机械加工尺寸预报建模的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
加工尺寸的预报建模是进行机械加工质量在线监控的必要条件,也是实现加工误差预报补偿控制的关键技术。因此,不断探索具有高精度和高速度、适用于现场应用的新型预报建模技术是非常必要的。
     本文从机械加工过程的动态特征出发,对几种常用的加工尺寸预报模型的适用性进行了深入分析,在此基础上提出了三种适用于不同应用场合的加工尺寸在线建模预报方法。
     针对灰色GM(1,1)模型对尺寸序列随机项反映不灵敏,预报精度不足的问题,根据灰色模型建模原理,重点分析了模型维数和背景值对改善GM(1,1)模型预报精度的作用,通过引入背景值参数,给出了GM(1,1)模型背景值的一般表达式。在此基础上,提出了GM(1,1)模型的优化问题,建立了以平均绝对预报误差最小为目标的GM(1,1)模型维数与背景值参数的优化模型,并根据该优化问题的特点,采用遗传算法实现模型维数与背景值参数的优化。用Matlab编制了相应的软件。
     为进一步提高GM(1,1)模型的预报精度,研究了GM(1,1)模型残差修正算法。通过分析GM(1,1)模型残差序列的动态特征,根据时间序列组合预报的建模理论,提出了一种基于灰色模型与时间序列模型的GM(1,1)-AR组合预报模型,其中用GM(1,1)模型对加工尺寸进行等维递补动态预报,用离线建立的AR模型对GM(1,1)模型残差进行在线预报和修正。
     研究了基于神经网络的加工尺寸非线性预报建模问题。针对神经网络对尺寸序列趋势项反应不灵敏的问题,提出了一种基于神经网络与GM(1,1)模型的GM(1,1)-ANN组合预报模型,利用神经网络对GM(1,1)模型残差进行非线性预报和修正,以进一步提高组合模型的适用性。
     采用遗传算法对神经网络连接权进行了离线优化。为提高遗传算法的收敛速度,采用了实数编码法、正态变异算子、稳态遗传算法,改进了期望值选择法,提
    
    出一种匹配群体规模可变的选择策略。用BC编制了相应的软件。
     在数控车床上连续加工了一批试件,利用试件外圆车削尺寸的实测数据,对
    提出的三种建模方法进行了应用分析。根据实验结果,GM**)优化模型与标准
    GM**)模型相比,模型误差减小3 0%以上,GM**卜ANN与GM (卜AR组合模
    型与标准GM**)模型相比,其模型误差均减小50%以上,表明三种预报模型均具
    有较高的精度。
     在保持 GM**)模型快速建模性能的前提下,通过优化、组合提出了三种用于
    机械加工尺寸在线建模的新型预报模型。根据其相应的建模机理,GM*万优化模
    型适用于一般加工过程的尺寸序列预报建模,两种组合预报模型适用于具有强随
    机干扰下的加工尺寸预报建模,其中GM*,l卜ANN组合模型也是对复杂非线性加
    工过程进行质量监控的一种有效方法。此外,本文的研究结果对其它领域的预报
    建模问题亦有借鉴意义。
Forecasting of machining dimension is the necessary requisite in machining on-line quality control, the key technique in realizing forecasting compensatory control. So it's very essential to find out a new forecasting modeling technique with high accuracy and high speed, and which can be applied in on-the-spot application.
    This essay, starting from the dynamic feature of machining process, made a careful analysis of the application of several common forecasting modeling finish size. On the basis of it, three forecasting model of machining dimension applicable to different occasions were put forward.
    Due to GM(1,1) model's not responding well to machining dimension sequence random and lack of forecasting accuracy, and on the basis of grey model theory, the essay focused on modeling dimension and background value 's effect on improving GM(1,1) model forecasting precision . By introducing the parameter of background value of GM(1,1), the general expression formula of background value was given. Based on that, GM(1,1) optimization was raised. The background value and dimension parameter optimization model aimed at minimizing mean absolute forecasting error was established. By taking into account the optimization features, the optimization of modeling dimension and parameter of background value was realized by using Genetic Algorithms. The corresponding software was drawn up by using Matlab.
