周期性排桩和波屏障在土木工程减振中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:本文从固体物理学的周期性理论出发,研究了土木工程中的周期性排桩(如周期性实心/空心排桩、周期性填充排桩和周期性分形排桩)和周期性波屏障结构。周期结构具有独特的衰减域禁波特性,当弹性波的频率落在衰减域内时,弹性波不能在周期介质中传播。另外,即使弹性波的频率在衰减域外,经过特殊设计的周期结构对弹性波的传播具有方向特性,即波的能量只能沿着某些方向传递,而在其他方向产生振动盲区。利用衰减域的禁波特性和波动传播的方向特性,就可以设计出具有减振、隔振功能的周期结构。这些周期结构可以应用到土木工程中的环境减振以及地震动的隔离当中。本文的研究目的是通过对这类周期结构的系统研究,为土木工程减振(震)方法提出新思路。本文通过理论研究、数值模拟以及对比其他研究者的试验结果的研究方法,首先利用级数展开技术和有限元法,求解了不同形式周期结构的频散曲线。然后,利用有限元技术,建立合理的分析模型和边界条件,进而分析了各种二维、三维周期结构的散射波场。通过和其他作者的实验结果对比,说明了理论结果的正确性和衰减域的存在性。本文的创新性成果主要有:
     (1)提出利用固体物理学中的周期性理论分析排桩的桩-土相互作用,用衰减域的概念解释周期性排桩对弹性波的频散特性;提出利用周期性排桩的衰减域特性实现对环境振动的衰减。
     (2)获得了周期实心排桩和周期空心排桩的衰减域,并对衰减域的影响因素进行了系统研究;揭示了土的弹性模量、桩的半径和周期常数对周期性排桩衰减域的重要影响,得出常见尺寸的排桩易于隔离中频振动的结论。
     (3)研究了周期填充排桩的面内和面外衰减域,并对衰减域的影响因素进行了分析;利用局域共振机理和布拉格散射机理对周期填充排桩衰减域的合理性进行了解释,将局域共振型周期填充排桩拓展用于低频减振。
     (4)对周期分形排桩的衰减域和方向传播特性,进行了理论研究和数值模拟,揭示了代数和填充率对周期分形排桩衰减域的影响规律。
     (5)设计了具备三维隔振(震)能力的周期性波屏障,为环境减振以及地震动隔离提出新思路。
     通过本文研究,不仅可以深入了解周期结构对弹性波的散射机制和减振效果,而且对揭示周期性排桩的桩-土相互作用机理、弹性波在桩-土之间的能量转换和耗散机理、建立周期性排桩在人工振动下的理论分析模型与设计方法、以及新型波屏障的设计,均具有非常重要的指导意义。
ABSTRACT:This paper utilizes periodic theory of solid-state physics to study periodic pile barriers (such as periodic pile barriers with solid piles or hollow piles, periodic in-filled pile barriers and periodic fractal pile barriers) and periodic wave barriers in Civil Engineering. Periodic structures own the distinctive feature of wave forbidden characteristic of attenuation zones. When the frequencies of elastic waves are located on the attenuation zones, these waves cannot propagate through the periodic mediums. Moreover, even though the frequencies of elastic waves are out of the attenuation zones, periodic structures with a particular design can have the directional characteristics of elastic wave propagation. That means energy of waves just can flow in certain directions and other directions are called as "dead zones". We can design periodic structures with the capacity of vibration reduction or isolation by attenuation zones and the directional characteristics of wave propagation. Thus these periodic structures can be used to environmental vibration reduction and seismic isolation in Civil Engineering. The purpose of this paper is to find the new approaches on vibration reduction and seismic isolation in Civil Engineering by systematically studying the periodic structures. In this paper, the theoretical analysis and numerical simulation are conducted and the results are compared with others' experimental results. First, this paper uses series expansion technique and finite element method to study the dispersion curves of different periodic structures. Then, the scattering field of two-dimensional and three-dimensional periodic structures are studied by finite element method with reasonable models and boundary conditions. The correctness of the theoretical results and the existence of attenuation zones are validated by comparing with others' experimental results. The innovations can be drawn as follows.
     (1) Periodic theory of solid-state physics is firstly used to study the pile-soil interaction in pile barriers. The dispersion characteristics of periodic pile barriers for elastic waves are explained by the concept of attenuation zones. This paper proposes utilizing attenuation-zone characteristics of periodic pile barriers to environmental vibration reduction.
     (2) The attenuation zones of periodic pile barriers with solid piles and hollow piles are obtained. The influential factors on attenuation zones are studied comprehensively. The research reveals elastic modulus of soil, the pile radii and the periodic constant have an important influence on the attenuation zones of periodic pile barriers. It concludes that piles with the common size can easily help to middle-frequency vibration isolation.
     (3) The in-plane and out-of-plane attenuation zones of periodic in-filled pile barriers are investigated and the affecting factors on attenuation zones are analyzed. The locally resonant mechanism and Bragg scattering mechanism are used to explain the rationality of attenuation zones in periodic in-filled pile barriers. The periodic in-filled pile barriers based on locally resonant mechanism are expanded to low-frequency vibration reduction.
     (4) The attenuation zones and directional characteristics of periodic fractal pile barriers are discussed by theoretical analyses and numerical simulation. The influencing rule of generations and filling fraction on the attenuation zones of periodic fractal pile barriers are discovered.
