applications. Chemom Intell Lab Syst, 1997, 38(2), 149-171
    [13] Beltran J L. Guiteras J, Ferrer R. Three-way multivariate calibration procedures applied to high-performance liquid chromatography coupled with fast-scanning
    
    fluorescence spectrometry detection. Determination of polycyclic aromatic hydrocarbons in water samples. Anal Chem, 1998, 70(9): 1949-1955.
    [14] Vega-Montoto L, Wentzell P D. Maximum likehood parallel factor analysis (MLPARAFAC). J Chemom, 2003, 17(4): 237-253
    [15] Henrion R. N-way principal component analysis theory, algorithms and applications. Chemom Inteil Lab Syst. 1994, 25(1): 1-23
    [16] Wu H L, Shibukawa M, Oguma K. Alternative trilinear decomposition method with application to calibration of HPLC-DAD for simultaneous determination of overlapped chlorinated aromatic hydrocarbons. J Chemom, 1998, 12(1): 1-26
    [17] Jiang J H, Wu H L, Yu R Q, et al. Alternating coupled vectors resolution (ACOVER) method for trilinear analysis of three-way data. J Chemom, 1999, 13(6): 557-578
    [18] Li Y, Jiang J H, Yu R Q, et al. Alternating coupled matrices resolution method for three-way arrays analysis. Chemom Intell Lab Syst, 2000, 52(1): 33-43
    [19] Jiang J H, Wu H L, Yu R Q, et al. Three-way data resolution by alternating slice-wise diagonalization method. J Chemom, 2000, 14(1): 15-36
    [20] Chen Z P, Wu H L, Yu R Q, et al. On self-weighted alternating trilinear decomposition algorithm-the property of being insensitive to the excess factors used in calculation. J Chemom, 2001, 15(5): 427-438
    [21] Cao Y Z, Wu H L, Yu R Q, et al. A PARAFAC algorithm using penalty diagonalization error (PDE) for three-way data array resolution. Analyst, 2000, 125(12): 2303-2310
    [22] Chen Z P, Li Y, Yu R Q, et al. Pseudo alternation least squares algorithm for trilinear decomposition. J Chemom, 2001, 15(3): 149-167
    [23] Bro R. Multi-way calibration. Multi-linear PLS. J Chem, 1996, 10(1): 47-62
    [24] Rauler R. Multivariate curve resolution applied to second order data. Chemom Intell Lab Syst. 1995, 30(2): 133-146
    [25] Reis M M, Ferreira M M C. PARAFAC with splines: a case study. J Chemom, 2002, 16(8-10): 444-450
    [26] Jiang J H. Wu H L, Yu R Q. et al. Coupled vectors resolution method for chemometric calibration with three-way data. Anal Chem, 1999, 71:4254-4262
    [27] Jiji R D, Booksh S. Mitigation of Rayleigh and Raman spectral interferences in
    
    multiway calibration of excitation-emission matrix fluorescence spectra. Anal Chem, 2000, 72:718-725
    [28] Kiers H A L, Berge J M F T, Bro R. PARAFAC2-part Ⅰ. A direct fitting algorithm for the PARAFAC2 model. J Chemom, 1999, 13(3-4): 275-294
    [29] Andersson C A, Bro R. Improving the speed of multi-way algorithms: part Ⅰ. Tucker 3. Chemom Intell Lab Syst, 1998, 42(1-2): 93-103
    [30] Bro R, Andersson C A. Improving the speed of multi-way algorithms: part Ⅱ. Compression. Chemom Intell Lab Syst, 1998, 42(1-2): 105-113
    [31] Paatero P, Andersson C A. Further improvements of the speed of the Tucker 3 three-way algorithm. Chemom Intell Lab Syst, 1999, 47(1): 17-20
    [32] Wu W, Guo Q, Massart D L, et al. Structure preserving feature selection in PARAFAC using a genetic algorithm and procrustes analysis. Chemom Intell Lab Syst, 2003, 65(1): 83-95