    To improve GM(l,l)'s accuracy, the essay studied error correction method. Through analyzing the dynamic character of GM(1,1) error sequence and the theory of time sequence combination forecasting modeling, a kind of GM(1,1)-AR combination forecasting model based on GM(1,1) and time sequence model, in which GM(1,1) was used to carry out dynamic forecasting with the recursive compensation by the grey numbers of identical dimensions, and in which AR model built up by left-line was used to forecast and on-line correct GM(1,1) error.
    The essay also studied nonlinear forecasting model based on neural networks . Because of neural networks not responding well to size sequence tendency item, a kind of GM(1,1)-ANN combination forecasting modeling based on neural networks and GM(1,1) was given. To make combination model application into full play, the essay carried out non-linear forecast and correction on GM(l,l)model error by using neural networks.
    Genetic algorithms was used to left-line optimizing weights of neural networks. To
    
    
    
    enhance the converging speed of genetic algorithms, real number code, normal mutation operator, steady-state genetic algorithms were used to improve expectation selecting method and matching group changeability alternate strategy was showed. The corresponding software was drawn up by using BC.
    A batch of samples were processed continuously on NC turing machine tool. Then, application analysis was made on three modeling methods. Experiment result showed that, comparing with GM(1,1) optimizing model with standard GM(l,l)model, model error was reduced by over 30%.Comparing GM(1,1)-ANN and GM(1,1)-AR combination model with Standard GM(1,1), model error was reduced by over 50%. These showed, the three models all have high accuracy.
    On the condition that GM(1,1) on-line modeling high speed was maintained, by optimization and combination, three new on-line forecasting modeling were put forward. According to its corresponding modeling mechanism, GM(1,1) optimizing model could be applied to general machining dimension modeling and forecasting; the two combination forecasting models could be applied to machining dimension forecasting modeling with strong random disturbance, in which GM(1,1)-ANN was more suitable to the application requirement of quality control in complicated non-linear machining process. In addition, this essay's research result can serve as a reference to forecasting modeling in other fields.
引文
[1] 屈梁生 等.机器故障诊断学.上海科技出版社,1986
    [2] 黄仁 等.机械制造过程的工况监视与故障诊断.西安交通大学出版社.1991
    [31 屈梁生.人工神经网络与机械工程中的智能化问题.中国机械工程,1997,No.2
