1、PPARγ激动剂保护足细胞损伤所致FSGS的机制研究 2、残余肾小鼠模型中整合素β6缺失不改变间质纤维化但加重小球硬化的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:1、Treatment with Peroxisome Proliferator-Activated Receptor-gamma (PPARγ) Agonist is Protective in Podocyte Injury-Associated FSGS 2、Absence of Integrin β6 Does Not Change Interstitial Fibrosis But Worsens Glomeruloslerosis in Remnant Kidney Mice
  • 作者:杨海春
  • 论文级别:博士
  • 学科专业名称:内科肾脏病学
  • 学位年度:2005
  • 导师:林善锬 ; Agnes Fogo ; 顾勇 ; 马骥
  • 学科代码:100201
  • 学位授予单位:复旦大学
  • 论文提交日期:2005-05-01
摘要
第一部分PPARγ激动剂保护足细胞损伤所致FSGS的机制研究
     背景大鼠和人的肾小球硬化时,我们观察到过氧化物酶体增殖物激活受体γ(Peroxisome Proliferator-Activated Receptorsγ,PPARγ)在足细胞上表达。在肾大部切除所导致的FSGS(Facal segmental glomerulosclerosis)模型中,给予PPARγ激动剂可以改善非糖尿病性肾小球硬化,说明在硬化时上调足细胞上的PPARγ可能是拮抗肾脏病变的有益反应。另外体外实验也证明PPARγ激动剂可以保护嘌呤霉素(PAN)诱导的足细胞坏死和凋亡。因此,本研究的目的是观察体内激活PPARγ是否能够改善足细胞损伤所导致的肾小球硬化。
     方法成年SD(Sprague-Dawley)大鼠诱导PAN肾病(一种足细胞损伤的FSGS模型):0周时行单侧肾切除,2周时给予腹腔注射PAN(剂量为100mg/kg体重),随后在第6、7、8周各给一次PAN(剂量为40mg/kg体重)。动物随机分为三组:Cont组(对照组),给予正常饮食;P0组(前治疗组),在做单侧肾切除时即给予吡咯列酮;P6组(后治疗组),从第六周给予吡咯列酮。在第12周取肾组织做组织形态学和分子生物学检测。
     结果在12周,三组的蛋白尿和血压没有明显差异。前治疗组与对照组的肾功能(GFR)下降基本相同,而后治疗组的GFR明显增高,同时小球的硬化指数也明显降低(P<0.05,与对照组相比)。给予PAN后,PPARγ可以在节段硬化小球的足细胞和系膜细胞上表达,部分在壁层上皮细胞表达。6周后给予吡咯列酮治疗,可以减少系膜区的PPARγ染色,但足细胞上的染色明显增强,伴有小球硬化明显减轻。给予吡咯列酮治疗的两组都可以明显减轻小球内WT-1阳性细胞的丢失(P<0.05,与对照组相比),并有下降小球内PCNA阳性细胞/凋亡细胞的趋势。两个治疗组中,小球内巨噬细胞的浸润均明显减少,皮质PAI-1mRNA的表达降低(P<0.05,与对照组相比)。与此相反,吡咯列酮治疗不改变。肾脏内TGF-β1和TIMP-1的表达。此外,治疗组皮质血管生成素样蛋白4(Aglp4)的mRNA水平仅为对照组的20%左右,同时小球内VEGF阳性细胞数及CD31染色增加(P<0.05,与对照组相比)。
     结论给予PPARγ激动剂(吡咯列酮)可以保护足细胞损伤所导致的FSGS。这种保护作用可能与PPARγ减少足细胞的凋亡、降低巨噬细胞的浸润和PAI—1的表达、上调VEGF并下调Aglp4维护小球内皮细胞功能有关。同时前治疗组与后治疗组在功能和形态学上存在差异,只有在病变启动后给予PPARγ激动剂才有PPARγ相关的保护作用。我们的结果提示PPARγ激动剂可能是治疗足细胞损伤相关性FSGS的一种新方法。
     第二部分残余肾小鼠模型中整合素β6缺失不改变间质纤维化但加重小球硬化的机制研究
     背景整合素αvβ6可以激活局部的TGFβ(transforming growth factor-β)。在肾脏β6主要表达于小管上皮细胞和球旁器。我们以前已观察到β6缺失的小鼠(β6knock-out小鼠)可以保护单侧输尿管结扎所导致的间质纤维化。本研究运用残余肾模型,一种原发性小球硬化并有继发性间质纤维化的模型,观查小管上β6的缺失对小球硬化的的影响。
     方法成年野生型(WT组,129背景)和β6敲除(β6-/-组)小鼠行5/6肾切除。在0周和第12周取肾脏,观察形态学改变,并通过免疫组化和Western Blot的方法检测P-Smad2、PAI-1、肾素(renin)、nNOS(neuronal nitric oxide synthase)和COX-2(cyclooxygenase-2)。
     结果在12周,WT和β6-/-组均有类似的尿蛋白排泄增高(P<0.05,与手术前相比)。β6-/-组较WT组的血压显著降低。尽管皮质间质容量分数类似,β6-/-组有更重的小球损伤(P<0.05,与WT组相比)。SI(小球硬化指数)与间质纤维化的比值显示β6-/-组小球/小管病变较WT组更加不对称。同时,β6-/-组小球内PAI-1表达上调。在正常时,β6缺失并不改变P-Smad2、nNOS、renin和COX-2的蛋白水平。肾大部切除后12周,与WT组相比,β6-/-小鼠的P-Smad2降低5.7倍、nNOS降低2.4倍,而renin的表达升高1.8倍(P<0.05)。COX-2的表达两组没有差别。免疫组化显示:0周时,nNOS和renin主要表达于球旁器,而12周时,β6-/-组renin的广度和强度增加、nNOS则下降(与WT组相比);两组在5/6肾切除后,致密斑和髓质间质细胞处的COX-2表达均升高。
     结论整合素β6缺失会加重残余肾小鼠的小球硬化,而间质纤维化相对WT小鼠改变不明显,同时球旁器renin表达上调、nNOS表达下调。我们推测球旁器β6的缺失,导致管—球反馈的失调及局部RAS的改变,可能是小球硬化加重的原因。
PART 1 Treatment with Peroxisome Proliferator-Activated Receptor-gamma (PPARγ) Agonist Is Protective in Podocyte Injury-Associated FSGS
    Background We have previously observed increased expression of PPARγ in podocytes in both rat and human sclerotic conditions in vivo. PPARγ agonist ameliorated non-diabetic glomerulosclerosis (FSGS) in the hypertensive subtotal nephrectomy model in the rat, suggesting that up-regulated podocyte PPARγ in sclerosis could be a beneficial counterregulatory response. Our recent in vitro data show that PPARγ activation protects against puromycin aminonucleoside (PAN)-induced apoptosis and necrosis. The aim of the present study was to investigate whether activation of PPARγ can also attenuate podocyte injury-associated glomerulosclerosis in vivo.
    Methods PAN nephropathy, a podocyte-injury model of FSGS, was induced in adult male Sprague-Dawley rats. Following uninephrectomy at week 0, i.p. PAN was given at weeks 2 (100mg/kg Bwt), 6, 7 and 8 (40mg/kg Bwt). The animals then either received no further treatment, Control group (Cont); or pioglitazone (10 mg/kg/d, Pio) starting at week 0, P0 group; or pioglitazone starting at week 6, P6 group. Morphological and molecular biological analyses were performed at week 12. Results At week 12, there were similar urinary protein excretion and SBP during three groups. GFR was decreased in CONT and P0 groups by week 12; Rats with posttreatment with Pio had increased GFR, and by morphological analyses, this group showed parallel amelioration of the development of glomerulosclerosis compared with control. PPARγ expression in PAN-treated rats at 12 weeks was present in