    [33] Juan A D, Tauler R. Comparison of three-way resolution methods for non-trilinear chemical data sets. J Chemom, 2001.15(10): 749-772
    [34] Gurden S P, Westerhuis J A, Smilde A K, et al. A comparison of multiway regression and scaling methods. Chemom Intell Lab Syst, 2001, 59(1-2): 121-136
    [35] Smilde A K. Comments on multilinear pls. J Chemom, 1997, 11(5): 367-377
    [36] Faber N M, Bro R, Hopke P K. Recent developments in CANDECOMP/PARAFAC algorithms: a critical review. Chemom Intell Lab Syst, 2002, 138(1): 1-19
    [37] Meng X, Morris A J, Martin E B. On-line monitoring of batch processes using a PARAFAC representation. J Chemom, 2003,17(1): 65-81
    [38] Kourti T. Multivariate dynamic data modeling for analysis and statistical process control of batch, start-ups and grade transitions. J Chemom, 2003, 17(1): 93-109
    [39] Nomikosa P, MacGregora J F. Multi-way partial least squares in monitoring batch proccesses. Chemom lntell Lab Syst, 1995, 30(1): 97-108
    [40] Smilde A K. Comments on three-way analyses used for batch process data. J Chemom, 2001, 15(1): 19-27
    [41] Wise B M, Gallagher N B, Butler S W, et al. A comparison of principal component analysis, multiway principal component analysis, trilinear
    
    decomposition and parallel factor analysis for fault detection in a semiconductor etch process. J Chemom, 1999, 13(3-4): 379-396
    [42] Wise B M, Gallagher N B, Martin E B. Application of PARAFAC2 to fault detection and diagnosis in semiconductor etch. J Chemom, 2001, 15(4): 285-298
    [43] Bro R. Exploratory study of sugar production using fluorescence spectroscopy an multi-way analysis. Chemom Intell Lab Syst, 1999, 46(2): 133-147
    [44] Dahl K S, Piovoso M J, Kosanovich K A. Translating third-order data analysis methods to chemical batch processes. Chemom Intell Lab Syst, 1999, 46(2): 161-180
    [45] Geladi P, Forsstrom J. Monitoring of a batch organic synthesis by near-infrared spectroscopy: modeling and interpretation of three-way data. J Chemom, 2002, 16(7): 329-338
    [46] Wentzell P D, Nair S S, Guy R D. Three-way analysis of fluorescence spectra of polycyclic aromatic hydrocarbons with quenching by nitromethane. Anal Chem, 2001, 73:1408-1415
    [47] Barbieri P, Adami G, Piselli S, et al. A three-way principal factor analysis for assessing the time variability of freshwaters related to a municipal water supply. Chemom Intell Lab Syst, 2002, 62(1): 89-100
    [48] Booksh K S, Muroski A R. Single-measurement excitation/emission matrix spectrofluorometer for determination of hydrocarbons in ocean water. 2. calibration and quantitation of naphthalene and styrene. Anal Chem, 1996, 68: 3539-3544
    [49] Jiji R D, Andersson G G, Booksh K S. Application of PARAFAC for calibration with excitation-emission matrix fluorescence spectra of three classes of environmental pollutants. J Chemom, 2000, 14(3): 171-185
    [50] Jiji R D, Cooper G A, Booksh K S. Excitation-emission matrix fluorescence based determination of carbamate pesticides and polycyclic aromatic hydrocarbons. Anal Chim Acta, 1999, 397(1-3): 61-72
    [51] Johnson K, Juan A D, Rutan S C. Three-way data analysis of pollutant degradation profiles monitored using liquid chromatography-diode array detection. J Chemom, 1999, 13(3-4): 331-341
    [52] Leardi R, Armanino C, Lanteri S, et al. Three-mode principal component analysis
    