    [4] 师汉民 等.人工神经网络及其在机械工程领域的应用.中国机械工程,1997,No.2
    [5] 揭景耀.智能刀具状态检测系统研究与进展.中国机械工程,1997,No.6
    [6] 黄仁 等.FMS中刀具寿命可靠性和刀具磨损在线监视的研究.南京工学院学报,1988,No.2
    [7] 钟秉林 等.车刀磨损特征量分析与状态识别的研究.动态分析与测试技术,1988,No.2
    [8] 陈美华 等.加工误差智能建模与预报技术的发展应用.云南工业大学学报,1998,No.3
    [9] 王清明.基于神经网络的机械加工信息融合.航空工艺技术,1999,No.2
    [10] 梁积中等.加工中心镗削刀具破损检测研究.组合机床与自动化加工技术,1995,No.2
    [11] 唐英 等.刀具切削状态智能检测系统研究.组合机床与自动化加工技术,1995,No.8
    [12] 吴光琳 等 数控加工中刀具状态的实时检测 机床与液压2000年No.2
    [13] 朱名铨,刀具磨损估计的多倍信号人工神经网络方法研究.工具技术,1995,No.11
    [14] 李锡文 等.神经网络融合法在铣刀磨损监测中的应用.华中理工大学学报,2000,No.8
    [15] 牟建强.基于刀具可靠性圳削过程优化及智能检测技术的研究.山东工业大学,1994
    [16] 姚英学 等.HIT-TMS-100型刀具破损检控系统的研制.组合机床与自动化加工技术,1995,No.2
    [17] 罗振壁 等.刀具磨/破损枪控原理的研究.机械工艺师.1996,No.4
    [18] 罗振壁 等 刀具磨/破损检控仪的研究 机械工艺师1996,No.5
    [19] 黄仁.机械设备的工况监视与故障诊断.东南大学出版社,1988
    [20] 蔡煜东 等.工业控制计算机.1994,No.12:11~13
    [21] 李雅卿 等.人工神经网络在磨削加工中应用的探讨.新技术新工艺,1996,No.5
    [22] 徐鸿均 磨削弧区温度在线监测技术研究 制造技术与机床 1998,No.2
    [23] 董涛 等.磨削温度在线监控系统的预报建模.中国机械工程,2002,No.5
    [24] 朱名铨 等 质量控制的智能化研究 航空精密制造技术1997 No.3
    [25] 陈中春 等.无心内圆磨削工序质量控制时序建模方法.华中工学院,1987,No.2
    [26] 路建萍 等.基于神经网络的磨削温度在线监测预报系统.南京理工大学学报,2000,No.3
    [27] 徐翀 等.先进制造中的在线质量控制方法.哈尔滨理工大学学报,1998,No.3
    [28] 陈志祥.工序质量控制时序模型的建模方法.时间序列分析在机械工程中应用论文集(第三集),机械工程,1988.9
    [29] 亓四华 等.应用灰色模型预测加工误差的研究.农业机械学报,2001,No.1
    [30] 亓四华 等.应用人工神经网络预测加工尺寸误差的动态分布.工具技术,2000,No.6
    [31] 王永信.单件、小批量统计质量分析方法的研究.西安交通大学,1991
    [32] 安宏志等.时间序列的分析与预报.科学出版社,1983
    [33] 曹星平 等.基于神经网络的时间序列预测方法进展.电脑与信息技术,1999,No.6
    [34] 李敏强.遗传算法与神经网络的结合.系统工程理论与实践,1999,No.2
    [35] 宾鸿赞.加工过程数控.中国机械工程,1996,No.4
    [36] 宾鸿赞.加工过程数控.华中理工大学出版社,1999
    [37] 褚健 等 预测控制技术的现状和展望 机电工程1999,No.5
    
    
    [38] 高栋 等.镗削加工误差的建模及预报补偿技术.制造技术与机床,2002,No.1
    [39] 宾鸿赞.机械制造过程中的计算机控制.华中工学院出版社,1987
    [40] 赵仲生 等.神经网络用于数控系统误差预报补偿技术的研究.西安工业学院学报,1996,No.3
    [41] 彭召旺 等.实值编码遗传算法的行星齿轮传动优化.上海交通大学学报,1999,No.7
    [42] 毕春长.实数编码的遗传算法在斜齿圆柱齿轮传动优化设计中的应用.机械科学与技术,2000,No.6
    [43] 乔夙祥.无心磨削时工件尺寸在线检测与误离分离可行性的研究[学位论文].东南大学,1988
    [44] 李作清 等.精密内圆磨削过程的神经网络模型的研究.磨床与磨削,1993,No.4
    [45] 郑堤 等.机械加工尺寸在线建模与预测.农业机械学报,1997,No.2
    [46] 郑堤 等.机械加工尺寸的预测控制研究.农业工程学报,1997,No.2
    [47] 张琳娜.加工误差及其预报建模研究.计量学报,1998,No.3
    [48] 陈卓宁 等.离散勒让德多项式序列预报控制原理与算法.机械过程学报,1990,No.6
    [49] 毛宁.小批量零件加工质量数据的动态建模.机械科学与技术,1996,No.4
    [50] 向文江.镗孔尺寸误差建模方法的研究.湖南大学邵阳分校学报,1991,No.1
    [51] 向文江.动态线性预报模型的研究.邵阳高等专科学校学报,2000,No.2
    [52] 孙建章 等.外圆无心磨削质量控制的灰色预测模型.机械设计与制造,1994,No.1
    [53] 秦平.轴承在磨削过程中的尺寸预报.轴承,1999,No.9
    [54] 邓聚龙.灰色系统理论教程.华中理工大学出版社,1990
    [55] 邓聚龙.灰色预测与决策.华中理工大学出版社,1989
    [56] 袁嘉祖 灰色系统理论及其应用科学出版社1991
    [57] 傅立.灰色系统理论及其应用.科学技术文献出版社,1992
    [58] 张辉.GM(1,1)模型的边值分析.华中科技大学学报,2001,No.4
    [59] 吕林正.灰色模型GM(1,1)优化探讨.系统工程理论与实践,2001,No.8