     (5) Periodic wave barrier is designed to block the vibrations and seismic waves from three dimensional space. This new mentality is presented for the environmental vibration reduction and seismic isolation.
     Based on the study in this paper, the findings can help to deeply understand the scattering mechanism of periodic structures for elastic waves and the effectiveness of vibration reduction. Moreover, the findings have a guiding significance on understanding the mechanism of the pile-soil interaction in periodic pile barriers, the energy transfer and consumption of elastic waves between pile and soil. Theoretical model and design method of periodic pile barriers subjected to artificial vibrations can be found in this paper. This paper also provides the inspiration for designing new wave barriers.
引文
[1]杨先健,潘复兰.环境振动中古建筑的防振保护,中国土木工程学会第七届士力学及基础工程学术会议论文集.北京,中国建筑工业出版社,1994,665-669.
    [2]夏禾,曹艳梅.轨道交通引起的环境振动问题,铁道科学与工程学报.2004,1(1):44-51.
    [3]高广运,孙雨明,吴世明.铁路产生的地面振动与减振,环境岩土工程理论与实践.上海,同济大学出版社,2002,64-73.
    [4]中国振动工程学会,士动力学专业委员会.土动力学工程应用实例与分析,北京,中国建筑工业出版社,1998,184-188.
    [5]邱畅.连续屏障和非连续屏障远场被动隔振三维分析[D],上海,同济大学,2003,1-2.
    [6]Tan Y, He Z., Li Z.J. Mitigation analysis of WIB for low-frequency vibration induced by subway, International Conference on Transportation Engineering. Chengdu, China, ASCE,2009, 741-746.
    [7]Gutowski T.G, Dym C.L. Propagation of ground vibration:A review, Journal of Sound and Vibration.1976,49(2):179-193.
    [8]范俊杰.现代铁路轨道,北京,中国铁道出版社,2001,249-267.
    [9]朱石坚,楼京俊,何其伟等.振动理论与隔振技术,北京,国防工业出版社,2006,293-299.
    [10]高广运.非连续屏障地面隔振理论与应用[D],杭州,浙江大学,1998.
    [11]Xu B., Lu J.F., Wang J.H. Numerical analysis of the isolation of the vibration due to Rayleigh waves by using pile rows in the poroelastic medium, Archive of Applied Mechanics.2010, 80 (2):123-142.
    [12]Lu J.F., Xu B., Wang J.H. A numerical model for the isolation of moving-load induced vibrations by pile rows embedded in layered porous media, International Journal of Solids and Structures.2009,46 (21):3771-3781.
    [13]Tsai P.H., Feng Z.Y., Jen T.L. Three-dimensional analysis of the screening effectiveness of hollow pile barriers for foundation-induced vertical vibration, Computers and Geotechnics.2008,35 (3):489-499.
    [14]Richart F.E., Hall J.R., Woods R.D. Vibrations of soils and foundations, Englewood Cliffs, New Jersey, Prentice-Hall, Inc.,1970,244-262.
    [15]Woods R.D., Barnett N.E., Sagesser R. Holography—A new tool for soil dynamics, Journal of the Geotechnical Engineering Division.1974,100(11):1231-1247.
    [16]Liao S., Sangrey D.A. Use of piles as isolation barriers, Journal of the Geotechnical Engineering Division.1978,104(9):1139-1152.
    [17]Aviles J., Sanchez-Sesma F.J. Piles as barriers for elastic waves, Journal of Geotechnical Engineering.1983,109(9):1133-1146.
    [18]Aviles J., Sanchez-Sesma F.J. Foundation isolation from vibrations using piles as barriers, Journal of Engineering Mechanics.1988,114(11):1854-1870.
    [19]Haupt W.A. Model test on screening of surface waves, Proceedings of the 10th International Conference in Soil Mechanics and Foundation Engineering. Stockholm,1981,215-222.
    [20]Boroomand B., Kaynia A.M. Vibration isolation by an array of piles, Proceedings of the 5th International Conference on Soil Dynamics and Earthquake Engineering. Karlsruhe, Germany, Elsevier Applied Science,1991,683-691.
    [21]Boroomand B., Kaynia A.M. Stiffness and damping of closely spaced pile groups, Proceedings of the 5th International Conference on Soil Dynamics and Earthquake Engineering. Karlsruhe, Germany,1991,490-501.
    [22]Kani Y., Hayakawa K. Simulation analysis about effects of a PC wall-pile barrier on reducing ground vibration, Proceedings of the Thirteenth International Offshore and Polar Engineering Conference Honolulu, HL, United States.2003,1224-1229.
    [23]Kellezi L. Dynamic FE analysis of ground vibrations and mitigation measures for stationary and Non-Stationary transient source, NUMGE2006 Graz, Austria, Proc.2006,231-236.
    [24]Kattis S.E., Polyzos D., Beskos D.E. Structural vibration isolation by rows of piles, Seventh International Conference on Soil Dynamics and Earthquake Engineering (SDEE 95). Crete, Greece,1995,509-516.
    [25]Kattis S.E., Polyzos D., Beskos D.E. Vibration isolation by a row of piles using a 3-D frequency domain BEM, International Journal for Numerical Methods in Engineering.1999,46 (5): 713-728.