    of monitoring data from Venice lagoon. J Chemom, 2000, 14(3): 187-195
    [53] Paatero P, Juntto S. Determination of underlying components of cyclical time series by means of two-way and three-way factor analytic techniques. J Chemom, 2000, 14(3): 241-259
    [54] Esteves da Silva J C G, Leitao J M M. Costa,F S et al. Detecion of verapamil drug by fluorescence and trilinear decomposition techniques. Anal Chim Acta, 2002, 453(1): 105-115
    [55] Zissisa K D, Breretona R G, Dunkerleya S, et al. Two-way, unfolded three-way and three-mode partial least squares calibration of diode array HPLC chromatograms for the quantitation of low-level pharmaceutical impurities. Anal Chim Acta, 1999, 384(1): 71-81
    [56] Pedersen D K, Munck L, Engelsen S B. Screening for dioxin contamination in fish oil by PARAFAC and N-PLSR analysis of fluorescence landscapes. J Chemom, 2002, 16(8-10): 451-460
    [57] Reis M M. Ferreira M M C. Sarmento S B S. A multi-way analysis of starch cassava properties. Chemom Intell Lab Syst, 2002, 64(2): 123-135
    [58] Bro R, Heimdal H. Enzymatic browning of vegetables. Calibration and analysis of variance by multiway methods. Chemom Intell Lab Syst, 1996, 34(1): 85-102
    [59] Morals H, Ramos C, Forgacs E, et al. Three-dimensional principal component analysis employed for the study of the β-glucosidase production of Lentinus edodes strains. Chemom Intell Lab Syst, 2001, 57(1): 57-64
    [60] Gemperline P J, Rulifson R A, Paramore L. Multi-way analysis of trace elements in fish otoliths to track migratory patterns. Chemom Intell Lab Syst, 2002, 60(1-2): 135-146
    [61] Saurina J, Hernandez-Cassou S, Tauler R. et al. Procedure for the quantitative determination of mixtures of nucleic acid components based on multivariate spectrophotometric acid-base titrations. Anal Chem, 1999, 71: 126-134
    [62] Diaz-Cruz M. S, Mendieta J, Tauler R. Multivariate curve resolution of cyclic voltammetric data: application to the study of the cadmium-binding properties of glutathione. Anal Chem, 1999, 71: 4629-4636
    [63] Navea S, Juan A D, Tauler R. Three-way data analysis applied to multispectroscopic monitoring of protein folding. Anal Chim Acta, 2001,
    
    446(1-2): 185-195
    [64] Estienne F, Matthijs N, Massart D L, et al. Multi-way modeling of high-dimensionality electroeneephalographic data. Chemom Intell Lab Syst, 2001, 58(1-2): 59-72
    [65] Windig W, Antalek B, Sorriero L J, et al. Applications and new developments of the direct exponential curve resolution algorithm (DECRA) examples of spectra and magnentic resonance images. J Chemom, 1999, 13(1): 95-110
    [66] Nikolajsen R P H, Booksh K S, Hansen A M, et al. Quantifying catecholamines using multi-way kinetic modelling. Anal Chim Acta, 2003, 475(1-2): 137-150
    [67] Bro R. C. A. Andersson, H. A. L. Kiers. PARAFAC2-part Ⅱ. Modeling chromatographic data with retention time shifts. J Chemom, 1999, 13(3-4): 295-309
    [68] Bijlsma S, Smilde A K. Estimation reaction rate constants from a two-step reaction: a comparison between two-way and three-way methods. J Chemom, 2000, 14(5-6): 541-560
    [69] Gossart P, Semmoud A, Ruekebusch C, et al. multivariate curve resolution applied to Fourier transform infrared spectra of macromolecules: structural characterization of the acid form and the salt form of humic acids in interaction with lead. Anal Chim Acta, 2003, 477(2): 201-209
