基于动态PLS方法的建模及预测控制器设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代工业的快速发展,工业的生产规模越来越大,生产工艺以及生产流程变得越来越复杂,这对传统的机理建模与控制策略提出了重大的挑战,基于数据驱动的方法越来越受到工业界和学术界的重视。基于PLS的数据驱动控制方法由于其自身的优点已经广泛的应用到各个领域中,然而在实际的工业过程中仍存在其他不足,例如PLS非线性动态特性的拟合、PLS控制方法中隐变量约束耦合等问题。本文针对复杂化工过程中存在的强耦合、约束、非线性等问题,结合PLS去噪、降维、消除共线性、自解耦等特点,提出了基于动态PLS建模方法的多回路预测控制策略。在技术路线上,从线性无约束的控制器到有约束的控制器设计,随后进一步将算法推广到非线性系统建模及控制方法的研究中,最后对非线性系统在线建模与控制问题进行研究。主要的研究内容包括:
     (1)针对大滞后多变量系统的控制问题,本文第二章结合Kaspar等学者提出的PLS控制框架,提出了隐变量的动态PLS建模方法及PID控制框架。针对铝合金MIG焊接过程中存在的强耦合、难建模等特点,本文利用动态PLS框架的解耦特性,将其用于焊接过程中系统的建模以及控制器的设计中,通过该算法将原多变量系统的控制器设计问题转化成为多个单变量控制回路的控制器设计问题,在各个隐变量控制回路中进行独立PID控制器设计,通过仿真验证该方法的有效性。
     (2)过程受到装置、环境等外在条件和内部特性引起的过程变量和控制变量的约束,对基于数据驱动的控制器的设计提出了较高的控制要求。本文第三章,提出了一种将空间投影方法(DyPLS)与迭代方法相结合的约束处理方法;并采用约束模型预测控制策略,对建立的模型进行控制器设计仿真验证。结果表明这种约束迭代算法在约束存在和极点漂移的情况下都能达到理想的控制效果。
     (3)非线性特性是困扰工业过程建模与控制的一个难题,同时非线性特性却具有普遍性。对多变量系统的非线性特性的建模就变得更加困难,模糊模型特别是TS模型为解决非线性问题提供了一种有效途径,通过将模糊方法与PLS方法相结合,将多变量的动态非线性建模问题转变为多个单输入单输出的动态非线性建模问题,从而建立描述过程非线性动态特性的动态模糊PLS模型。在此基础上,进一步研究解决约束工况下的控制问题,引入了模糊预测函数控制方法。在pH中和滴定过程中,验证了模糊预测函数控制方法的控制性能。
     (4)过程受到工况变化、设备、催化剂等变化而使原始模型与当前对象产生较大偏差,这对基于模型的控制器的性能产生较大影响,甚至引起整个系统的不稳定。所以,本文在第五章中,提出了一种将WPLS方法与递推TS建模方法相结合的非线性递推模糊PLS模型更新方法。这种自适应算法在增益变化的情况下能较好的更新模型参数,实现模型与过程匹配。在此基础上,引入预测函数控制器,并在pH中和滴定中验证了该算法。
With the rapid development of modern industry, the scale of industrial production is increasing. The production process and production flow have become more and more complex, which is a major challenge to the traditional mechanism modeling and control strategy. On this condition, data-driven application and theory attract more and more researchers'attention in industry and academia. Due to its advantages, PLS-based data-driven control methods have been widely applied to various fields. However, there are still some specific problems in the industrial process, for example, the nonlinear dynamic characteristics fitting of the PLS, latent variables constraints coupled in PLS control etc. This paper is mainly focusing on strong coupling, constraint processing, nonlinear problems in complex chemical process. Combined with the characteristics of PLS denoising, dimensionality reduction, eliminating collinearity, self decoupling and so on, this paper proposes a multi-loop predictive control strategy based on dynamic PLS modeling method. Technically, we first design linear unconstrained controller and constrainted controller and then extend the algorithm to nonlinear system modeling and control methods and further research on non-linear system online modeling and control problems.
     The main contents include:
     (1) Aiming at conventional control strategies in big lag multivariate system, combined with PLS control framework by Kaspar and Ray, Chapter II of this paper proposed a implicit variable dynamic PLS modeling methods and PID control framework. Against the characteristics of strong coupling and difficult modeling of aluminum alloy MIG welding process, the dynamic PLS framework is used in the welding process system modeling and controller design according to its decoupling characteristics. This method transfers the multivariable controller design problem in original space into multi-loop single-variable controller design in latent space and then design PID controller independently in each latent variables control loop. Finally, demonstrate the effectiveness of this method by simulation.
     (2) Aiming at the constraint of process variables and control variables result from external conditions of process such as pressure, device, environment, and internal characteristics, a higher control requirement is needed for the data-driven based controller design. Consequently, in the Chapter III of the paper, a space projection method (DyPLS) is proposed to deal with constraint, which is combined with iterations method and spatial transform. Constrained model predictive control method is used for model controller design. The simulation shows that this constrained iterative algorithm can achieve the desired result in the case of constraints and pole shift. On this basis, process control is achieved and method of this article is verified on the test model.