    [26]Kattis S.E., Polyzos D., Beskos D.E. Modelling of pile wave barriers by effective trenches and their screening effectiveness, Soil Dynamics and Earthquake Engineering.1999,18 (1):1-10.
    [27]Takemiya H., Fujiwara A. Wave propagation/impediment in a stratum and wave impeding block (WIB) measured for SSI response reduction, Soil Dynamics and Earthquake Engineering. 1994,13(1):49-61.
    [28]Takemiya H. Field vibration mitigation by honeycomb WIB for pile foundations of a high-speed train viaduct, Soil Dynamics and Earthquake Engineering.2004,24 (1):69-87.
    [29]Takemiya H., Chen F., Shimabuku J. Application of WIB for better seismic performance of bridge foundation, Proceedings of the 27 th JSCE Symposium on Earthquake Engineering.2003, 1-4.
    [30]Takemiya H., Shimabuku J. Application of soil-cement columns for better seismic design of bridge piles and mitigation of nearby ground vibration due to traffic, Journal of Structural Engineering, JSCE.2002,48:437-444.
    [31]Andersen L., Nielsen S.R. Reduction of ground vibration by means of barriers or soil improvement along a railway track, Soil Dynamics and Earthquake Engineering.2005,25 (7): 701-716.
    [32]吴世明,吴建平.利用粉煤灰排桩隔振,中国土木工程学会第五届土力学及基础工程学术会议论文集.北京,中国建筑工业出版社,1987,308-310.
    [33]Yang X.J. Ground vibration isolated by soil and pile barriers,2nd international Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. St Louis,1991,1557-1562.
    [34]何少敏,王贻荪.弹性桩排对波的屏蔽作用,首届全国岩土力学与工程青年工作者学术讨论会论文集.杭州:浙江大学出版社,1992,411-414.
    [35]李伟华,申齐豪,赵成刚.饱和土半空间中地下圆形衬砌洞室对平面SV波的散射, 防灾减灾工程学报.2009,29(2):172-178.
    [36]李伟华,赵成刚.饱和土半空间中圆柱形孔洞对平面P波的散射,岩土力学.2005,25(12):1867-1872.
    [37]李伟华,赵成刚.平面SV波在饱和土半空间中圆柱形孔洞周边的散射,地震工程与工程振动.2009,28(6):1-7.
    [38]李志毅,高广运,邱畅,杨先健.多排桩屏障远场被动隔振分析,岩石力学与工程学报.2005,24(21):3990-3995.
    [39]Gao GY., Li Z.Y., Qiu C., Yue Z.Q. Three-dimensional analysis of rows of piles as passive barriers for ground vibration isolation, Soil Dynamics and Earthquake Engineering.2006,26 (11): 1015-1027.
    [40]徐平,夏唐代,吴明.刚性空心管桩屏障对P波和SH波的隔离效果研究,工程力学.2008,25(5):210-217.
    [41]徐平,周新民,夏唐代.非连续弹性圆柱实心桩屏障对弹性波的隔离,振动工程学报.2007,20(4):388-395.
    [42]Cai Y.Q., Ding GY., Xu C.J. Screening of plane S waves by an array of rigid piles in poroelastic soil, Journal of Zhejiang University-Science A.2008,9 (5):589-599.
    [43]Cai Y.Q., Ding G.Y., Xu C.J. Amplitude reduction of elastic waves by a row of piles in poroelastic soil, Computers and Geotechnics.2009,36 (3):463-473.
    [44]Lu J.F., Xu B., Wang J.H. Numerical analysis of isolation of the vibration due to moving loads using pile rows, Journal of Sound and Vibration.2009,319 (3):940-962.
    [45]时刚,高广运.饱和士半解析边界元法及在双排桩被动隔振中的应用,岩士力学.2010,31(S2):59-64.
    [46]Xia T.D., Sun M.M., Chen C, Chen W.Y., Xu P. Analysis on multiple scattering by an arbitrary configuration of piles as barriers for vibration isolation, Soil Dynamics and Earthquake Engineering.2011,31 (3):535-545.
    [47]高广运,李佳,李宁,宋健,彭争光.三维层状地基排桩远场被动隔振分析,岩石力学与工程学报,2013,32(S1):2934-2943.
    [48]Lu J.F., Jeng D.S., Wan J.W., Zhang J.S. A new model for the vibration isolation via pile rows consisting of infinite number of piles, International Journal for Numerical and Analytical Methods in Geomechanics.2013,37 (15):2394-2426.
    [49]Zhang X., Lu J.F. A wavenumber domain boundary element method model for the simulation of vibration isolation by periodic pile rows, Engineering Analysis with Boundary Elements.2013,37 (7-8):1059-1073.
    [50]Jia GF., Shi Z.F. A new seismic isolation system and its feasibility study, Earthquake Engineering and Engineering Vibration.2010,9 (1):75-82.
    [51]Bao J., Shi Z.F., Xiang H.J. Dynamic responses of a structure with periodic foundations, Journal of Engineering Mechanics.2011,138 (7):761-769.
    [52]Cheng Z.B., Shi Z.F. Novel composite periodic structures with attenuation zones, Engineering Structures.2013,56:1271-1282.
    [53]Cheng Z.B., Shi Z.F. Vibration attenuation properties of periodic rubber concrete panels, Construction and Building Materials.2014,50:257-265.