podocytes and in mesangial cells in segmentally sclerotic glomeruli, with occasional parietal epithelial cell staining. In PAN+Pio rats, mesangial staining was lessened, but podocyte staining was strongly accentuated, correlating with less severe overall sclerosis. Treatment with Pio partially restored podocyte WT-1 staining and showed a numerical trend to decrease the ratio of PCNA-positive to apoptoic cells in glomeruli. Pre- or post-treatment with Pio significantly reduced infiltrating glomerular macrophages and PAI-1 mRNA expression in cortex. In contrast, Pio did not change renal mRNA levels for TGF-β1 and TIMP-1. Pio treatment decreased renal cortical Aglp4 expression to almost 20% at Cont group and increased VEGF positive glomerular cells.
    Conclusions We conclude that treatment with the PPARγ agonist pioglitazone has protective effects on progression of podocyte injury-associated glomerulosclerosis. These beneficial effects appear to be related to the regulation of podocyte apoptosis, decreased macrophage infiltration and PAI-1 expression, and protection of glomerular capillary loss by increasing VEGF expression and decreasing Aglp4. Our results further indicate that there are key functional and morphological differences in altimate responses to PPARγ agonist given before, or after, podocyte injury, with PPARγ protection only occurring in the latter. The beneficial affects of delayed time point of interaction is clinically relevout, as therapies are initiated in humans following the initial insult. Our results thus suggest that PPARγ agonists can provide a novel approach with therapeutic potential in podocyte injury-associated FSGS.
    PART2
    Absence of integrin αvβ6 does not change interstitial fibrosis but worsens glomeruloslerosis in remnant kidney mice
    Background The heterodimeric integrin αvβ6 activates transforming growth factor-β (TGFβ) locally. Integrin αvβ6 is expressed in the tubular epithelium and the juxtaglomerular apparatus (JGA) in kidney. We have previously observed that mice deficient in β6 (β6-/-) were protected against interstitial fibrosis induced by unilateral ureteral obstruction. The aim of the present study was to investigate whether the effect of β6 deficiency on development of glomerulosclerosis was parallel to that on interstitial fibrosis, by study of the remnant kidney model of glomerulosclerosis and associated, secondary interstitial fibrosis.
    Methods Adult male wild type (WT 129) and β6-/- mice on 129 background underwent 5/6 nephrectomy (Nx). Kidneys were harvested for morphologic, P-Smad2, renin, neuronal nitric oxide synthase (nNOS) and cyclooxygenase-2 (COX-2) analyses by western and immunohistochemistry at week 0 and 12. Result At week 12, both WT and β6-/- had significantly and similarly increased proteinuria when compared with baseline (P<0.05). β6-/- showed lower systolic blood pressure compared with WT. Although the cortical interstitial volume fraction was similar, β6-/- group had more severe glomerular injury than WT (P<0.05). Ratios of SI vs interstitial fibrosis thus showed disproportionally milder interstitial lesions vs glomerular lesions in β6-/- vs WT. At baseline, β6 -/- did not show altered expression by western blot of P-Smad2, nNOS, renin or COX-2. At week 12 after Nx, β6 -/- mice
    had decreased P-Smad2 by 5.7-fold and nNOS by 2.4-fold, while renin expression increased 1.8 fold vs WT Nx (P<0.05). There was no difference in COX-2 expression. By immunohistochemistry, nNOS and renin were observed mainly in JGA at week 0 with increased renin extent and intensity and decreased nNOS intensity in β6 -/- vs WT at week 12. Increased COX-2 was detected in macula densa/cTALH and medullary interstitial cells after 5/6 nephrectomy in both WT and β6 -/-.
    Conclusion We conclude that absence of integrin β6 worsens glomerulosclerosis after 5/6 nephrectomy, with disproportionally milder tubulointerstitial fibrosis at least in part by increasing renin and decreasing nNOS expression in the JGA. We speculate that dysregulated tubuloglomerular feedback due to absent JGA β6 expression in the remnant kidney might be involved in this augmented sclerosis.
引文
1 Fogo AB. Animal models of FSGS: lessons for pathogenesis and treatment. Semin Nephrol, 2003,23(2):161-71.
    
