压电驱动型数控铣削精密补偿单元结构设计与分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超精密机床进给是保证加工质量和加工效率的关键,为了适应超精密加工技术的发展,满足超精密加工机床高效率、高精度的要求,本文进行了超精密机床滚珠丝杠配合压电补偿单元共同作用的Z轴进给模式研究,并对与压电叠堆相配合的柔性铰链进行了结构设计和仿真分析,为压电驱动单元力和位移的输出提供了可靠的保障,该设计思路开拓了一种新型的在垂直方向上利用压电驱动单元作机床微进给补偿机构的设计理念。本论文主要完成了以下几个方面的内容:
     (1)概述超精密加工、超精密机床、机床驱动方法(包括传统步进电机、滚动导轨、静压导轨、直线电机以及新型智能材料元件)的发展历史与现状,系统性地综述了压电驱动的发展历程及其应用于驱动领域特有的优势,阐明了本论文的主要研究内容和意义。
     (2)介绍压电效应的基本原理并列出压电叠堆的重要特性指标,从静力学和动力学两个方面对压电驱动力学特性进行公式推导,为下一步柔性机构设计和仿真分析奠定了坚实的理论基础。
     (3)通过对压电微进给驱动器的方案论证,最终确定超精密机床的整体框架结构,并根据加工要求对各关键元件进行选型,主要针对压电补偿驱动单元进行结构设计。
     (4)通过仿真分析选择合适的柔性铰链类型,通过公式推导得出直角柔性机构的力学特性。根据机床的设计要求对柔性铰链进行结构设计,并运用ANSYS软件对柔性铰链应力、应变、输出位移以及模态进行仿真分析,为下一步结构优化打下基础。
     (5)利用正交试验法对所设计的柔性铰链模型进行结构优化,按照所需试验指标(即最大应力、最大应变和一阶固有频率值)设定一个5因素4水平的正交表,通过对16组仿真分析结果进行极差分析,得出最优解。
     (6)利用ANSYS软件对最优柔性结构再次进行静力分析与模态分析,验证最优解在力学性能与动态特性上具有最优效应。采用线切割技术对柔性机构进行实际加工,利用激光位移传感器对压电驱动单元的线性度、最小补偿量和稳定性进行检测,并得出相关结论。
The feeding of ultra-precision machine is the key to the quality and the efficiency of the machining. In order to adapt to the development of ultra-precision processing technology and meet the high efficiency and precision requirements of the ultra-precision machine, the Z-axis feed mode of the ultra-precision machine tools with the ball screw and the micro piezoelectric compensation is researched and the flexible hinge structure associated with the piezoelectric structure is designed and analyzed in this topic. They provide reliable output protection of the force and the displacement for the piezoelectric actuators. This design opens up a new way that the piezoelectric actuator is used for the Micro-feed mechanism of machine tools which request low orders of magnitude in vertical direction. The paper's primary coverage is as follows:
     (1) Outlines the developing history and present situation of the Ultra Precision Machining, the Ultra Precision Machine Tools and the Machine Driven Approach (including stepping motor, rolling guide, hydrostatic sideways, linear electric motors and new intelligent material). The developing course and the unique advantages that applied to in the field driven of piezoelectric driven are systematically summarized. Then the main research contents of this paper are illustrated.
     (2)Introduces the basic principle of the piezoelectric effect and enumerate the important characteristic indexes of the piezoelectric stack. Mechanical characteristics of piezoelectric driven is derived from the two aspects of statics and dynamics. They lay a solid theoretical basis for the next step of flexible mechanism design and simulation analysis.
     (3) Determines the holistic frame construction of the ultra-precision machine tools finally based on argumentation of the piezoelectric micro-feed actuator project, and then the key components are selected according to the requirements of processing. The structure of piezoelectric actuator for compensation is mainly designed.
     (4)Selects appropriate type of flexible hinge through simulation analysis, and the mechanical characteristics of right-angle flexible hinge are derived. Designs the structure of the flexible hinge according to the design requirements of the machine tools, and analyzes the kinematics and the modal of the flexible hinge with the ANSYS software in order to lay a foundation for the further optimization.