    [54]Cheng Z.B., Shi Z.F., Mo Y.L., Xiang H.J. Locally resonant periodic structures with low-frequency band gaps, Journal of Applied Physics, IEEE.2013,114 (3):033532.
    [55]Shi Z.F., Cheng Z.B., Xiong C. A new seismic isolation method by using a periodic foundation, Earth and Space 2010:Engineering, Science, Construction, and Operations in Challenging Environments. Hawaii, ASCE,2010,2586-2594.
    [56]Xiang H.J., Shi Z.F. Vibration attenuation in periodic composite Timoshenko beams on Pasternak foundation, Structural Engineering and Mechanics.2011,40 (3):373-392.
    [57]Xiang H.J., Shi Z.F., Wang S.J., Mo Y.L. Periodic materials-based vibration atttenuation in layered foundations:Experimental validation, Smart Materials and Structures.2012,21:112003.
    [58]Xiong C., Shi Z.F., Xiang H.J. Vibration attenuation of buildings using periodic foundations, Advances in Structural Engineering.2012,15 (8):1375-1388.
    [59]黄建坤.周期性隔震基础的设计与优化[D],北京,北京交通大学,2009,2-3.
    [60]Auersch L. Wave propagation in the elastic half-space due to an interior load and its application to ground vibration problems and buildings on pile foundations, Soil Dynamics and Earthquake Engineering.2010,30 (10):925-936.
    [61]Gupta S., Stanus Y., Lombaert G., Degrande G.Influence of tunnel and soil parameters on vibrations from underground railways, Journal of Sound and Vibration.2009,327 (1):70-91.
    [62]Kim D.S., Lee J.S. Propagation and attenuation characteristics of various ground vibrations, Soil Dynamics and Earthquake Engineering.2000,19 (2):115-126.
    [63]Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics, Physical Review Letters.1987,58 (20):2059-2089.
    [64]John S. Strong localization of photons in certain disordered dielectric superlattices, Physical Review Letters.1987,58 (23):2486-2489.
    [65]Sigalas M.M., Economou E.N. Elastic and acoustic wave band structure, Journal of Sound Vibration.1992,158 (2):377-382.
    [66]Kushwaha M.S., Halevi P., Dobrzynski L., Djafari-Rouhani B. Acoustic band structure of periodic elastic composites, Physical Review Letters.1993,71 (13):2022-2025.
    [67]Martinez-Sala R., Sancho J., Sanchez J., Gomez V., Llinares J., Meseguer F. Sound-attenuation by sculpture, Nature.1995,378 (6554):241-241.[68]郁殿龙.基于声子晶体理论的梁板类周期结构振动带隙特性研究[D],长沙,国防科学技术大学,2006,3-5.
    [69]Bloch F. Quantum mechanics of electrons in crystal lattices, Zeitschrift fur Physik.1928, 52 (7-8):555-600. [70] Brillouin L. Wave propagation in periodic structures, New York, Dover Publications,1953.
    [71]Casadei F., Ruzzene M., Dozio L., Cunefare K. Broadband vibration control through periodic arrays of resonant shunts:Experimental investigation on plates, Smart Materials and Structures.2010,19 (1):015002.
    [72]Chen S.B., Wang G, Wen J.H., Wen X.S. Wave propagation and attenuation in plates with periodic arrays of shunted piezo-patches, Journal of Sound and Vibration.2013,332 (6):1520-1532.
    [73]Spadoni A., Ruzzene M., Cunefare K. Vibration and wave propagation control of plates with periodic arrays of shunted piezoelectric patches, Journal of Intelligent Material Systems and Structures.2009,20 (8):979-990.
    [74]Chen S.B., Wen J.H., Wang G, Yu D.L., Wen X.S. Improved modeling of rods with periodic arrays of shunted piezoelectric patches, Journal of Intelligent Material Systems and Structures.2012,23 (14):1613-1621.
    [75]Kushwaha M.S., Halevi P., Martinez G., Dobrzynski L., Djafari-Rouhani B. Theory of acoustic band structure of periodic elastic composites, Physical Review B.1994,49 (4):2313-2322.
    [76]Kushwaha M.S., Halevi P. Band-gap engineering in periodic elastic composites, Applied Physics Letters.1994,64 (9):1085-1087.
    [77]Sigalas M., Economou E. Band structure of elastic waves in two dimensional systems, Solid State Communications.1993,86 (3):141-143.
    [78]Vasseur J.O., Djafari-Rouhani B., Dobrzynski L., Kushwaha M.S., Halevi P. Complete acoustic band gaps in periodic fibre reinforced composite materials:The carbon/epoxy composite and some metallic systems, Journal of Physics:Condensed Matter.1994,6 (42):8759-8770.
    [79]Sigalas M.M., Economou E.N. Elastic waves in plates with periodically placed inclusions, Journal of Applied Physics, IEEE.1994,75 (6):2845-2850.
    [80]Kushwaha M.S., Halevi P. Giant acoustic stop bands in two-dimensional periodic arrays of liquid cylinders, Applied Physics Letters.1996,69(1):31-33.
    [81]Kushwaha M.S., Djafari-Rouhani B. Complete acoustic stop bands for cubic arrays of spherical liquid balloons, Journal of Applied Physics, IEEE.1996,80 (6):3191-3195.