    [60] 王丽华.GM(1,1)模型参数估计的新方法.长春邮电学院学报,1995,No.3
    [61] 吕安林 等.灰色模型的精度及误差检验研究.华中理工大学学报,1998,No.1
    [62] 龚蓬 等.动态测量系统模型的探讨.情报学报,1999,No.3
    [63] 汪荣鑫.随机过程.西安交通大学出版社,1987
    [64] 王正明等.测量数据建模与参数估计.国防科技大学出版社,1997
    [65] 王涛.基于神经网络的加工误差智能预测技术.航天工艺,1999,No.3
    [66] 吴光琳 等.基于神经网络的数控加工热误差补偿.机床与液压,2000,No.3
    [67] 王景等.组合预测方法的现状与发展.预测,1997,No.6:37~38
    [68] 曾宪报.组合赋权新探.预测,1997,No.5:69~72
    [69] 宋洪涛 等.把神经网络应用于丝杠磨削过程的建模与控制.光学 精密工程,2001,No.4
    [70] 罗振璧 等.制造过程加工误差流及其模型的研究.机械工程学报,1994,No.1
    [71] 王波,机械加工误差的神经网络预测方法.华东船舶工业学院学报,1997,No.4
    [72] 乐清洪 等.人工神经网络在产品质量控制中的应用研究.机械科学与技术,2000,No.3
    [73] 吴振华.卡尔曼滤波法在加工尺寸预测控制中的应用,组合机床与自动化加工技术,1988,No.2
    [74] 张国雄.发展更快要净更精的机械工业.国际学术动态,1996,No.1
    [75] 袁哲俊 等.精密加工中误差补偿技术及其应用.机床,1990,No.8
    [76] 王清明,基于神经网络的机械加工信息融合,航空工艺技术,1999,No.2
    [77] 于海玲 等.动态测试误差灰色预报精度及修正.合肥工业大学学报(自然科学版)
    
    
    [78] 陈玉祥 等.预测技术与应用.机械工业出版社,1985
    [79] 陈国良 等,遗传算法及其应用,人民邮电出版社,1996
    [80] 阎平凡 等.人工神经网络与模拟进化计算.清华大学出版社,2000
    [81] 刘永等.非数值并行算法--遗传算法.科学出版社,1998
    [82] 唐小我.组合预测计算方法研究.预测,1991,No.4:35~46
    [83] Azouzi R. On-line prediction of surface finish and deviation in turning using gneural network base sensor fusion. Int. J. Mach. Tools Manufact 1997,37(9)
    [84] Chakraborty K. Mehrotra K. Mohan C.K. Ranka. S. Forecasting the Behavior of Multivariate Time series Using Networks. Neural Networks 1992,5(6):976~960
    [85] Cheng C S. A Neural Approach for the Analysis of Contral Chart Patterns.Int..J PROD.RES.1997.35(3)
    [86] Chon K H,et al. Linear and Nor-linear ARMA Model Parameter Estimation Using ANN,IEEE Trans Biomedical Engineering, 1997,44:168~174
    [87] Das R,whitey D, The Only Challenging Problems are Deceptive:Globel Search by Soloing Order-1 Hyperplanes. Pro of ICGA, 1991:166~173.
    [88] David B.Fogel. An information criterion for optimal neural network selection. IEEE Transctions on Neural Networks,2(5):490-497,1991.
    [89] D.M Etter and S.D. Stearns. Adaptive estimation of time delays in sampled data systems. IEEE Transactions on Acoustics,Speech,and Signal Processing,ASSP-29(3):582-587,1981.
    [90] D.T. Lin,J.E. Dayhoff, and P.A. Ligomenides. Trajectory production with the adaptive time-delay neural network. Neural Networks,8(3):447-461,1995.
    [91] Edward Ott,Tim Sauer, and James Yorke. Coping with Chaos. John Wiley and Sons, Inc, New York,NY, 1994
    [92] Fung H.K.,Cheung S.M..The Implementation of An Error Forecasting and Compensation System for Roundness Improvementin Taper Turning. Computersin Industry, 1998, 35:109~120
    [93] F. Takens. Detecting strange attractors in turbulence. In Lecture Notes in Math. No.898:366-381 .Springer-Verlag, 1981.