     (3) The nonlinear characteristic is one of the biggest problems in the modeling and control of industrial process. Unfortunately, non-linear characteristic is universal, which is more difficult for nonlinear characteristic modeling of the multi-variable system. Fuzzy model especially the TS model provides an effective way to solve the nonlinear problems. Combined with PLS method with fuzzy method, the multivariable dynamic nonlinear modeling is transferred into the multiple SISO nonlinear dynamic modeling problems. And dynamic fuzzy PLS model is established to describe the process dynamic nonlinear characteristics. Combined with the dynamic fuzzy PLS modeling method, based on PLS control framework proposed by Kaspar and Ray and characteristics of TS fuzzy model, constraint conditions control problem is solved. Meanwhile, fuzzy PFC control is introduced to verify the control performance of fuzzy PFC in pH titration process
     (4) The process is affected by changes in working conditions, equipment, catalyst, which results in the deviation between original model and current object, having a great impact on the control performance of the model-based controller. What is worse, it leads to instability of the whole system. To cope with this, in Chapter V nonlinear recursive fuzzy PLS model update method, which combines WPLS method with recursive TS modeling, is proposed. The results show that this adaptive algorithm can do better in update the model parameters to achieve the matching between model and process in the case of gain change. On this basis, prediction function controller is introduced to realize the process control. And an experiment of pH titration is simulated to validate this method.
引文
[1]Bent, J., et al., Data-driven batch scheduling, in Proceedings of the second international workshop on Data-aware distributed computing.2009, ACM: Garching, Germany, p.1-10.
    [2]Carranza, E.J.M., M. Hale, and C. Faassen, Selection of coherent deposit-type locations and their application in data-driven mineral prospectivity mapping. Ore Geology Reviews,2008.33(3-4):p.536-558.
    [3]Yu, J. and S.J. Qin, Statistical MIMO controller performance monitoring. Part I:Data-driven covariance benchmark. Journal of Process Control,2008. 18(3-4):p.277-296.
    [4]Kadlec, P., R. Grbic, and B. Gabrys, Review of adaptation mechanisms for data-driven soft sensors. Computers & Chemical Engineering,2011.35(1):p. 1-24.
    [5]Light, D., D. Wexler, and C. Heinz, Keeping teachers in the center:a framework for data-driven decision-making, in Society for Information Technology & Teacher Education International Conference 2005, C. Crawford, et al., Editors.2005, AACE:Phoenix, AZ, USA. p.128-133.
    [6]Previdi, F., et al., Data-driven control design for neuroprotheses:a virtual reference feedback tuning (VRFT) approach. Control Systems Technology, IEEE Transactions on,2004.12(1):p.176-182.
    [7]Wayman, J.C., Involving Teachers in Data-Driven Decision Making:Using Computer Data Systems to Support Teacher Inquiry and Reflection. Journal of Education for Students Placed at Risk (JESPAR),2005.10(3):p.295-308.
    [8]Meng, Z., et al. MMC03-4:On the Optimal Scheduling for Media Streaming in Data-driven Overlay Networks. in Global Telecommunications Conference, 2006. GLOBECOM'06. IEEE.2006.
    [9]Xinyan, Z., et al. CoolStreaming/DONet:a data-driven overlay network for peer-to-peer live media streaming, in INFOCOM 2005.24th Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings IEEE.2005.
    [10]Namburu, S.M., et al., Fault detection, diagnosis, and data-driven modeling in HVAC chillers.2005:p.143-154.
    [31]Wang, H., et al., Data Driven Fault Diagnosis and Fault Tolerant Control: Some Advances and Possible New Directions. Acta Automatica Sinica,2009. 35(6):p.739-747.
    [12]Pearson, K., On lines and planes of closest fit to systems of points in space. Philosophical Magazine,1901.2(6):p.559-572.
    [13]Hotelling, H., Analysis of a complex of statistical variables into rincial comonents. Journal of Educational Psychology,1933.24(6):p.417-441.
    [14]Wold, S., Cross-Validatory Estimation of the Number of Components in Factor and Principal Components Models. Technometrics,1978.20(4):p.397-405.
    [15]Ku, W., R.H. Storer, and C. Georgakis, Disturbance detection and isolation by dynamic principal component analysis. Chemometrics and Intelligent Laboratory Systems,1995.30(1):p.179-196.
    [16]Kramer, M.A., Nonlinear principal component analysis using autoassociative neural networks. AIChE Journal,1991.37(2):p.233-243.
    [17]Dong, D. and T.J. McAvoy, Nonlinear principal component analysis-Based on principal curves and neural networks. Computers & Chemical Engineering, 1996.20(1):p.65-78.
    [18]Scholkopf, B., A. Smola, and K.R. Muller, Neural Computation,1998:p. 1299.
    [19]Lee, J.-M., et al., Nonlinear process monitoring using kernel principal component analysis. Chemical Engineering Science,2004.59(1):p.223-234.
    [20]Huazhong, W. and Y. JinShou. Application study on nonlinear dynamic FIR modeling using hybrid SVM-PLS method. in Intelligent Control and Automation,2004. WCICA 2004. Fifth World Congress on.2004.
    [21]Odiowei, P.E.P. and C. Yi, Nonlinear Dynamic Process Monitoring Using Canonical Variate Analysis and Kernel Density Estimations. Industrial Informatics, IEEE Transactions on,2010.6(1):p.36-45.
    [22]Wold, S., Exponentially weighted moving principal components analysis and projections to latent structures. Chemometrics and Intelligent Laboratory Systems,1994.23(1):p.149-161.
    [23]A. Rigopoulos, Y.A., F. Kayihan, E. Hanezyc, Identification of paper machine full profile disturbances models using adaptive principal component analysis, in Chemical Process Control.1996:V. Tahoe. p.275-279.