    [82]Sigalas M.M., Economou E.N. Attenuation of multiple-scattered sound, EPL (Europhysics Letters).1996,36 (4):241-246.
    [83]Vasseur J.O., Deymier P.A., Frantziskonis G., Hong G, Djafari-Rouhani B., Dobrzynski L. Experimental evidence for the existence of absolute acoustic band gaps in two-dimensional periodic composite media, Journal of Physics:Condensed Matter.1998,10:6051-6064.
    [84]Kushwaha M.S., Djafari-Rouhani B., Dobrzynski L., Vasseur J.O. Sonic stop-bands for cubic arrays of rigid inclusions in air, The European Physical Journal B-Condensed Matter and Complex Systems.1998,3 (2):155-161.
    [85]Sanchez-Perez J., Caballero D., Martinez-Sala R., Rubio C., Sanchez-Dehesa J., Meseguer F., Llinares J., Galvez F. Sound attenuation by a two-dimensional array of rigid cylinders, Physical Review Letters.1998,80 (24):5325-5328.
    [86]Chen Y.Y., Ye Z. Acoustic attenuation by two-dimensional arrays of rigid cylinders, Physical Review Letters.2001,87 (18):184301.
    [87]Montero de Espinosa F.R., Jimenez E., Torres M. Ultrasonic band gap in a periodic two-dimensional composite, Physical Review Letters.1998,80 (6):1208-1211.
    [88]Kee C.S., Kim J.E., Park H.Y., Chang K.J., Lim H. Essential role of impedance in the formation of acoustic band gaps, Journal of Applied Physics, IEEE.2000,87 (4):1593-1596.
    [89]Garcia-Pablos D., Sigalas M., De Espinosa F.M., Torres M., Kafesaki M., Garcia N. Theory and experiments on elastic band gaps, Physical Review Letters.2000,84 (19):4349-4352.
    [90]Tanaka Y, Tomoyasu Y, Tamura S.I. Band structure of acoustic waves in phononic lattices: Two-dimensional composites with large acoustic mismatch, Physical Review B.2000,62 (11): 7387-7392.
    [91]Vasseur J.O., Deymier P.A., Chenni B., Djafari-Rouhani B., Dobrzynski L., Prevost D. Experimental and theoretical evidence for the existence of absolute acoustic band gaps in two-dimensional solid phononic crystals, Physical Review Letters.2001,86 (14):3012-3015.
    [92]温熙森,温激鸿,郁殿龙,王刚,刘耀宗,韩小云.声子晶体,北京,国防工业出版社,2009,8-10.
    [93]Vasseur J.O., Deymier P.A., Djafari-Rouhani B., Pennec Y., Hladky-Hennion A.C. Absolute forbidden bands and waveguiding in two-dimensional phononic crystal plates, Physical Review B.2008,77 (8):085415.
    [94]Zhu X.F., Liu S.C., Tao X., Wang T.H., Cheng J.C. Investigation of a silicon-based one-dimensional phononic crystal plate via the super-cell plane wave expansion method, Chinese Physics B.2010,19 (4):044301.
    [95]Chen J.J., Wang Q., Han X. Lamb wave transmission through One-Dimensional Three-Component fibonacci composite plates, Modern Physics Letters B.2010,24 (02):161-167.
    [96]Chen J.J., Yan F., Chan H. Large Lamb wave band gap in phononic crystals thin plates, Applied Physics B.2008,90 (3-4):557-559.
    [97]Zhu X.F., Zou X.Y., Liang B., Cheng J.C. One-way mode transmission in one-dimensional phononic crystal plates, Journal of Applied Physics, IEEE.2010,108 (12):124909.
    [98]Zhu X.F., Xu T., Liu S.C., Cheng J.C. Study of acoustic wave behavior in silicon-based one-dimensional phononic-crystal plates using harmony response analysis, Journal of Applied Physics, IEEE.2009,106 (10):104901.
    [99]Hsu J.C, Wu T.T. Bleustein-Gulyaev-Shimizu surface acoustic waves in two-dimensional piezoelectric phononic crystals, Ultrasonics.2006,53 (6):1169-1176.
    [100]Hu L., Liu L., Bhattacharya K. Existence of surface waves and band gaps in periodic heterogeneous half-spaces, Journal of Elasticity.2012,107 (1):65-79.
    [101]Charles C., Bonello B., Ganot F. Propagation of guided elastic waves in 2D phononic crystals, Ultrasonics.2006,44:1209-1213.
    [102]Tanaka Y, Tamura S.I. Surface acoustic waves in two-dimensional periodic elastic structures, Physical Review B.1998,58 (12):7958-7965.
    [103]Wu T.T., Huang Z.G, Lin S. Surface and bulk acoustic waves in two-dimensional phononic crystal consisting of materials with general anisotropy, Physical Review B.2004,69 (9): 094301.
    [104]Tanaka Y, Yano T., Tamura S.I. Surface guided waves in two-dimensional phononic crystals, Wave Motion.2007,44 (6):501-512.
    [105]Huang Z.G, Wu T.T. Temperature effect on the bandgaps of surface and bulk acoustic waves in two-dimensional phononic crystals, Ultrasonics.2005,52 (3):365-370.