    [94] Funahashi K J. On the approximate realization of continuous mapping by neural networks.Neural networks, 1989,2:183~192
    [95] George F, Koons and Jeffery J. Lunner: SPC in Low-volume Manufacturing: A Case Study. J.of Quality Technology 1991,23(4)
    [96] Goldberg D E. Genetic Algorithms in Search.Optimization and Machine Learning. Reading,MA,Addison-Wesley Publishing, 1989
    [97] Hwang H B, Huble N F. Back-Propagation Pattern Recognizers for X Control Chart. Computer Ind .Engng.1993, 24(2)
    [98] Inki Hong, kahug A B,Moon BR,Exploiting Synergies of Multiple Crossovers:Initial Studies,ICEC'95,1
    [99] I.N. Tansel and C. Mclaughlin. Identification of tool breakage with time seriesanalysis in milling operations.In Control of manufacturing process, Vol.52, ASME(1991):59~65
    [100] Jeng-Shyong Chen, Computer-aided Accuracy Enhancement for Multi-maxis CNC Machine tool. INt.J.Mach.Tools Manufact. 1995,35(4):593~605
    
    
    [101] Kin T N,et al. Adelay Damage Model Selection Algorithm for NARX Neural Network. IEEE Trans Signal Processing, 1997,45:27 19-2730
    [102] Kim k.,Eman F.,and Wu S.M.. In-process Control of Cylindricity in Boring Operations . Journal of Engineering for Industry. 1987,109:291-196
    [103] Lowry C A, et al. A Multivariate Exponentially Weignted Moving Average Control Chart. Technology, 1992,34:46-53
    [104] Qi Xiaofeng.Francesco Palmieri, Theoretical Analysis of Evolutionary Algorithms with an Infinite Size in Continuous Space:Part II:Analysis of the Diversification Role of Crossover,IEEE Trans. On Neural Networks, 1994,5(1)
    [105] Rao.S.B., Wu,S.M.. Compenstory Control of Roundness Error in Cylindrical Chuck Grinding.Trans.of ASME, J.of Engr.for Industry, Vol.104,1982
    [106] Refenes A.N. Azema-Barac. M. Chen L. Karoussos S.A. Currency exchange rate predicition and neural network design strategies, Neural Computing and Applications 1991,1(1)
    [107] Satish T S Bukkapatnam,etal. Chaotic Neurons for On-line Quality Control in Manufacturing-Int J Adv Manuf Technol, 1997, 13:95-100
    [108] S.C.Veldhuis ,M.A.Elbstawi. A Strategy for Compensation of Error in Five-Axis Machining. Annals of the CIRP,1995,44(1) :373-377
    [109] Spears William M,Vic Anand,A Study of Crossover Operator in Genetic Programming , ADA29071,1995
    [110] Syswerda G. A Study of Reproduction in Generational and steady-state Genetic Algorithms. Foundations of Genetic Algorithms, Morgan Kaufmann, San Mateo, CA, 332-34 9
    [111] Syswerda G. Uniform Crossover in Genetic Algorithms. Proc of the 3rd Int Conf On Genetic Algorithms ,Morgan Kaufmann,Los Altos, 1989,2-9
    [112] Singelmann H T.Computational Capabilities of Recurrent NARX NN.IEEE Trans SMC(B),1997,27:208-214
    [113] S. Takata, M. Ogama and P. Bertok. Reak-time monitoring system of tool breakage using kalman filtering. Robotic and computer-integrated manufacturing, 2(1) :33-40
    [114] Thomas Back , Selective Pressure in Evolutionary Algorithms:A Characterization of Selection Mechanisms,ICEC'94, 1994, 1
    [115] T.Saner,J.Yorke,and M.Casdagli. Embedology. Journal of Statistical Physics,65:579-616,1991.
    [116] V. B. Jammu, Danai. Unsuperised Neural Network for Tool Breakage Detection in Turing. Annual of the CIRP, 1993 ,42
    [117] Waibel A,et al.Phoneme Recognition Using time Delay NN.IEEE Trans ASSP, 1989,37:318-339
    [118] Y. Altintas, I. Tellowley and J. Tlusty. The detection of tool breakage in milling operations. Trans.ASME 110(1988) :271-277
    [119] Yao X. Evolutionary Artificial Neural Networks, International Journal of Neural systems, 1993,4(3) :203-222
    [120] Yao X. Evolving Artificial Neural Networks. Proc IEEE,1999,87(5) :1423-1447
    [121] Y. Altintas and I. Tellowley . In-process detection of tool failure in milling using cutting force models. Trans,ASME 111(1989) :149-157