     (5)Analyzes the structure of the flexible hinge model by the method of the Orthogonal Test, and then designs an orthogonal table which has five factors and four levels in accordance with the necessary test index (maximum stress, maximum strain and first-order natural frequency), gets the optimal solution based on the analysis of range about the sixteen groups of analytical result.
     (6)And then analyzes the kinematics and the modal of the flexible hinge with the ANSYS software again in order to verify the optimal solution with optimal effect in mechanics performance and dynamic characteristics. Actually processes the flexible mechanism with Wire-cutting technology, tests the linearity, resolution and stability of the piezoelectric drive unit with the laser displacement sensor and makes relevant conclusions.
引文
[1]袁巨龙,张飞虎,戴一帆.超精密加工领域科学技术发展研究[J].机械工程学报,2010,46(15):161-177.
    [2]万德安,侯篱水.超精密加工技术的现状和动向[J].机械制造,1988,9(7):4-7.
    [3]王先逵,吴丹.精密加工和超精密加工技术综述[J].中国机械工程,1999,10(5):570-576.
    [4]徐宁,李素玲,王淑君.精密加工技术的现状及发展前景[A].现状、趋势、战略,2003,41(469):36-38.
    [5]牛景丽,陈东海.现代超精密加工机床的发展及对策[J].机床与液压,2010,38(2):94-97.
    [6]姜媛媛,孙杰,李雁翎.数控机床滚珠丝杠副的改进方法[J].中国科技信息,2007,(6):79-81.
    [7]WUT, PAUL I R. Dynamic peak amplitude analysis and bonding layer effects of piezoelectric bimorph cantilevers[J].Smart Materials and Structure,2004,13(1): 203-210.
    [8]郑子文.超精密机床伺服控制技术研究[D].长沙:国防科技大学,2001.
    [9]张研.超精密机床进给系统微动特性及其QFT控制器的研究[D].兰州:兰州理工大学,2009.
    [10]唐恒宁,尹韶辉,陈逢军,范玉峰,朱勇建.磁流变斜轴抛光及其路径控制[J].微纳米制造技术,2009,(11):32-35.
    [11]刘林枝.超精密加工领域科学技术发展研究[J].专题报导,2010,48(545):8-9.
    [12]Rung et al. Research on The Mechanism and Characteristics of Electromagnetic Micro-actuator[C].第二届中日机械电子学学术讨论会论文集,1997,(6):91-94.
    [13]张建设.数控机床加工精度的影响因素及其控制措施[J].工艺与装备,2009,5(192):39-41.
    [14]李国.新型非球面超精密加工数控装置[D].哈尔滨:哈尔滨工业大学,2006.
    [15]庞继有,胡家农,于在梅,刘中海,王明海,卢泽生.超精密复合加工机床的总体设计[J].高效数控加工,2009,(25):97-99.
    [16]王剑彬.超精密加工机床的模块化设计[J].组合机床与自动化加工技术,2000,(6):20-31.
    [17]王磊.超精密非球面加工面形精度模型的研究[D].昆明:昆明理工大学,2008.
    [18]李大民.超精密加工车床及其微进给机构的研究[D].天津:河北工业大学,2006.
    [19]Clint Vander Giessen, Qing Zee Zhou. Inversion-based Precision-pos-intoning of Switching Inertial Reach Devices[C].proceeding of the 2004 American Control Conference Boston, Massachusetts,2004 (6):30-34.
    [20]孔祥东.多细分三相混合式步进电机驱动器研究及实现[D].大连:大连理工大学,2005.
    [21]Gribble J B. Simple Algorithm for closed-loop control of Stepping Motors [J].IEEE Proc Electric Power Applications,1995,142 (1):5-13.
    [22]沈捷(译).SCHNEEBER GERMONORAIL BM型滚珠直线导轨[J].制造技术 与机床,2003,(3):114.
    [23]邱志湧.静压导轨技术[J].现代制造,2007,(4):72-74.