    [106]Sun J.H., Wu T.T. Analyses of surface acoustic wave propagation in phononic crystal waveguides using FDTD method, Ultrasonics Symposium. IEEE,2005,73-76.
    [107]Sun J.H., Wu T.T. Propagation of surface acoustic waves through sharply bent two-dimensional phononic crystal waveguides using a finite-difference time-domain method, Physical Review B.2006,74 (17):174305.
    [108]Liu Z.Y., Zhang X.X., Mao Y.W., Zhu Y.Y, Yang Z.Y., Chan C.T., Sheng P. Locally resonant sonic materials, Science.2000,289 (5485):1734-1736.
    [109]Liu Z.Y., Chan C.T., Sheng P. Three-component elastic wave band-gap material, Physical Review B.2002,65 (16):165116.
    [110]Zhang X., Liu Y.Y, Wu F.G, Liu Z.Y. Large two-dimensional band gaps in three-component phononic crystals, Physics Letters A.2003,317(1):144-149.
    [111]Liu Z.Y., Chan C.T., Sheng P.Analytic model of phononic crystals with local resonances, Physical Review B.2005,71 (1):014103.
    [112]Goffaux C., Sanchez-Dehesa J. Two-dimensional phononic crystals studied using a variational method:Application to lattices of locally resonant materials, Physical Review B.2003, 67 (14):144301.
    [113]Goffaux C, Sanchez-Dehesa J., Yeyati A.L., Lambin P., Khelif A., Vasseur J., Djafari-Rouhani B. Evidence of fano-like interference phenomena in locally resonant materials, Physical Review Letters.2002,88 (22):225502.
    [114]Ho K.M., Cheng C.K., Yang Z., Zhang X., Sheng P. Broadband locally resonant sonic shields, Applied Physics Letters.2003,83 (26):5566-5568.
    [115]Zhang S., Cheng J.C. Existence of broad acoustic bandgaps in three-component composite, Physical Review B.2003,68 (24):245101.
    [116]Hirsekorn M. Small-size sonic crystals with strong attenuation bands in the audible frequency range, Applied Physics Letters.2004,84 (17):3364-3366.
    [117]Hirsekorn M., Delsanto P., Batra N., Matic P. Modelling and simulation of acoustic wave propagation in locally resonant sonic materials, Ultrasonics.2004,42 (1):231-235.
    [118]Wang G, Wen X.S., Wen J.H., Shao L.H., Liu Y.Z. Two-dimensional locally resonant phononic crystals with binary structures, Physical Review Letters.2004,93 (15):154302.
    [119]Wang G, Liu Y.Z., Wen J.H., Yu D.L. Formation mechanism of the low-frequency locally resonant band gap in the two-dimensinal ternary phononic crystals, Chinese Physics.2006,15 (2): 0407-0405.
    [120]Sigalas M.M., Soukoulis C.M. Elastic-wave propagation through disordered and/or absorptive layered systems, Physical Review B.1995,51 (5):2780-2789.
    [121]Camley R., Djafari-Rouhani B., Dobrzynski L., Maradudin A. Transverse elastic waves in periodically layered infinite and semi-infinite media, Physical Review B.1983,27 (12):7318-7329.
    [122]Djafari-Rouhani B., Dobrzynski L., Duparc O.H., Camley R., Maradudin A. Sagittal elastic waves in infinite and semi-infinite superlattices, Physical Review B.1983,28 (4):1711-1720.
    [123]Cao Y.J., Hou Z.L., Liu Y.Y. Convergence problem of plane-wave expansion method for phononic crystals, Physics Letters A.2004,327 (2):247-253.
    [124]闫志忠.基于小波理论的二维声子晶体带隙结构分析[D],北京,北京交通大学,2007,39-81.
    [125]Sainidou R., Stefanou N., Psarobas I., Modinos A. Scattering of elastic waves by a periodic monolayer of spheres, Physical Review B.2002,66 (2):024303.
    [126]Liu Z.Y., Chan C.T., Sheng P., Goertzen A.L., Page J.H. Elastic wave scattering by periodic structures of spherical objects:Theory and experiment, Physical Review B.2000,62 (4): 2446-2457.
    [127]Kafesaki M., Economou E. Multiple-scattering theory for three-dimensional periodic acoustic composites, Physical review B.1999,60(17):11993-12001.
    [128]Qiu C.Y., Liu Z.Y., Mei J., Ke M. The layer multiple-scattering method for calculating transmission coefficients of 2D phononic crystals, Solid State Communications.2005,134 (11): 765-770.
    [129]Modinos A., Stefanou N., Yannopapas V. Applications of the layer-KKR method to photonic crystals, Optics Express.2001,8 (3):197-202.
    [130]Sigalas M.M., Garcia N. Theoretical study of three dimensional elastic band gaps with the finite-difference time-domain method, Journal of Applied Physics, IEEE.2000,87 (6):3122-3125.
    [131]Lambin P., Khelif A., Vasseur J., Dobrzynski L., Djafari-Rouhani B. Stopping of acoustic waves by sonic polymer-fluid composites, Physical Review E.2001,63 (6):066605.
    [132]Vasseur J.O., Deymier P.A., Khelif A., Lambin P., Djafari-Rouhani B., Akjouj A., Dobrzynski L., Fettouhi N., Zemmouri J. Phononic crystal with low filling fraction and absolute acoustic band gap in the audible frequency range:A theoretical and experimental study, Physical Review E.2002,65 (5):056608.