    2 Matsusaka T, Xin J, Niwa S, et al. Genetic Engineering of Glomerular Sclerosis in the Mouse via Control of Onset and Severity of Podocyte-Specific Injury. J Am Soc Nephrol, 2005, 16(4):1013-23.
    
    3 Sundvold H, Grindflek E, Lien S. Tissue distribution of porcine peroxisome proliferator-activated receptor alpha: detection of an alternatively spliced mRNA. Gene, 2001, 273(1):105-13.
    
    4 Kaplan F, Al-Majali K, Betteridge DJ. PPARS, insulin resistance and type 2 diabetes. J Cardiovasc Risk, 2001, 8(4):211-7.
    
    5 Fajas L, Auboeuf D, Raspe E, et al. The organization, promoter analysis, and expression of the human PPARgamma gene. J Biol Chem, 1997,272(30): 18779-89.
    
    6 Camp HS, Li O, Wise SC, et al. Differential activation of peroxisome proliferator-activated receptor-gamma by troglitazone and rosiglitazone. Diabetes, 2000,49(4):539-47.
    
    7 Stumvoll M, Haring HU. Glitazones: clinical effects and molecular mechanisms. Ann Med, 2002, 34(3):217-24.
    
    8 Albrektsen T, Frederiksen KS, Holmes WE, et al. Novel genes regulated by the insulin sensitizer rosiglitazone during adipocyte differentiation. Diabetes, 2002, 51(4):1042-51.
    
    9 Yoshimoto T, Naruse M, Nishikawa M, et al. Antihypertensive and vasculo- and renoprotective effects of pioglitazone in genetically obese diabetic rats. Am J Physiol, 1997,272(6 Pt 1):E989-96.
    
    10 Asano T, Wakisaka M, Yoshinari M, et al. Peroxisome proliferator-activated receptor gammal (PPARgammal) expresses in rat mesangial cells and PPARgamma agonists modulate its differentiation. Biochim Biophys Acta, 2000,1497(1):148-54.
    
    11 Ma LJ, Marcantoni C, Linton MF, et al. Peroxisome proliferator-activated receptor-gamma agonist troglitazone protects against nondiabetic glomerulosclerosis in rats. Kidney Int, 2001, 59(5): 1899-910.
    
    12 Dubey RK, Zhang HY, Reddy SR, et al. Pioglitazone attenuates hypertension and inhibits growth of renal arteriolar smooth muscle in rats. Am J Physio, 1993, 34:R726-R732.
    
    13 Yang T, Michele DE, Park J, et al. Expression of peroxisomal proliferator-activated receptors and retinoid X receptors in the kidney. Am J Physiol, 1999,277(6 Pt 2):F966-73.
    
    14 Guan Y, Zhang Y, Schneider A, et al. Peroxisome proliferator-activated receptor-gamma activity is associated with renal microvasculature. Am J Physiol Renal Physiol, 2001,281(6):F1036-46.
    
    15 Guan Y, Breyer MD. Peroxisome proliferator-activated receptors (PPARs): novel therapeutic targets in renal disease. Kidney Int, 2001,60(1): 14-30.
    
    16 Iwashima Y, Eto M, Horiuchi S, et al. Advanced glycation end product-induced peroxisome proliferator-activated receptor gamma gene expression in the cultured mesangial cells. Biochem Biophys Res Commun, 1999, 264(2):441-8.
    
    17 Isshiki K, Haneda M, Koya D, et al. Thiazolidinedione compounds ameliorate glomerular dysfunction independent of their insulin-sensitizing action in diabetic rats. Diabetes, 2000, 49(6): 1022-32.
    
    18 Liu R, Pittner J, Persson AE. Changes of cell volume and nitric oxide concentration in macula densa cells caused by changes in luminal NaCl concentration. J Am Soc Nephrol, 2002,13(11):2688-96.
    
    19 Yoshida Y, Fogo A, Shiraga H, et al. Serial micropuncture analysis of single nephron function in subtotal renal ablation. Kidney Int, 1988, 33 (4): 855-67.
    
    20 Anderson S, Brenner BM. The role of intraglomerular pressure in the initiation and progression of renal disease. J Hypertens Suppl, 1986, 4(5):S236-8.
    
    21 Taipale J, Saharinen J, Keski-Oja J. Extracellular matrix-associated transforming growth factor-beta: role in cancer cell growth and invasion. Adv Cancer Res, 1998,75:87-134.
    
    22 Annes JP, Munger JS, Rifkin DB. Making sense of latent TGFbeta activation. J Cell Sci, 2003,116(Pt 2):217-24.
    23 Unsold C, Hyytiainen M, Bruckner-Tuderman L, et al. Latent TGF-beta binding protein LTBP-1 contains three potential extracellular matrix interacting domains. J Cell Sci, 2001,114(Pt 1):187-197.
    
    24 Munger JS, Harpel JG, Giancotti FG, et al. Interactions between growth factors and integrins: latent forms of transforming growth factor-beta are ligands for the integrin alphavbetal. Mol Biol Cell, 1998, 9(9): 2627-38.
    
    25 Gentry LE, Nash BW. The pro domain of pre-pro-transforming growth factor beta 1 when independently expressed is a functional binding protein for the mature growth factor. Biochemistry, 1990, 29(29): 6851-7.
    
    26 Munger JS, Harpel JG, Gleizes PE, et al. Latent transforming growth factor-beta: structural features and mechanisms of activation. Kidney Int, 1997,51 (5):1376-82.
    
    27 Koli K, Saharinen J, Hyytiainen M, et al. Latency, activation, and binding proteins of TGF-beta. Microsc Res Tech, 2001, 52(4):354-62.
    
    28 van der Flier A, Sonnenberg A. Function and interactions of integrins. Cell Tissue Res, 2001, 305(3):285-98.
    
    29 Munger JS, Huang X, Kawakatsu H, et al. The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell, 1999, 96(3):319-28.
    