    [24]Rannar, S., J.F. MacGregor, and S. Wold, Adaptive batch monitoring using hierarchical PCA. Chemometrics and Intelligent Laboratory Systems,1998. 41(1):p.73-81.
    [25]Joe Qin, S., Recursive PLS algorithms for adaptive data modeling. Computers & Chemical Engineering,1998.22(4-5):p.503-514.
    [26]Liu, X., et al., Moving window kernel PCA for adaptive monitoring of nonlinear processes. Chemometrics and Intelligent Laboratory Systems,2009. 96(2):p.132-143.
    [27]Westerhuis, J.A., T. Kourti, and J.F. MacGregor, Analysis of multiblock and hierarchical PCA and PLS models. Journal of Chemometrics,1998.12(5):p. 301-321.
    [28]Nomikos, P. and J.F. MacGregor, Multi-way partial least squares in monitoring batch processes. Chemometrics and Intelligent Laboratory Systems,1995.30(1):p.97-108.
    [29]Wold, S., N. Kettaneh-Wold, and B. Skagerberg, Nonlinear PLS modeling. Chemometrics and Intelligent Laboratory Systems,1989.7(1-2):p.53-65.
    [30]Chen, J. and K.-C. Liu, On-line batch process monitoring using dynamic PCA and dynamic PLS models. Chemical Engineering Science,2002.57(1):p. 63-75.
    [31]Lee, D.S. and P. A. Vanrolleghem, Monitoring of a sequencing batch reactor using adaptive multiblock principal component analysis. Biotechnology and Bioengineering,2003.82(4):p.489-497.
    [32]Wold, H., Softmodelling by latent variables:the non-linear iterative partial least squares (NIPALS) approach, in Applied Probability Trust.1975: Sheffield, p.117-142.
    [33]王慧文,偏最小二乘回归的线性与非线性方法.2006:国防工业出版社.
    [34]Marten, G.G., A survey of cyclopoid copepods for control of Aedes albopictus larvae. Bull. Soc. Vector Eco.l.,1989.14:p.232-236.
    [35]de Jong, S., SIMPLS:An alternative approach to partial least squares regression. Chemometrics and Intelligent Laboratory Systems,1993.18(3):p. 251-263.
    [36]Phatak, A. and S. De Jong, The geometry of partial least squares. Journal of Chemometrics,1997.11(4):p.311-338.
    [37]M. Faber, N. and J. Ferre, On the numerical stability of two widely used PLS algorithms. Journal of Chemometrics,2008.22(2):p.101-105.
    [38]Ricker, N.L., The use of biased least-squares estimators for parameters in discrete-time pulse-response models. Industrial & Engineering Chemistry Research,1988.27(2):p.343-350.
    [39]Qin, S.J. and McAvoy T.J., Nonlinear PLS modeling using neural networks. Computers & Chemical Engineering,1992.16(4):p.379-391.
    [40]Kaspar, M.H. and W.H. Ray, Partial least squares modelling as successive singular value decompositions. Computers & Chemical Engineering,1993. 17(10):p.985-989.
    [41]Helland, K., et al., Recursive algorithm for partial least squares regression. Chemometrics and Intelligent Laboratory Systems,1992.14(1-3):p.129-137.
    [42]Dayal, B.S. and J.F. MacGregor, Recursive exponentially weighted PLS and its applications to adaptive control and prediction. Journal of Process Control, 1997.7(3):p.169-179.
    [43]Wold, S., Nonlinear partial least squares modelling II. Spline inner relation. Chemometrics and Intelligent Laboratory Systems,1992.14(1-3):p.71-84.
    [44]Bang, Y.H., C.K. Yoo, and I.-B. Lee, Nonlinear PLS modeling with fuzzy inference system. Chemometrics and Intelligent Laboratory Systems,2002. 64(2):p.137-155.
    [45]Palumbo, F., R. Romano, and V. Vinzi, Fuzzy PLS Path Modeling:A New Tool For Handling Sensory Data, in Data Analysis, Machine Learning and Applications, C. Preisach, et al., Editors.2008, Springer Berlin Heidelberg. p. 689-696.
    [46]Malthouse, E.C., A.C. Tamhane, and R.S.H. Mah, Nonlinear partial least squares. Computers & Chemical Engineering,1997.21(8):p.875-890.
    [47]Doymaz, F., A. Palazoglu, and J.A. Romagnoli, Orthogonal Nonlinear Partial Least-Squares Regression. Industrial & Engineering Chemistry Research, 2003.42(23):p.5836-5849.
    [48]Adebiyi, O.A. and A.B. Corripio, Dynamic neural networks partial least squares (DNNPLS) identification of multivariable processes. Computers & Chemical Engineering,2003.27(2):p.143-155.
    [49]Lee, D.S., et al., Nonlinear dynamic partial least squares modeling of a full-scale biological wastewater treatment plant. Process Biochemistry,2006. 41(9):p.2050-2057.
    [50]Hu, B., et al. Multiloop nonlinear IMC strategy design under PLS framework using ARX-neural network model. in Intelligent Control and Automation (WCICA),2010 8th World Congress on.2010.
    [51]Hoskuldsson, A., PLS regression methods. Journal of Chemometrics,1988. 2(3):p.211-228.
    [52]Eriksson, L., et al., GIFI-PLS:Modeling of Non-Linear ities and Discontinuities in QSAR. Quantitative Structure-Activity Relationships,2000. 19(4):p.345-355.