    [133]Cao Y.J., Hou Z.L., Liu Y.Y. Finite difference time domain method for band-structure calculations of two-dimensional phononic crystals, Solid State Communications.2004,132 (8): 539-543.
    [134]Jensen J.S. Phononic band gaps and vibrations in one-and two-dimensional mass-spring structures, Journal of Sound and Vibration.2003,266 (5):1053-1078.
    [135]Wang G.,Wen J.H., Wen X.S. Quasi-one-dimensional phononic crystals studied using the improved lumped-mass method:Application to locally resonant beams with flexural wave band gap, Physical Review B.2005,71 (10):104302.
    [136]Wang G., Wen J.H., Liu Y.Z., Wen X.S. Lumped-mass method for the study of band structure in two-dimensional phononic crystals, Physical Review B.2004,69 (18):184302.
    [137]Liu X.N., Hu G.K., Sun C.T., Huang G.L. Wave propagation characterization and design of two-dimensional elastic chiral metacomposite, Journal of Sound and Vibration.2011,330 (11): 2536-2553.
    [138]Jeong S.M., Ruzzene M. Directional and band-gap behavior of periodic grid-like structures, Smart Structures and Materials, Proceedings of SPIE.2004,5386:101-111.
    [139]Huang Z.G., Wu T.T. Analysis of wave propagation in phononic crystals with channel using the plane-wave expansion and supercell techniques, IEEE Ultrasonics Symposium.2005, 77-80.
    [140]Gibbs J.W. Fourier's series, Nature.1898,59:200.
    [141]Gibbs J.W. Fourier's series, Nature.1899,59:606.
    [142]Li L.F. Use of Fourier series in the analysis of discontinuous periodic structures, Journal of the Optical Society of America A.1996,13 (9):1870-1876.
    [143]Halkjaer S., Sigmund O., Jensen J.S. Maximizing band gaps in plate structures, Structural and Multidisciplinary Optimization.2006,32 (4):263-275.
    [144]Bathe K.J. Finite element procedures, Upper Saddle River, NJ, Prentice-Hall,1996, 87-90.
    [145]Naggar M.H.E., Chehab A.G. Vibration barriers for shock-producing equipment, Canadian Geotechnical Journal.2005,42 (1):297-306.
    [146]Liao Z.P., Wong H.L. A transmitting boundary for the numerical simulation of elastic wave propagation, International Journal of Soil Dynamics and Earthquake Engineering.1984,3 (4): 174-183.
    [147]廖振鹏.法向透射边界条件,中国科学E辑.1996,2(26):185-192.
    [148]廖振鹏,杨柏坡.频域透射边界,地震工程与工程振动.1986,4(64):1-9.
    [149]Ross M. Modeling methods for silent boundaries in infinite media, Fluid-Structure Interaction, Aerospace Engineering Sciences-University of Colorado at Boulder.2004,5519-5006.
    [150]Degrande G, De Roeck G An absorbing boundary condition for wave propagation in saturated poroelastic media—Part Ⅰ:Formulation and efficiency evaluation, Soil Dynamics and Earthquake Engineering.1993,12 (7):411-421.
    [151]Deeks A.J., Randolph M.F. Axisymmetric time-domain transmitting boundaries, Journal of Engineering Mechanics.1994,120 (1):25-42.
    [152]Liu J.B., Du Y.X., Du X.L., Wang Z.Y., Wu J.3D viscous-spring artificial boundary in time domain, Earthquake Engineering and Engineering Vibration.2006,5:93-102.
    [153]Liu J.B., Li B. A unified viscous-spring artificial boundary for 3-D static and dynamic applications, Science in China Series E Engineering & Materials Science.2005,48 (5):570-584.
    [154]杜修力,赵密.一种新的高阶弹簧-阻尼-质量边界——无限域圆柱对称波动问题,力学学报.2009,41(2):207-215.
    [155]杜修力,赵密,王进廷.近场波动模拟的人工应力边界条件,力学学报.2006,38(1):49-56.
    [156]刘晶波,谷音,杜义欣.一致粘弹性人工边界及粘弹性边界单元,岩土工程学报.2006,28(9):1070-1075.
    [157]刘晶波,吕彦东.结构—地基动力相互作用问题分析的一种直接方法,土木工程学报.1998,31(3):55-64.
    [158]刘晶波,王振宇,杜修力,杜义欣.波动问题中的三维时域粘弹性人工边界,工程力学.2005,22(6):46-51.
    [159]Kausel E., Peek R. Dynamic loads in the interior of a layered stratum:An explicit solution, Bulletin of the Seismological Society of America.1982,72 (5):1459-1481.
    [160]时刚,高广运,冯世进.饱和层状地基的薄层法基本解及其旁轴边界,岩土工程学报.2010,32(5):664-670.
    [161]杜修力.工程波动理论与方法,北京,科学出版社,2009,280-378.
    [162]周晨光.高土石坝地震波动输入机制研究[D],大连,大连理工大学,2009,10-80.
    [163]He X., Niu Z. Investigate on dimension effect of dynamic artificial boundaries, Earth and Space 2010:Engineering, Science, Construction, and Operations in Challenging Environments. ASCE,2010,2841-2848.