    30 Huang XZ, Wu JF, Cass D, et al. Inactivation of the integrin beta 6 subunit gene reveals a role of epithelial integrins in regulating inflammation in the lung and skin. J Cell Biol, 1996, 133(4):921-8.
    
    31 Arend LJ, Smart AM, Briggs JP. Mouse beta(6) integrin sequence, pattern of expression, and role in kidney development. J Am Soc Nephrol, 2000, 11(12):2297-305.
    
    32 Annes JP, Rifkin DB, Munger JS. The integrin alphaVbeta6 binds and activates latent TGFbeta3. FEBS Lett, 2002, 511(1-3):65-8.
    
    33 Annes JP, Chen Y, Munger JS, et al. Integrin alphaVbeta6-mediated activation of latent TGF-beta requires the latent TGF-beta binding protein-1. J Cell Biol, 2004,165(5):723-34.
    
    34 Border WA, Ruoslahti E. Transforming growth factor-beta in disease: the dark side of tissue repair. J Clin Invest, 1992, 90(1):1-7.
    35 Miller LA, Barnett NL, Sheppard D, et al. Expression of the beta6 integrin subunit is associated with sites of neutrophil influx in lung epithelium. J Histochem Cytochem, 2001, 49(1):41-8.
    
    36 Breuss JM, Gallo J, DeLisser HM, et al. Expression of the beta 6 integrin subunit in development, neoplasia and tissue repair suggests a role in epithelial remodeling. J Cell Sci, 1995,108 ( Pt 6) :2241-51.
    
    
    37 Hakkinen L, Koivisto L, Gardner H, et al. Increased expression of beta6-integrin in skin leads to spontaneous development of chronic wounds. Am J Pathol, 2004,164(1):229-42.
    
    38 Ma LJ, Yang H, Gaspert A, et al. Transforming growth factor-beta-dependent and -independent pathways of induction of tubulointerstitial fibrosis in beta6(-/-) mice. Am J Pathol, 2003, 163(4): 1261-73.
    
    39 Hakkinen L, Hildebrand HC, Berndt A, et al. Immunolocalization of tenascin-C, alpha9 integrin subunit, and alphavbeta6 integrin during wound healing in human oral mucosa. J Histochem Cytochem, 2000,48(7): 985-98.
    
    40 Huang X, Wu J, Zhu W, et al. Expression of the human integrin beta6 subunit in alveolar type II cells and bronchiolar epithelial cells reverses lung inflammation in beta6 knockout mice. Am J Respir Cell Mol Biol, 1998,19 (4):636-42.
    
    41 Koivisto L, Larjava K, Hakkinen L, et al. Different integrins mediate cell spreading, haptotaxis and lateral migration of HaCaT keratinocytes on fibronectin. Cell Adhes Commun, 1999,7(3):245-57.
    
    42 Huang X, Wu J, Spong S, et al. The integrin alphavbeta6 is critical for keratinocyte migration on both its known ligand, fibronectin, and on vitronectin. J Cell Sci, 1998,111 ( Pt 15):2189-95.
    
    43 Agrez M, Chen A, Cone RI, et al. The alpha v beta 6 integrin promotes proliferation of colon carcinoma cells through a unique region of the beta 6 cytoplasmic domain. J Cell Biol, 1994, 127(2):547-56.
    
    44 Dixit RB, Chen A, Chen J, et al. Identification of a sequence within the integrin beta6 subunit cytoplasmic domain that is required to support the specific effect of alphavbeta6 on proliferation in three-dimensional culture. J Biol Chem, 1996, 271(42):25976-80.
    45 Paueksakon P, Revelo MP, Ma LJ, et al. Microangiopathic injury and augmented PAI-1 in human diabetic nephropathy. Kidney Int, 2002, 61(6):2142-8.
    46 Lai JP, Douglas SD, Wang YJ, et al. Real-Time Reverse Transcription-PCR Quantitation of Substance P Receptor (NK-1R) mRNA. Clin Diagn Lab Immunol, 2005, 12(4):537-41.
    47 Gervois P, Torra IP, Fruchart JC, et al. Regulation of lipid and lipoprotein metabolism by PPAR activators. Clin Chem Lab Med, 2000, 38(1):3-11.
    48 Isshiki K, Haneda M, Koya D, et al. [Kidney disease and insulin resistance—clinical impact of thiazolidinedione compounds for kidney disease]. Nippon Rinsho, 2000, 58(2):440-5.
    49 Zafiriou S, Stanners SR, Saad S, et al. Pioglitazone inhibits cell growth and reduces matrix production in human kidney fibroblasts. J Am Soc Nephrol, 2005, 16(3): 638-45.
    50 Kurabayashi M. [PPARs and fibrosis]. Nippon Rinsho, 2005, 63(4): 597-602.
    51 林沁 马骥 顾勇 杨海春 朱蔚钰 林善锬.单侧输尿管梗阻大鼠肾脏过氧化物酶体增生物激活受体-γ的表达及其意义.肾脏病与透析肾移植杂志,2003,12(02):126-131.
    52 Cuzzocrea S, Pisano B, Dugo L, et al. Rosiglitazone, a ligand of the peroxisome proliferator-activated receptor-gamma, reduces acute inflammation. Eur J Pharmacol, 2004, 483(1):79-93.
    53 Chinetti G, Fruchart JC, Staels B. Peroxisome proliferator-activated receptors (PPARs): nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflamm Res, 2000, 49(10):497-505.
    54 Haraguchi K, Shimura H, Onaya T. Suppression of experimental crescentic glomerulonephritis by peroxisome proliferator-activated receptor (PPAR)gamma activators. Clin Exp Nephrol, 2003, 7(1): 27-32.
    55 Sasaki M, Jordan P, Welbourne T, et al. Troglitazone, a PPAR-gamma activator prevents endothelial cell adhesion molecule expression and lymphocyte adhesion mediated by TNF-alpha. BMC Physiol, 2005, 5(1): 3.
    56 Imamoto E, Yoshida N, Uchiyama K, et al. Inhibitory effect of pioglitazone on expression of adhesion molecules on neutrophils and endothelial cells. Biofactors, 2004, 20(1):37-47.
    