    [53]Song, K., et al., Hyper spectral retrieval of phycocyanin in potable water sources using genetic algorithm-partial least squares (GA-PLS) modeling. International Journal of Applied Earth Observation and Geoinformation,2012. 18(0):p.368-385.
    [54]Trygg, J. and S. Wold, Orthogonal projections to latent structures (O-PLS). Journal of Chemometrics,2002.16(3):p.119-128.
    [55]Cloarec, O., et al., Evaluation of the Orthogonal Projection on Latent Structure Model Limitations Caused by Chemical Shift Variability and Improved Visualization of Biomarker Changes in 1H NMR Spectroscopic Metabonomic Studies. Analytical Chemistry,2004.77(2):p.517-526.
    [56]Stella, C., et al., Susceptibility of Human Metabolic Phenotypes to Dietary Modulation. Journal of Proteome Research,2006.5(10):p.2780-2788.
    [57]Trygg, J.,02-PLS for qualitative and quantitative analysis in multivariate calibration. Journal of Chemometrics,2002.16(6):p.283-293.
    [58]侯忠生,数据驱动控制理论及方法的回顾和展望.自动化学报,2009.35(6):p.651-667.
    [59]侯忠生,非线性系统参数辨识自适应控制及无模型学习自适应控制.1994,东北大学.
    [60]Spall, J.C., Multivariate stochastic approximation using a simultaneous perturbation gradient approximation. Automatic Control, IEEE Transactions on,1992.37(3):p.332-341.
    [61]Safonov, M. and T.-C. Tsao, The unfalsified control concept:A direct path from experiment to controller, in Feedback Control, Nonlinear Systems, and Complexity, B. Francis and A. Tannenbaum, Editors.1995, Springer Berlin Heidelberg, p.196-214.
    [62]Hjalmarsson, H., S. Gunnarsson, and M. Gevers. A convergent iterative restricted complexity control design scheme. in Decision and Control,1994., Proceedings of the 33rd IEEE Conference on.1994.
    [63]Guardabassi, GO. and S.M. Savaresi, Virtual reference direct design method: an off-line approach to data-based control system design. Automatic Control, IEEE Transactions on,2000.45(5):p.954-959.
    [64]熊丽,基于数据驱动技术的过程监控与优化方法研究.2008,浙江大学:杭州.
    [65]Kaspar, M.H. and W. Harmon Ray, Dynamic PLS modelling for process control. Chemical Engineering Science,1993.48(20):p.3447-3461.
    [66]Patwardhan, R.S., S. Lakshminarayanan, and S.L. Shah, Constrained nonlinear MPC using hammerstein and wiener models:PLS framework. AIChE Journal,1998.44(7):p.1611-1622.
    [67]Chen, J., Y.-C. Cheng, and Y. Yea, Multiloop PID controller design using partial least squares decoupling structure. Korean Journal of Chemical Engineering,2005.22(2):p.173-183.
    [68]Hu, B., P. Zheng, and J. Liang, Multi-loop Internal Model Controller Design Based on a Dynamic PLS Framework. Chinese Journal of Chemical Engineering,2010.18(2):p.277-285.
    [69]Chen, J. and K.-C. Lin, Batch-to-batch iterative learning control and within-batch on-line control for end-point qualities using MPLS-based dEWMA. Chemical Engineering Science,2008.63(4):p.977-990.
    [70]Chen, J. and F. Wang, PLS based dEWMA run-to-run controller for MIMO non-squared semiconductor processes. Journal of Process Control,2007.17(4): p.309-319.
    [71]Flores-Cerrillo, J. and J.F. MacGregor, Control of batch product quality by trajectory manipulation using latent variable models. Journal of Process Control,2004.14(5):p.539-553.
    [72]Lopes, J.A. and J.C. Menezes, Industrial fermentation end-product modelling with multilinear PLS. Chemometrics and Intelligent Laboratory Systems,2003. 68(1-2):p.75-81.
    [73]Tenenhaus, M., et al., PLS path modeling. Computational Statistics & Data Analysis,2005.48(1):p.159-205.
    [74]Hermanto, M.W., R.D. Braatz, and M.-S. Chiu, Integrated batch-to-batch and nonlinear model predictive control for polymorphic transformation in pharmaceutical crystallization. AIChE Journal,2011.57(4):p.1008-1019.
    [75]Chen, J. and Y.-C. Cheng, Applying Partial Least Squares Based Decomposition Structure to Multiloop Adaptive Proportional-Integral-Derivative Controllers in Nonlinear Processes. Industrial & Engineering Chemistry Research,2004.43(18):p.5888-5898.
    [76]Lakshminarayanan, S., Shah S.L., and Nandakumar K., Modeling and control of multivariable processes:Dynamic PLS approach. AIChE Journal,1997. 43(9):p.2307-2322.
    [77]Garcia, C.E., D.M. Prett, and M. Morari, Model predictive control:Theory and practice-A survey. Automatica,1989.25(3):p.335-348.
    [78]Cutler, C.R.,& Ramaker, B. L., Dynamic matrix control a computer control algorithm, in Proceedings Joint Automatic Control Conference.1980:San Francisco, CA.
    [79]Richalet, J., et al., Model predictive heuristic control:Applications to industrial processes. Automatica,1978.14(5):p.413-428.