    [164]刘晶波,杜义欣,闫秋实.粘弹性人工边界及地震动输入在通用有限元软件中的实现,防震减灾工程学报.2007,27(S):37-42.
    [165]赵建锋,杜修力,韩强,李立云.外源波动问题数值模拟的一种实现方式,工程力学2007,24(4):52-58.
    [166]刘云贺,张伯艳,陈厚群.拱坝地震输入模型中黏弹性边界与黏性边界的比较,水利学报.2006,37(6):758-763.
    [167]王振宇,刘晶波,裴欲晓,张克峰.大型动力机器基础防微振计算理论与实测研究,岩士工程学报.2002,24(3):363-366.
    [168]徐海滨,杜修力,赵密,王进迁.地震波斜入射对高拱坝地震反应的影响,水力发电学报.2011,30(6):159-165.
    [169]Khelif A., Choujaa A., Djafari-Rouhani B., Wilm M., Ballandras S., Laude V. Trapping and guiding of acoustic waves by defect modes in a full-band-gap ultrasonic crystal, Physical Review B.2003,68 (21):214301-214304.
    [170]Briaud J.L., Li Y.F., Rhee K. BCD:A soil modulus device for compaction control, Journal of Geotechnical and Geoenvironmental Engineering.2006,132 (1):108-115.
    [171]温激鸿,王刚,郁殿龙,赵宏刚,刘耀宗,温熙森.声子晶体振动带隙及减振特性研究,中国科学,E辑.2007,37(9):1126-1139.
    [172]Biwa S., Yamamoto S., Kobayashi F., Ohno N. Computational multiple scattering analysis for shear wave propagation in unidirectional composites, International Journal of Solids and Structures.2004,41 (2):435-457.
    [173]Das B.M. Principles of geotechnical engineering, Boston, PWS Publishing Company, 2010,302-303.
    [174]Chen C.H., Wang C.L. A solution for an isotropic sector under anti-plane shear loadings, International Journal of Solids and Structures.2009,46 (11-12):2444-2452.
    [175]Kellezi L. Local transmitting boundaries for transient elastic analysis, Soil Dynamics and Earthquake Engineering.2000,19 (7):533-547.
    [176]Woods R.D. Screening of surface waves in soils, Journal of the Soil Mechanics and Foundations Division.1968,94 (4):951-979.
    [177]Wang G, Wen J.H., Liu Y.Z., Wen X.S. Theoretical and experimental study on two-dimensional binary locally resonant phononic crystals,2006, .
    [178]Huang J.K., Shi Z.F. The application of periodic theory to rows of piles for horizontal vibration attenuation, International Journal of Geomechanics, ASCE.2013,13 (2):132-142.
    [179]Huang Z.G., Wu T.T. Analysis of wave propagation in two-dimensional phononic crystals with hollow cylinders, World Academy of Science, Engineering and Technology.2009,53:279-283.
    [180]Rani M., Kumar V. New fractal carpets, Arabian Journal for Science and Engineering. 2004,29 (2):125-134.
    [181]Alexander M., Vasil R. Investigation of optical diffraction by Sierpinski's carpets, Fifth International Conference on Correlation Optics. International Society for Optics and Photonics,2002, 220-226.
    [182]Lyamshev L., Urusovskii I. Sound diffraction at Sierpinski carpet, Acoustical Physics. 2003,49 (6):700-703.
    [183]Li Y, Feng Y, Duan Z., Liu S., Niu H. The photonic bands of fractal photonic crystal and its application in filters, ICO20:Optical Communication. International Society for Optics and Photonics,2006,60250A-60258A.
    [184]Liu Z., Xu J.J., Lin Z.F. Photonic band gaps in two-dimensional crystals with fractal structure, Chinese Physics Letters.2003,20 (4):516-518.
    [185]Liu Y.H., Chang C.C., Chern R.L., Chang C.C. Phononic band gaps of elastic-periodic structures:A homogenization theory study, Physical Review B.2007,75:054104.
    [186]Leger P., Ide I.M., Paultre P. Multiple-support seismic analysis of large structures, Computers & Structures.1990,36 (6):1153-1158.
    [187]Hussein M.I., Frazier M.J. Band structure of phononic crystals with general damping, Journal of Applied Physics, IEEE.2010,108 (9):093506.
    [188]Zhao H.G., Liu Y.Z., Yu D.L., Wang G., Wen J.H., Wen X.S. Absorptive properties of three-dimensional phononic crystal, Journal of Sound and Vibration.2007,303 (1):185-194.
    [189]Madelung O. Introduction to solid-state theory, Springer,1995,42-55.
    [190]Hsieh P.F., Wu T.T., Sun J.H. Three-dimensional phononic band gap calculations using the FDTD method and a PC cluster system, Ultrasonics.2006,53 (1):148-158.
    [191]Xiao W., Zeng G.W, Cheng Y.S. Flexural vibration band gaps in a thin plate containing a periodic array of hemmed discs, Applied Acoustics.2008,69 (3):255-261.
    [192]Bodare A. Jord-och bergdynamik. Divsion of Soil and Rock Mechanics, Stockholm, Royal Institute of Technology,1996.
    [193]Computers and Structures, Inc, Sap2000 saftware.
    [194]Strong Motion Database,PEER..