    [70] Vives M, Tauler R, Moreno V, et al. Study of the interaction of a cis-dichloroaminopyrrokidine Pt(Ⅱ) complex and the polynucleotide poly(Ⅰ)-poly(C) acid by means of ~1H-NMR and multivariate curve resolution. Anal Chem, 2001,466(1-2): 437-448
    [71] Cueva J M D, Rossi A V, Poppi R J. Modeling kinetic spectrophotometric data of aminophenol isomers by PARAFAC2. Chemom Intell Lab Syst 2001, 58(2): 125-132
    [72] Antunes A M, Ferreira M M C. Volpe P L O. A chemometrics study of amino acid transport through liquid membranes using UV-vis spectroscopy. J Chemom, 2002, 16(2): 111-116
    [73] Coello J, Maspoch S, Villegas N. Simultaneous kinetic-spectrophotometric determination of levodopa and benserazide by bi- and three-way partial least squares calibration. Talanta, 2000, 53(3-4): 627-637
    
    
    [74] Esteves da Silva J C G, Oliveira C J S. PARAFAC decomposition of three-way kinetic-spectrophotometric spectral matrices corresponding to mixtures of heavy metalions. Talanta, 1999, 49(4): 889-897
    [75] Diaz-Cruz J M, Agullo J, Tauler R, et al. Implementation of a chemical equilibrium constraint in the multivariate curve resolution of voltammograms from systems with successive metal complexes. Analyst, 2001, 126(3): 371-377
    [76] Tan Y X, Jiang J H, Wu H L, et al. Resolution of kinetic system of simultaneous degradations of chlorophyll-a and chlorophyll-b by PARAFAC. Anal Chim Acta, 2000, 412(1-2): 195-202
    [77] Fleming C M, Kowalski B R. Encyclopedia of Analytical Chemistry. Chichester: Wiley and Sons, 2000
    [78] Wu H L, Yu R Q and Oguma K. Trilinear component analysis in modern analytical chemistry. Anal Sci, 2001, 17(4): i483-i486.
    [79] Harshman R A. Foundations of the PARAFAC procedure. Models and methods for an "explanatory multi-mode factor analysis". UCLA Working Papers Phonetics, 1970, 16:1-84
    [80] Geladi P. Analysis of multi-way (multi-mode) data. Chemom Intell Lab Syst, 1989, 7(1-2): 11-30
    [81] Booksh K S and Kowalski B R. Theory of analytical chemistry. Anal Chem, 1994, 66(15): 782A-791A
    [82] Sanchez E, Lindberg B R and Kowalski B R, et al. Tensorial resolution: a direct trilinear decomposition. J Chemom, 1990, 4(1): 29-45
    [83] Smilde A K. Three-way analyses: problems and aspects. Chemom Intell Lab Syst, 1992, 15(2-3): 143-157
    [84] Kiers H A L, Krijnen W P. An efficient algorithm for PARAFAC of three-way data with large numbers of observation units. Psychometrika, 1991, 56(1): 147-152
    [85] Malinowski E. Factor Analysis in Chemistry. 2nd edition. New York: Wiley, 1991
    [86] Krijnen W P. The Analysis of Three-way Arrays by Constrained PARAFAC Methods. Leiden: DSWO Press. 1993
    [87] Westerhuis J A, Smilde A K. Deflation in multibiock PLS. J Chemom, 2001, 15(5): 485-493
    
    
    [88] Bro R, Smilde A K. Jong S D. On the difference between low-rank and subspace approximation: Improved model for multi-linear PLS regression. Chemom Intell Lab Syst, 2001, 58(1): 3-13
    [89] Smilde A K, Westerhuis J A, Boque R. Multiway mutiblock component and covariates regression models. J Chemom, 2000, 14(3): 301-331
    [90] Miller J S. Determination of polycyclic aromatic hydrocarbons by spectrofluorimetry. Anal Chim Acta, 1999, 388(1): 27-34