    [80]Mehra R.K., R.R., Eterno J., Richalet J., A. Rault, D.E. Seborg, T.F. Edgar Model algorithmic control (MAC):Review and recent developments, in Proceeding of the engineering foundation conference 1981. p.287-309.
    [81]Froisy, J.B. and J. Richalet. INDUSTRIAL APPLICATIONS OF IDCOM. 1986.
    [82]Garcia, C.E. and D.M. Prett. ADVANCES IN INDUSTRIAL MODEL-PREDICTIVE CONTROL.1986.
    [83]afirouE. Z, A Y.., Ray W.H., On the effect of tuning parameters and constraints on the robustness of model predictive controllers, in Proceedings of the fourth international conference on chemical process control 1991. p. 363-394.
    [84]Morari M., J.L.L., Arkun Y., W.H. Ray, Model predictive control:The good, the bad and the ugly, in Proceedings of the fourth international conference on chemical process control 1991. p.419-444.
    [85]Ricker N.L., A. Y, Ray W.H. Model predictive control:State of the art, in Proceedings of the fourth international conference on chemical process control 1991. p.271-296.
    [86]Camacho, E. and C. Bordons, Nonlinear Model Predictive Control:An Introductory Review, in Assessment and Future Directions of Nonlinear Model Predictive Control, R. Findeisen, F. Allgower, and L. Biegler, Editors.2007, Springer Berlin Heidelberg, p.1-16.
    [87]Badgwell, T.A.,& Qin, S. J, In B. Kouvaritakis,& M. Cannon, Review of non-linear model predictive control applications. Nonlinear predictive control: theory and practice,2001:p.3-32.
    [88]F. Allgower, T.A.B., S.J. Qin, J.B. Rawlings, S.J. Wright, P.M. Frank Nonlinear predictive control and moving horizon estimation-an introductory overview, in Advances in control:highlights of ECC 1999:Springer, Berlin
    [89]Grancharova, A. and T.A. Johansen, Computation, approximation and stability of explicit feedback min-max nonlinear model predictive control Automatica, 2009.45(5):p.1134-1143.
    [90]Zavala, V.M. and L.T. Biegler, The advanced-step NMPC controller: Optimality, stability and robustness. Automatica,2009.45(1):p.86-93.
    [91]Sastry and Bodson, S.S., M. Bodson, Adaptive Control:Stability, Convergence, and Robustness 1989, Englewood Cliffs, NJ:Prentice-Hall.
    [92]Dougherty, D. and D. Cooper, A practical multiple model adaptive strategy for multivariable model predictive control. Control Engineering Practice,2003. 11(6):p.649-664.
    [93]Mayne, D.Q., et al., Constrained model predictive control:Stability and optimality. Automatica,2000.36(6):p.789-814.
    [94]Fukushima, H., T.-H. Kim, and T. Sugie, Adaptive model predictive control for a class of constrained linear systems based on the comparison model. Automatica,2007.43(2):p.301-308.
    [95]Rahideh, A., M.H. Shaheed, and H.J.C. Huijberts, Dynamic modelling of a TRMS using analytical and empirical approaches. Control Engineering Practice,2008.16(3):p.241-259.
    [96]Adetola, V., D. DeHaan, and M. Guay, Adaptive model predictive control for constrained nonlinear systems. Systems & Control Letters,2009.58(5):p. 320-326.
    [97]席裕庚,预测控制.1993:国防工业出版社.
    [98]Zadeh, L.A., Fuzzy sets. Information and Control,1965.8(3):p.338-353.
    [99]Mamdani, E.H., Application of fuzzy algorithms for control of simple dynamic plant. Proceedings of the Institution of Electrical Engineers,1974.121(12):p. 1585-1588.
    [100]Mamdani, E.H. and Assilian S., Expliment in ligustic synathesis with a fuzzy logic controller. International Journal of Man-Machine Studies,1975.7(1):p. 1-13.
    [101]Kickert, W.J.M. and H.R. Van Nauta Lemke, Application of a fuzzy controller in a warm water plant. Automatica,1976.12(4):p.301-308.
    [102]J.J. Ostergaard, M.M.G., G.N. Saridis, B.R. Gaines Fuzzy logic control of a heat exchanger process, in Fuzzy Automata and Decision Processes.1977: North-Holland, Amsterdam. p.285-320.
    [103]Sugeno, M., On stability of fuzzy systems expressed by fuzzy rules with singleton consequents. IEEE Transactions on Fuzzy Systems,1999.7(2):p. 201-224.
    [104]Michels K., F.K., Kruse R., A. Nurnberger, Fuzzy Control:Fundamentals. Stability and Design of Fuzzy Controllers.2006, New York Springer-Verlag.
    [105]Jantzen, J., Foundations of Fuzzy Control. John Wiley & Sons.2007.
    [106]Kluska, J., Analytical Methods in Fuzzy Modeling and Control. Springer-Verlag.2009.
    [107]Feng, G., Analysis and Synthesis of Fuzzy Control Systems:A Model-Based Approach. CRC Press.2010.
    [108]Sala, A., T.M. Guerra, and R. Babuska, Perspectives of fuzzy systems and control. Fuzzy Sets and Systems,2005.156(3):p.432-444.
    [109]Precup, R.E. and S. Preitl, PI-Fuzzy controllers for integral plants to ensure robust stability. Information Sciences,2007.177(20):p.4410-4429.
    [110]Zheng, F., et al., Robust PI controller design for nonlinear systems via fuzzy modeling approach. IEEE Transactions on Systems, Man, and Cybernetics Part A:Systems and Humans.,2001.31(6):p.666-675.