    57 Augstein P, Dunger A, Heinke P, et al. Prevention of autoimmune diabetes in NOD mice by troglitazone is associated with modulation of ICAM-1 expression on pancreatic islet cells and IFN-gamma expression in splenic T cells. Biochem Biophys Res Commun, 2003, 304(2): 378-84.
    
    58 Jiang C, Ting AT, Seed B. PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature, 1998, 391(6662):82-6.
    
    59 Nakajima A, Wada K, Miki H, et al. Endogenous PPAR gamma mediates anti-inflammatory activity in murine ischemia-reperfusion injury. Gastroenterology, 2001,120(2):460-9.
    
    60 De Bosscher K, Vanden Berghe W, Vermeulen L, Plaisance S, Boone E & Haegeman G. Oxidized low density lipoprotein inhibits interleukin-12 production in lipopolysaccharide-activated mouse macrophages via direct interactions between PPAR_ and NF-kapa B. PNAS, 2000,97:3919-3924.
    
    61 Ricote M, Li AC, Willson TM, Kelly CJ & Glass CK. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature, 1998,391:79-82.
    
    62 Kato K, Satoh H, Endo Y, et al. Thiazolidinediones down-regulate plasminogen activator inhibitor type 1 expression in human vascular endothelial cells: A possible role for PPARgamma in endothelial function. Biochem Biophys Res Commun, 1999, 258(2):431-5.
    
    63 Delerive P, Martin-Nizard F, Chinetti G, et al. Peroxisome proliferator-activated receptor activators inhibit thrombin-induced endothelin-1 production in human vascular endothelial cells by inhibiting the activator protein-1 signaling pathway. Circ Res, 1999, 85(5): 394-402.
    
    64 Marx N, Sukhova GK, Collins T, et al. PPARalpha activators inhibit cytokine-induced vascular cell adhesion molecule-1 expression in human endothelial cells. Circulation, 1999, 99(24):3125-31.
    
    65 Yang FG, Zhang ZW, Xin DQ, et al. [Peroxisome proliferator-actived receptor-gamma ligand troglitazone induces apoptosis in renal cell carcinoma]. Beijing Da Xue Xue Bao, 2004, 36(2):173-6.
    
    66 Haraguchi K, Shimura H, Onaya T. Activation of peroxisome proliferator-activated receptor-gamma inhibits apoptosis induced by serum deprivation in LLC-PK1 cells. Exp Nephrol, 2002, 10(5-6): 393-401.
    
    67 Nicholas SB, Kawano Y, Wakino S, et al. Expression and function of peroxisome proliferator-activated receptor-gamma in mesangial cells. Hypertension, 2001,37(2 Part 2):722-7.
    
    68 Fauconnet S, Lascombe I, Chabannes E, et al. Differential regulation of vascular endothelial growth factor expression by peroxisome proliferator-activated receptors in bladder cancer cells. J Biol Chem, 2002,277(26): 23534-43.
    
    69 Yamakawa K, Hosoi M, Koyama H, et al. Peroxisome proliferator-activated receptor-gamma agonists increase vascular endothelial growth factor expression in human vascular smooth muscle cells. Biochem Biophys Res Commun, 2000, 271(3):571-4.
    
    70 Cho DH, Choi YJ, Jo SA, et al. Nitric oxide production and regulation of endothelial nitric-oxide synthase phosphorylation by prolonged treatment with troglitazone: evidence for involvement of peroxisome proliferator-activated receptor (PPAR) gamma-dependent and PPARgamma-independent signaling pathways. J Biol Chem, 2004, 279(4): 2499-506.
    
    71 Wang CH, Ciliberti N, Li SH, et al. Rosiglitazone facilitates angiogenic progenitor cell differentiation toward endothelial lineage: a new paradigm in glitazone pleiotropy. Circulation, 2004,109(11): 1392-400.
    
    
    72 Yasuda E, Tokuda H, Ishisaki A, et al. PPAR-gamma ligands up-regulate basic fibroblast growth factor-induced VEGF release through amplifying SAPK/JNK activation in osteoblasts. Biochem Biophys Res Commun, 2005, 328 (1): 137-43.
    
    73 Yoon JC, Chickering TW, Rosen ED, et al. Peroxisome proliferator-activated receptor gamma target gene encoding a novel angiopoietin-related protein associated with adipose differentiation. Mol Cell Biol, 2000, 20(14):5343-9.
    
    74 Ito Y, Oike Y, Yasunaga K, et al. Inhibition of angiogenesis and vascular leakiness by angiopoietin-related protein 4. Cancer Res, 2003, 63 (20): 6651-7.
    
    75 Kersten S, Mandard S, Tan NS, et al. Characterization of the fasting-induced adipose factor FIAF, a novel peroxisome proliferator-activated receptor target gene. J Biol Chem, 2000, 275(37): 28488-93.
    
    76 Sato M. [Peroxisome proliferator activated receptor ligands and angiogenesis]. Nippon Rinsho, 2005, 63(4):603-8.
    
    77 Xin X, Yang S, Kowalski J, et al. Peroxisome proliferator-activated receptor gamma ligands are potent inhibitors of angiogenesis in vitro and in vivo. J Biol Chem, 1999,274(13):9116-21.
    
    78 Ma J, Nishimura H, Fogo A, et al. Accelerated fibrosis and collagen deposition develop in the renal interstitium of angiotensin type 2 receptor null mutant mice during ureteral obstruction. Kidney Int, 1998, 53(4): 937-44.
    
    79 Lehmann M, El Battari A, Abadie B, et al. Role of alpha v beta 5 and alpha v beta 6 integrin glycosylation in the adhesion of a colonic adenocarcinoma cell line (HT29-D4). J Cell Biochem, 1996, 61 (2): 266-77.
    