    [91] Lee M L, Vassllaros D L. Retention indices for programmed-temperature capillary-column gas chromatography of polycyclic aromatic hydrocarbons. Anal Chem, 1979, 51(6): 768-774
    [92] Lee M L, Wright B W. Capillary column gas chromatography of polycyclic aromatic compounds: a review. J Chromatogr Sci, 1980, 18:345-358
    [93] Lao R C, Thomas R S, Monkman J L. Computerized gas chromatographic-mass spectrometric analysis of polycyclic aromatic hydrocarbons in environmental samples. J Chromatogr, 1975, 112:681-700
    [94] Schubert P, Schantz M M, sander L C, et al. Determination of polycyclic aromatic hydrocarbons with molecular weight 300 and 302 in environmental-matrix standard reference materials by gas chromatography/mass spectrometry. Anal Chem, 2003, 75:234-246
    [95] Alben K. Gas Chromatographic-mass spectrometric analysis of chlorination effects on commercial coal-tar leachate. Anal Chem, 1980, 52:1825-1828
    [96] Romanowski T, Funcke W, Grossmann I, et al. Gas chromatographic/mass spectrometric determination of high-molecular-weight polycyclic aromatic hydrocarbons in coal tar. Anal Chem, 1983, 55:1030-1033
    [97] Nishioka M, Chang H, Lee L M, et al. Structural characteristics of polycyclic aromatic hydrocarbons isomers in coal tars and combustion products. Environ Sci Technol, 1986, 20:1023-1027
    [98] Wise S A, Benner B A, Byrd G D, et al. Determination of polycyclic aromatic hydrocarbons in a coal tar standard reference material. Anal Chem, 1988, 60: 887-894
    [99] Blanco C G, Blanco J. Capillary gas chromatographic and combined gas chromatography-mass spectrometric study of the volatile fraction of a coal tar
    
    pitch using OV-1701 stationary phase. J Chromatogr, 1991, 539(1): 157-167
    [100] Herod A A, Kandiyoti R. Fractionation by planar chromatography of a coal tar pitch for characterization by size-exclusion chromatography, UV fluorescence and direct-probe mass spectrometry. J Chromatogr A, 1995,708(1): 143-160
    [101] Cirovic D A, Brereton R G, Walsh P T, et al. Application of partial least squares calibration to measurements of Blanco polycyclic aromatic hydrocarbons in coal tar pitch volatiles. Analyst, 1996, 121(5): 575-580
    [102] Hale R C, Aneiro K M. Determination of coal tar and creosote constituents in the aquatic environment. J Chromatography A, 1997, 774(1): 79-95
    [103] Tamma R V, Miller G C, Everett R. High-performance liquid-chromatographic analysis of coumarins and flavonoids from section Tridentatae of Artemisia. J Chromatogr, 1985, 322(1): 236-239
    [104] 庞志功.汪宝琪,张汉利.秦皮中秦皮甲素和秦皮乙素的荧光测定.分析化学,1996,24(6):703-705
    [105] Bo T, Liu H W, Li K A. High-speed determination of aesculin and aesculetin in Cortex fraxini by micellar electrokinetic chromatography. Chromatographia, 2002, 55(9-10): 621-624
    [106] Zhang H Y, Li Q F, Shi Z H, et al. Analysis of aesculin and aesculetin in Cortex fraxini by capillary zone electrophoresis. Talanta, 2000, 52(4): 607-621
    [107] You T Y, Yang X R, Wang E K. End-column amperometric detection of aesculin and aesculetin by capillary electrophoresis. Anal Chim Acta, 1999, 401(1-2): 29-34
    [108] Zhang Z, Hu Z, Yang G. Identification and determination of aesculin and aesculetin in ash barks by capillary zone electrophoresis. Chromatographia, 1997, 44(3-4): 162-168
    [109] 董美玉,何亦华,朱子彬等.煤快速加氢热解焦油组成的分析.华东理工学院学报,2000,26(3):309~314
    [110] 颜涌捷,李桂贞.高温煤气中焦油组分的催化裂解研究.华东化工学院学报,1992,18(2):192~198