    [111]Guzelkaya, M., I. Eksin, and E. Yesil, Self-tuning of PID-type fuzzy logic controller coefficients via relative rate observer. Engineering Applications of Artificial Intelligence,2003.16(3):p.227-236.
    [112]Ying, H., Deriving analytical input-output relationship for fuzzy controllers using arbitrary input fuzzy sets and Zadeh fuzzy AND operator. IEEE Transactions on Fuzzy Systems,2006.14(5):p.654-662.
    [113]Mannan A.,.T.H.A, A fuzzy Lyapunov-based control strategy for a macro-micro manipulator:experimental results. IEEE Transactions on Control Systems Technology,2007.15(2):p.375-383.
    [114]Lewis, F.L. and K. Liu, Towards a paradigm for fuzzy logic control. Automatica,1996.32(2):p.167-181.
    [115]Mann, G.K.I., B.G. Hu, and R.G. Gosine, Analysis of direct action fuzzy PID controller structures. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,1999.29(3):p.371-388.
    [116]Hui, N.B., V. Mahendar, and D.K. Pratihar, Time-optimal, collision-free navigation of a car-like mobile robot using neuro-fuzzy approaches. Fuzzy Sets and Systems,2006.157(16):p.2171-2204.
    [117]F.-J. Lin, R.-J.W., Adaptive and fuzzy neural network sliding-mode controllers for motor-quick-return servomechanism. Mechatronics,2003.13(5):p. 477-506.
    [118]R.-J. Wai, C.-M.L., C.-F. Hsu, Adaptive fuzzy sliding-mode control for electrical servo drive. Fuzzy Sets and Systems,2004.143(2):p.295-310.
    [119]C.-L. Hwang, H.-M.W., C.-L. Shih, Fuzzy sliding-mode underactuated control for autonomous dynamic balance of an electrical bicycle. IEEE Transactions on Control Systems Technology,2009.17(3):p.658-670.
    [120]C.-Y. Chen, T.-H.S.L., Y.-C. Yeh, EP-based kinematic control and adaptive fuzzy sliding-mode dynamic control for wheeled mobile robots. Information Sciences,2009.179(1-2):p.180-195.
    [121]Chang, M.-K., An adaptive self-organizing fuzzy sliding mode controller for a 2-DOF rehabilitation robot actuated by pneumatic muscle actuators. Control Engineering Practice,2010.18(1):p.13-22.
    [122]Palm, R., Robust control by fuzzy sliding mode. Automatica,1994.30(9):p. 1429-1437.
    [123]Glower S., M J.., Designing fuzzy controllers from a variable structures standpoint. IEEE Transactions on Fuzzy Systems,1997.5(1):p.138-144.
    [124]Ha, Q.P., et al., Fuzzy sliding-mode controllers with applications. IEEE Transactions on Industrial Electronics,2001.48(1):p.38-46.
    [125]Lee, H., et al., A new sliding-mode control with fuzzy boundary layer. Fuzzy Sets and Systems,2001.120(1):p.135-143.
    [126]Liaw, C.M. and S.Y. Cheng, Fuzzy two-degrees-of-freedom speed controller for motor drives. IEEE Transactions on Industrial Electronics,1995.42(2):p. 209-216.
    [127]Visioli, A., Fuzzy logic based set-point weight tuning of PID controllers. IEEE Transactions on Systems, Man, and Cybernetics Part A:Systems and Humans., 1999.29(6):p.587-592.
    [128]Barai, R.K. and K. Nonami, Optimal two-degree-of-freedom fuzzy control for locomotion control of a hydraulically actuated hexapod robot. Information Sciences,2007.177(8):p.1892-1915.
    [129]Precup, R.E., S. Preitl, and P. Korondi, Fuzzy controllers with maximum sensitivity for servosystems. IEEE Transactions on Industrial Electronics,2007. 54(3):p.1298-1310.
    [130]Precup, R.E., et al., Generic two-degree-of-freedom linear and fuzzy controllers for integral processes. Journal of the Franklin Institute,2009. 346(10):p.980-1003.
    [131]Babuska R., V H.B.., An overview on fuzzy modelling for control. Control Engineering Practice,1996.4(11):p.1593-1606.
    [132]Koczy, L.T., Fuzzy If-Then rule models and their transformation into one another. IEEE Transactions on Systems, Man, and Cybernetics-Part A,1996. 26(5):p.621-637.
    [133]Babuska, R., Fuzzy Modeling for Control.1998, Boston, MA Kluwer Academic Publishers.
    [134]Cao S.G., R N.W.., Feng G., Analysis and design of fuzzy control systems using dynamic fuzzy global models. Fuzzy Sets and Systems,1995.75(1):p.47-62.
    [135]Tanaka K., W H.O.., Fuzzy Control Systems Design and Analysis:A Linear Matrix Inequality Approach.2001, New York John Wiley & Sons.
    [136]Feng, G, A survey on analysis and design of model-based fuzzy control systems. IEEE Transactions on Fuzzy Systems,2006.14(5):p.676-697.
    [137]Jang J.-S.R.,.S C.-T., Mizutani E., Neuro-Fuzzy and Soft Computing. A Computational Approach to Learning and Machine Intelligence.1997, Upper Saddle River, NJ Prentice Hall.
    [138]Abonyi, J., Fuzzy Model Identification for Control.2003, Boston Birkhauser.