    80 Bates RC, Bellovin DI, Brown C, et al. Transcriptional activation of integrin beta6 during the epithelial-mesenchymal transition defines a novel prognostic indicator of aggressive colon carcinoma. J Clin Invest, 2005,115(2): 339-47.
    
    81 Niu J, Dorahy DJ, Gu X, et al. Integrin expression in colon cancer cells is regulated by the cytoplasmic domain of the beta6 integrin subunit. Int J Cancer, 2002,99(4):529-37.
    
    82 Annes J, Vassallo M, Munger JS, et al. A genetic screen to identify latent transforming growth factor beta activators. Anal Biochem, 2004, 327(1): 45-54.
    
    83 Leask A, Abraham DJ. TGF-beta signaling and the fibrotic response. FASEB J, 2004, 18 (7): 816-27.
    
    84 Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell, 2003, 113(6):685-700.
    
    85 Sheppard D. Integrin-mediated activation of transforming growth factor-beta(1) in pulmonary fibrosis. Chest, 2001, 120(1 Suppl):49S-53S.
    
    86 Trevillian P, Paul H, Millar E, et al. alpha(v)beta(6) Integrin expression in diseased and transplanted kidneys. Kidney Int, 2004, 66 (4): 1423-33.
    
    87 Sawada T, Abe M, Kai K, et al. beta6 integrin is up-regulated in chronic renal allograft dysfunction. Clin Transplant, 2004, 18 (5): 525-8.
    
    88 Tapia E, Franco M, Sanchez-Lozada LG, et al. Mycophenolate mofetil prevents arteriolopathy and renal injury in subtotal ablation despite persistent hypertension. Kidney Int, 2003, 63(3):994-1002.
    
    89 Oda T, Jung YO, Kim HS, et al. PAI-1 deficiency attenuates the fibrogenic response to ureteral obstruction. Kidney Int, 2001, 60(2): 587-96.
    
    90 Dang D, Yang Y, Li X, et al. Matrix metalloproteinases and TGFbetal modulate oral tumor cell matrix. Biochem Biophys Res Commun, 2004, 316(3): 937-42.
    
    91 Thomas GJ, Poomsawat S, Lewis MP, et al. alpha v beta 6 Integrin upregulates matrix metalloproteinase 9 and promotes migration of normal oral keratinocytes. J Invest Dermatol, 2001,116(6):898-904.
    
    92 Dalvi N, Thomas GJ, Marshall JF, et al. Modulation of the urokinase-type plasminogen activator receptor by the beta6 integrin subunit. Biochem Biophys Res Commun, 2004, 317(1):92-9.
    
    93 Barcellos-Hoff MH, Dix TA. Redox-mediated activation of latent transforming growth factor-beta 1. Mol Endocrinol, 1996, 10 (9): 1077-83.
    
    94 Murphy-Ullrich JE, Poczatek M. Activation of latent TGF-beta by thrombospondin-1: mechanisms and physiology. Cytokine Growth Factor Rev, 2000,11(1-2): 59-69.
    
    95 Crawford SE, StellmachV, Murphy-Ullrich JE, et al. Thrombospondin-1 is a major activator of TGF-betal in vivo. Cell, 1998, 93(7): 1159-70.
    
    96 Aviv A, Hollenberg NK, Weder AB. Sodium glomerulopathy: tubuloglomerular feedback and renal injury in African Americans. Kidney Int, 2004, 65(2):361-8.
    
    97 Ichihara A, Hayashi M, Koura Y, et al. Blunted tubuloglomerular feedback by absence of angiotensin type 1A receptor involves neuronal NOS. Hypertension, 2002,40(6):934-9.
    
    98 Schnermann J. Juxtaglomerular cell complex in the regulation of renal salt excretion. Am J Physiol, 1998,274(2 Pt 2):R263-79.
    
    99 Schnermann J. Micropuncture analysis of tubuloglomerular feedback regulation in transgenic mice. J Am Soc Nephrol, 1999,10(12):2614-9.
    
    100 Konishi Y, Imanishi M, Okamura M, et al. Relationship of renal histological damage to glomerular hypertension in patients with immunoglobulin A nephropathy. J Hypertens, 2000, 18(1):103-9.
    
    101 Lane PH. Long-term furosemide treatment in the normal rat: dissociation of glomerular hypertrophy and glomerulosclerosis. Am J Kidney Dis, 1999,33(6):1058-63.
    
    102 Ots M, Pechter U, Tamm A. Characteristics of progressive renal disease. Clin Chim Acta, 2000, 297(1-2):29-41.
    
    
    103 Fogo AB. The role of angiotensin II and plasminogen activator inhibitor-1 in progressive glomerulosclerosis. Am J Kidney Dis, 2000, 35 (2): 179-88.
    1 Braissant O, Foufelle F, Scotto C, et al. Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology, 1996,137(1):354-66.
    
    2 Auwerx J. PPARgamma, the ultimate thrifty gene. Diabetologia, 1999,42(9): 1033-49.
    
    3 Guan Y, Breyer MD. Peroxisome proliferator-activated receptors (PPARs): novel therapeutic targets in renal disease. Kidney Int, 2001, 60(1): 14-30.
    
    4 Shao D, Rangwala SM, Bailey ST, et al. Interdomain communication regulating ligand binding by PPAR-gamma. Nature, 1998, 396(6709):377-80.
    
    5 Schoonjans K, Staels B, Auwerx J. The peroxisome proliferator activated receptors (PPARS) and their effects on lipid metabolism and adipocyte differentiation. Biochim Biophys Acta, 1996,1302(2): 93-109.
    
    6 Tontonoz P, Nagy L, Alvarez JG, et al. PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell, 1998, 93(2): 241-52.
    
    7 Harris SG, Phipps RP. The nuclear receptor PPAR gamma is expressed by mouse T lymphocytes and PPAR gamma agonists induce apoptosis. Eur J Immunol, 2001,31 (4):1098-105.
    
    8 Qi C, Zhu Y, Reddy JK. Peroxisome proliferator-activated receptors, coactivators, and downstream targets. Cell Biochem Biophys, 2000,32 Spring:187-204.
    
    9 Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev, 1999, 20(5):649-88.
    
    10 Spiegelman BM. PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes, 1998, 47(4):507-14.
    
    11 Ricote M, Li AC, Willson TM, et al. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature, 1998, 391(6662):79-82.
    
    12 Jiang C, Ting AT, Seed B. PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature, 1998, 391(6662):82-6.
    
    13 Takeda K, Ichiki T, Tokunou T, et al. 15-Deoxy-delta 12,14-prostaglandin J2 and thiazolidinediones activate the MEK/ERK pathway through phosphatidylinositol 3-kinase in vascular smooth muscle cells. J Biol Chem, 2001, 276(52):48950-5.
    
    14 Kuzuya T, Iwamoto Y, Kosaka K, et al. A pilot clinical trial of a new oral hypoglycemic agent, CS-045, in patients with non-insulin dependent diabetes mellitus. Diabetes Res Clin Pract, 1991,11(3): 147-53.
    
    15 Gorson DM. Significant weight gain with rezulin therapy. Arch Intern Med, 1999, 159(1) :99.
    
    16 Yoshimoto T, Naruse M, Nishikawa M, et al. Antihypertensive and vasculo- and renoprotective effects of pioglitazone in genetically obese diabetic rats. Am J Physiol, 1997,272(6 Pt 1):E989-96.
    
    17 Asano T, Wakisaka M, Yoshinari M, et al. Peroxisome proliferator-activated receptor gammal (PPARgammal) expresses in rat mesangial cells and PPARgamma agonists modulate its differentiation. Biochim Biophys Acta, 2000,1497(1):148-54.
    
    18 Iwashima Y, Eto M, Horiuchi S, et al. Advanced glycation end product-induced peroxisome proliferator-activated receptor gamma gene expression in the cultured mesangial cells. Biochem Biophys Res Commun, 1999, 264(2): 441-8.
    
    19 Lebovitz HE, Dole JF, Patwardhan R, et al. Rosiglitazone monotherapy is effective in patients with type 2 diabetes. J Clin Endocrinol Metab, 2001,86(1) :280-8.
    
    20 Nakamura T, Ushiyama C, Suzuki S, et al. Effect of troglitazone on urinary albumin excretion and serum type IV collagen concentrations in Type 2 diabetic patients with microalbuminuria or macroalbuminuria. Diabet Med, 2001, 18(4): 308-13.
    
    
    21 Imano E, Kanda T, Nakatani Y, et al. Effect of troglitazone on microalbuminuria in patients with incipient diabetic nephropathy. Diabetes Care, 1998, 21(12):2135-9.
    
    22 Nakamura T, Ushiyama C, Shimada N, et al. Comparative effects of pioglitazone, glibenclamide, and voglibose on urinary endothelin-1 and albumin excretion in diabetes patients. J Diabetes Complications, 2000,14 (5): 250-4.
    
    23 Wolffenbuttel BH, Gomis R, Squatrito S, et al. Addition of low-dose rosiglitazone to sulphonylurea therapy improves glycaemic control in Type 2 diabetic patients. Diabet Med, 2000, 17(1):40-7.
    
    24 Isshiki K, Haneda M, Koya D, et al. Thiazolidinedione compounds ameliorate glomerular dysfunction independent of their insulin-sensitizing action in diabetic rats. Diabetes, 2000,49(6): 1022-32.
    
    25 Baylis C, Atzpodien EA, Freshour G, et al. Peroxisome proliferator-activated receptor [gamma] agonist provides superior renal protection versus angiotensin-converting enzyme inhibition in a rat model of type 2 diabetes with obesity. J Pharmacol Exp Ther, 2003, 307(3): 854-60.
    
    26 Ma LJ, Marcantoni C, Linton MF, et al. Peroxisome proliferator-activated receptor-gamma agonist troglitazone protects against nondiabetic glomerulosclerosis in rats. Kidney Int, 2001, 59(5): 1899-910.
    
    27 Dubey RK, Zhang HY, Reddy SR, et al. Pioglitazone attenuates hypertension and inhibits growth of renal arteriolar smooth muscle in rats. Am J Physiol, 1993, 265(4 Pt 2): R726-32.
    28 林沁 马骥 顾勇 杨海春 朱蔚钰 林善锬.单侧输尿管梗阻大鼠肾脏过氧化物酶体增生物激活受体-γ的表达及其意义.肾脏病与透析肾移植杂志,2003,12(02):126-131.
    29 Kumar S, Boulton AJ, Beck-Nielsen H, et al. Troglitazone, an insulin action enhancer, improves metabolic control in NIDDM patients. Troglitazone Study Group. Diabetologia, 1996, 39(6):701-9.
    30 Schwartz S, Raskin P, Fonseca V, et al. Effect of troglitazone in insulin-treated patients with type Ⅱ diabetes mellitus. Troglitazone and Exogenous Insulin Study Group. N Engl J Med, 1998, 338(13): 861-6.
    31 Fujiwara T, Yoshioka S, Yoshioka T, et al. Characterization of new oral antidiabetic agent CS-045. Studies in KK and ob/ob mice and Zucker fatty rats. Diabetes, 1988, 37(11):1549-58.
    32 Hube F, Hauner H. The role of TNF-alpha in human adipose tissue: prevention of weight gain at the expense of insulin resistance?. Horm Metab Res, 1999, 31(12):626-31.
    33 Steppan CM, Bailey ST, Bhat S, et al. The hormone resistin links obesity to diabetes. Nature, 2001, 409(6818):307-12.
    34 Roden M, Krssak M, Stingl H, et al. Rapid impairment of skeletal muscle glucose transport/phosphorylation by free fatty acids in humans. Diabetes, 1999, 48(2): 358-64.
    35 Yang WS, Jeng CY, Wu TJ, et al. Synthetic peroxisome proliferator-activated receptor-gamma agonist, rosiglitazone, increases plasma levels of adiponectin in type 2 diabetic patients. Diabetes Care, 2002, 25(2): 376-80.
    36 Fasshauer M, Paschke R. Regulation of adipocytokines and insulin resistance. Diabetologia, 2003, 46(12): 1594-603.
    37 Combs TP, Wagner JA, Berger J, et al. Induction of adipocyte complement-related protein of 30 kilodaltons by PPARgamma agonists: a potential mechanism of insulin sensitization. Endocrinology, 2002, 143(3): 998-1007.
    38 Iwata M, Haruta T, Usui I, et al. Pioglitazone ameliorates tumor necrosis factor-alpha-induced insulin resistance by a mechanism independent of adipogenic activity of peroxisome proliferator—activated receptor-gamma. Diabetes, 2001, 50(5): 1083-92.
    39 Buckingham RE, Al-Barazanji KA, Toseland CD, et al. Peroxisome proliferator-activated receptor-gamma agonist, rosiglitazone, protects against nephropathy and pancreatic islet abnormalities in Zucker fatty rats. Diabetes, 1998, 47(8): 1326-34.
    40 Krook A, Roth RA, Jiang XJ, et al. Insulin-stimulated Akt kinase activity is reduced in skeletal muscle from NIDDM subjects. Diabetes, 1998, 47(8): 1281-6.
    41 Koh EH, Kim MS, Park JY, et al. Peroxisome proliferator-activated receptor (PPAR)-alpha activation prevents diabetes in OLETF rats: comparison with PPAR-gamma activation. Diabetes, 2003, 52(9):2331-7.
    