    [139]Mollov S.,.B.R, Abonyi J., Verbruggen B. H., Effective optimization for fuzzy model predictive control. IEEE Transactions on Fuzzy Systems,2004.12(5):p. 661-675.
    [140]Blazic S., I.S., Gerksic S., Dolanc G., Strmcnik S., Hadjiski M.B., Stathaki, A. Online fuzzy identification for an intelligent controller based on a simple platform. Engineering Applications of Artificial Intelligence,2009.22(4-5):p. 628-638.
    [141]H.K. Ahn, H.P.H.A., Inverse double NARX fuzzy modeling for system identification. IEEE/ASME Transactions on Mechatronics,2010.15(1):p. 136-148.
    [142]Kaspar, M.H. and Ray W.H., Chemometric methods for process monitoring and high-performance controller design. AIChE Journal,1992.38(10):p. 1593-1608.
    [143]Chen, G., T.J. McAvoy, and M.J. Piovoso, A multivariate statistical controller for on-line quality improvement. Journal of Process Control,1998.8(2):p. 139-149.
    [144]Shi, R. and J.F. MacGregor, Modeling of dynamic systems using latent variable and subspace methods. Journal of Chemometrics,2000.14(5-6):p. 423-439.
    [145]Hu, B., Z. Zhao, and J. Liang, Multi-loop nonlinear internal model controller design under nonlinear dynamic PLS framework using ARX-neural network model. Journal of Process Control,2012.22(1):p.207-217.
    [146]Zhao, Z., B. Hu, and J. Liang, Multi-loop adaptive internal model control based on a dynamic partial least squares model. Journal of Zhejiang University-Science A,2011.12(3):p.190-200.
    [147]Hu, B., P.Y. Zheng, and J. Liang, Multi-loop Internal Model Controller Design Based on a Dynamic PLS Framework. Chinese Journal of Chemical Engineering,2010.18(2):p.277-285.
    [148]Sotaro, Y. and M. Koichi, Advanced welding technology keeps Japan's high-speed trains on track. Welding Journal,2000.79(11):p.48-53.
    [149]王威,et a1.,锣合釜激光一小功率脉冲MIG电弧复合热源焊接特性分析.焊接学报,2007.28(8):p.37-42.
    [150]石圩,et a1.,铝合鑫脉冲MIG焊动态辩识.焊接学报,2006.27(3):p.57-61.
    [151]石圩,薛诚,樊丁,锣合金脉冲MIG焊过程解耦控制模型及仿真.焊接学报,2008.29(5):p.9-12.
    [152]李建军,锣合金MIG焊过程MIMO模型辨识及控制系统仿真.2007,兰州理工大学:兰州.
    [153]Richalet, J.a.A., E. and Arber, C. and Kuntze, HB and Jacubasch, A. and Schill, W., Predictive functional control:application to fast and accurate robots, in IFAC 10th World Congress,.1987:Munich, PRG.
    [154]Clarke, D.W., Advances in Model-Based Predictive Control, chapter Generalized Predictive Control in Clinical Anesthesia.1994:Oxford University Press.
    [155]Clarke, D.W., Application of generalized predictive control to industrial processes. Control Systems Magazine, IEEE,1988.8(2):p.49-55.
    [156]Richalet, J., Industrial applications of model based predictive control. Automatica,1993.29(5):p.1251-1274.
    [157]Maciejowski, J.M., Predictive control:with constraints.2002:Pearson education.
    [158]Mayne, D.Q.a.R., J.B. and Rao, C.V. and Scokaert, P.O.M., Constrained model predictive control:Stability and optimality. Automatica,2000.36:p.789-814.
    [159]Hovland, S.a.G, J.T. Complexity reduction in explicit MPC through model reduction. in Proceedings of the 17 th World Congress.2008.
    [160]Wold, S., et al., The Collinearity Problem in Linear Regression. The Partial Least Squares (PLS) Approach to Generalized Inverses. SIAM Journal on Scientific and Statistical Computing,1984.5(3):p.735-743.
    [161]Wold, S., H. Martens, and H. Wold, The multivariate calibration problem in chemistry solved by the PLS method Matrix Pencils, B. Kagstrom and A. Ruhe, Editors.1983, Springer Berlin/Heidelberg, p.286-293.
    [162]Chen, J., K.-T. Hsieh, and L.L.T. Chan, PLS data-driven based approach to design of a simulated moving bed process. Separation and Purification Technology,2009.65(2):p.173-183.
    [163]Boulesteix, A.L., PLS dimension reduction for classification with microarray data. Statistical applications in genetics and molecular biology,2004.3:p.33.
    [164]Zhao, H., et al., A nonlinear industrial model predictive controller using integrated PLS and neural net state-space model. Control Engineering Practice,2001.9(2):p.125-133.
    [165]Baffi, G, J. Morris, and E. Martin, Non-Linear Model Based Predictive Control Through Dynamic Non-Linear Partial Least Squares. Chemical Engineering Research and Design,2002.80(1):p.75-86.
    [166]Lauri, D., et al. A PLS approach to identifying predictive ARX models, in Control Applications, (CCA)& Intelligent Control, (ISIC),2009 IEEE.2009.
    [167]Shamekh, A.a.L., B and Sandoz, D and Marjanovic, O. PLS and its Application within Model Predictive Controllers. in Procedings of the 17th IFAC World Congress.2008.
    [168]Nguyen, D.V. and D.M. Rocke, On partial least squares dimension reduction for microarray-based classification:a simulation study. Computational Statistics & Data Analysis,2004.46(3):p.407-425.
    [169]Morari, M.a.L., J.H. and Garcia, C. and Prett, DM, Model predictive control. 2002:Preprint.
    [170]胡寿松,自动控制原理.2001,北京:科学出版社.
    [171]Kokate, R.a.W., LM and Deshmukh, SD. Review of Tuning Methods of DMC and Performance Evaluation with PID Algorithms on a FOPDT Model. in International Conference on Advances in Recent Technologies in Communication and Computing (ARTCom).2010:IEEE.
    [172]Embirucu, M. and C. Fontes, Multirate multivariable generalized predictive control and its application to a slurry reactor for ethylene polymerization. Chemical Engineering Science,2006.61(17):p.5754-5767.
    [173]Wold, S., et al., The Collinearity Problem in Linear Regression. The Partial Least Squares (PLS) Approach to Generalized Inverses. SIAM Journal on Scientific and Statistical Computing,1984.5(3):p.735-743.
    [174]Babuska, R., J.A. Roubos, and H.B. Verbruggen. Identification of MIMO systems by input-output TS fuzzy models, in Fuzzy Systems Proceedings,1998. IEEE World Congress on Computational Intelligence., The 1998 IEEE International Conference on.1998.
    [175]Kukolj and Dragan, Design of adaptive Takagi-Sugeno-Kang fuzzy models. Applied Soft Computing,2002.2(2):p.89-103.
    [176]Angelov, P.P. and D.P. Filev, An approach to online identification of Takagi-Sugeno fuzzy models. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on,2004.34(1):p.484-498.
    [177]Bortolet, P. and R. Palm. Identification, modeling and control by means of Takagi-Sugeno fuzzy systems, in Fuzzy Systems,1997., Proceedings of the Sixth IEEE International Conference on.1997.
    [178]Edgar, C.R. and B.E. Postlethwaite, MIMO fuzzy internal model control. Automatica,2000.36(6):p.867-877.
    [179]Abdel-Rahman, A.I. and G.J. Lim, A nonlinear partial least squares algorithm using quadratic fuzzy inference system. Journal of Chemometrics,2009. 23(10):p.530-537.
    [180]Svante, W., K.-W. Nouna, and S. Bert, Nonlinear PLS modeling. Chemometrics and Intelligent Laboratory Systems,1989.7(1-2):p.53-65.
    [181]Baffi, G., E.B. Martin, and A.J. Morris, Non-linear projection to latent structures revisited (the neural network PLS algorithm). Computers & Chemical Engineering,1999.23(9):p.1293-1307.
    [182]Kropko, M.L., et al., Chemical purity and mutagenicity:Case study of a drug in development. Mutation Research Letters,1992.281(4):p.233-238.
    [183]Centner, V., O.E. de Noord, and D.L. Massart, Detection of nonlinearity in multivariate calibration. Analytica Chimica Acta,1998.376(2):p.153-168.
    [184]Yoo, C., et al., Application of fuzzy partial least squares (FPLS) modeling nonlinear biological processes. Korean Journal of Chemical Engineering, 2004.21(6):p.1087-1097.
    [185]Qin, S.J. and T.A. Badgwell, A survey of industrial model predictive control technology. Control Engineering Practice,2003.11(7):p.733-764.
    [186]Richalet, J., et al., La commande predictive:mise en oeuvre et applications industrielles.2004.
    [187]Bouhenchir, H., M. Cabassud, and M.V. Le Lann, Predictive functional control for the temperature control of a chemical batch reactor. Computers & Chemical Engineering,2006.30(6-7):p.1141-1154.
    [188]Gath, I. and A.B. Geva, Unsupervised optimal fuzzy clustering. Pattern Analysis and Machine Intelligence, IEEE Transactions on,1989.11(7):p. 773-780.
    [189]Krishnapuram, R. and C.-P. Freg, Fitting an unknown number of lines and planes to image data through compatible cluster merging. Pattern Recognition, 1992.25(4):p.385-400.
    [190]Kaymak, U. and R. Babuska. Compatible cluster merging for fuzzy modelling. in Fuzzy Systems,1995. International Joint Conference of the Fourth IEEE International Conference on Fuzzy Systems and The Second International Fuzzy Engineering Symposium., Proceedings of 1995 IEEE Int.1995.
    [191]王树青,先进控制技术及应用2001,北京:化学工业出版社.
    [192]Lusu, G. and L. Parsa, Model Reference Adaptive Control of Five-Phase IPM Motors Based on Neural Network. Industrial Electronics, IEEE Transactions on,2012.59(3):p.1500-1508.
    [193]Yongchun, F., et al., A Motion Planning-Based Adaptive Control Method for an Underactuated Crane System. Control Systems Technology, IEEE Transactions on,2012.20(1):p.241-248.
    [194]Zhuo, H. and K.S. Narendra, New Concepts in Adaptive Control Using Multiple Models. Automatic Control, IEEE Transactions on,2012.57(1):p. 78-89.
    [195]Astrom, K.J. and B. Wittenmark, On self tuning regulators. Automatica,1973. 9(2):p.185-199.
    [196]Naes, T. and H. Martens, eds. Multivariate calibration.1989, John Wiley: New York.
    [197]Li, C., et al., A Recursive Nonlinear PLS Algorithm for Adaptive Nonlinear Process Modeling. Chemical Engineering & Technology,2005.28(2):p. 141-152.