    42 Wakino S, Kintscher U, Kim S, et al. Peroxisome proliferator-activated receptor gamma ligands inhibit retinoblastoma phosphorylation and G1→S transition in vascular smooth muscle cells. J Biol Chem, 2000, 275(29):22435-41.
    
    43 Kato K, Satoh H, Endo Y, et al. Thiazolidinediones down-regulate plasminogen activator inhibitor type 1 expression in human vascular endothelial cells: A possible role for PPARgamma in endothelial function. Biochem Biophys Res Commun, 1999, 258(2):431-5.
    
    44 Nathan CF. Secretory products of macrophages. J Clin Invest, 1987, 79 (2): 319-26.
    
    45 DiepQN, El Mabrouk M, Cohn JS, et al. Structure, endothelial function, cell growth, and inflammation in blood vessels of angiotensin II-infused rats: role of peroxisome proliferator-activated receptor-gamma. Circulation, 2002,105(19):2296-302.
    
    46 Hwang J, Kleinhenz DJ, Lassegue B, et al. Peroxisome proliferator-activated receptor-gamma ligands regulate endothelial membrane superoxide production. Am J Physiol Cell Physiol, 2005, 288(4) :C899-905.
    
    
    47 Kubota N, Terauchi Y, Miki H, et al. PPAR gamma mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance. Mol Cell, 1999, 4(4): 597-609.
    
    48 Miles PD, Barak Y, He W, et al. Improved insulin-sensitivity in mice heterozygous for PPAR-gamma deficiency. J Clin Invest, 2000, 105(3): 287-92.
    
    49 Miles PD, Barak Y, Evans RM, et al. Effect of heterozygous PPARgamma deficiency and TZD treatment on insulin resistance associated with age and high-fat feeding. Am J Physiol Endocrinol Metab, 2003, 284(3):E618-26.
    
    50 Deeb SS, Fajas L, Nemoto M, et al. A Prol2Ala substitution in PPARgamma2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat Genet, 1998, 20(3): 284-7.
    
    51 RistowM, Muller-Wieland D, Pfeiffer A, et al. Obesity associated with a mutation in a genetic regulator of adipocyte differentiation. N Engl J Med, 1998, 339 (14): 953-9.
    
    52 Koutnikova H, Cock TA, Watanabe M, et al. Compensation by the muscle limits the metabolic consequences of lipodystrophy in PPAR gamma hypomorphic mice. Proc Natl Acad Sci U S A, 2003, 100(24): 14457-62.
    
    53 Norris AW, Chen L, Fisher SJ, et al. Muscle-specific PPARgamma-deficient mice develop increased adiposity and insulin resistance but respond to thiazolidinediones. J Clin Invest, 2003,112(4): 608-18.
    
    54 Hevener AL, He W, Barak Y, et al. Muscle-specific Pparg deletion causes insulin resistance. Nat Med, 2003,9(12):1491-7.
    
    55 Matsusue K, Haluzik M, Lambert G, et al. Liver-specific disruption of PPARgamma in leptin-deficient mice improves fatty liver but aggravates diabetic phenotypes. J Clin Invest, 2003, 111(5):737-47.
    
    56 Gavrilova O, Haluzik M, Matsusue K, et al. Liver peroxisome proliferator-activated receptor gamma contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass. J Biol Chem, 2003, 278(36):34268-76.
    
    57 Picard F, Auwerx J. PPAR(gamma) and glucose homeostasis. Annu Rev Nutr, 2002,22:167-97.
    
    58 Matsui J, Terauchi Y, Kubota N, et al. Pioglitazone reduces islet triglyceride content and restores impaired glucose-stimulated insulin secretion in heterozygous peroxisome proliferator-activated receptor-gamma-deficient mice on a high-fat diet. Diabetes, 2004, 53(11): 2844-54.
    
    59 Desvergne B, Michalik L, Wahli W. Be fit or be sick: peroxisome proliferator-activated receptors are down the road. Mol Endocrinol, 2004,18(6):1321-32.
    
    60 Nicholas SB, Kawano Y, Wakino S, et al. Expression and function of peroxisome proliferator-activated receptor-gamma in mesangial cells. Hypertension, 2001,37(2 Part 2):722-7.
    
    61 Cock TA, Houten SM, Auwerx J. Peroxisome proliferator-activated receptor-gamma: too much of a good thing causes harm. EMBO Rep, 2004, 5(2): 142-7.