    [24]李萌萌.龙门移动式镗铣床双直线电机交叉耦合同步控制[D].沈阳:沈阳工业大学,2008.
    [25]刘德忠,费仁元,任英.形状记忆合金丝驱动的微型机械手[J].设计与研究,2001,(9):23-24.
    [26]扈玉玲,郑雁军,高万夫,崔立山.TiNi形状记忆合金约束态相变及驱动特性研究进展[J].材料报道,2003,17(10):16-19.
    [27]孙桂林.新型惯性压电叠堆驱动机构及位移精度控制系统[D].长春:吉林大学,2006.
    [28]唐可洪,阚君武,彭太江,朱国仁,高俊峰.压电叠堆泵驱动的新型直线马达[J].光学精密工程,2009,17(1):147-150.
    [29]K. Furigana, T. Higuchi, Y. Yamagata, and N. Morin. Effect of lubrication on Impact Drive Mechanism [J].precision Engineering,1998 (22):199-202.
    [30]Yutaka Yamagata, Toshiro Higuchi. A Micro-positioning Device for Precision Automatic Assembly using Impact Force of Piezoelectric Elements [C].Proceedings of the IEEE International Conference on Robotics and Automation,1995,1(5): 666-671.
    [31]缪国.新型三自由度惯性压电驱动器研究[D].长春:吉林大学,2008.
    [32]刘爽.压电泵_电流变阀液压精密步进驱动技术的研究[D].长春:吉林大学,2009.
    [33]刘国嵩.压电步进二维精密驱动器理论及实验研究[D].长春:吉林大学,2006.
    [34]刘勇.电流变液压电叠堆泵驱动理论及实验研究[D].长春:吉林大学,2008.
    [35]Douglas Bristow, Marina Thermopile. A survey of iterative learning control[C].IEEE Control Systems Magazine,2006 (14):96-114.
    [36]毛艳清.基于V型导轨压电叠堆惯性驱动器的研究[D].长春:吉林大学,2008.
    [37]邓金强.精密原位微纳米级压痕_划痕测试系统的设计与实验研究[D].长春:吉林大学,2009.
    [38]K. Nakamura et al. Ultrasonic Motor Using Free Bending Vibration of a Short Cylinder [J] Journal of the Acoustical Society of Japan,1988 (22):795-796.
    [39]Urea. S, Tomahawk, Y. Ultrasonic Matura. Theory and Application Caledon [J].Press and Oxford,1993 (9):95-100.
    [40]曾平.摩擦力变化式压电惯性驱动机构的研究[D].长春:吉林大学,2003.
    [41]J. Fu, Rev. Sic. Long-ranged scanning for scanning tunneling microscopy [J]. precision Engineering,1992,63 (4):2200-2205.
    [42]程良伦,杨宜民.新型精密直线驱动器及其控制器的研究[J].计算技术及自动化,2000,19(1):19-21.
    [43]章海军,黄峰.压电陶瓷冲击驱动机构在微细进给与操作中的应用[J].浙江大学学报(工学版),2000,34(5):519-521.
    [44]卢秋红,高志军,颜国正,颜德田.压电型惯性微驱动器研究[J].压电与声光2001,26(2):113-115.
    [45]Takeshi Morita, Reich Yoshida, Yasuhiro Okamoto, Toshiro Higuchi. Three DOF parallel link mechanisms tilling smooth impact drive mechanism [J].Precision Engineering,2002 (26):289-295.
    [46]周志斌,肖沙里,周宴,汪科.现代超精密加工技术的概况及应用[J].现代制造工程,2005(1):121-123.
    [47]Derik E, Kiser E. Adaptive force control of hydraulic drivers of facility for testing mechanical constructions[J].Experimental Techniques,2001,25 (1):35-39.
    [48]D.B. Thrived. An Adaptive Control of an Electro-Hydraulic Position Control System[J]. Proof American Control Conf,1984, (1):107-109.
    [49]赵宏伟.尺蠖型压电驱动器基础理论与试验研究[D].长春:吉林大学,2006.
    [50]A. Alley. Nonlinear Force Control of an Electro-hydraulic Actuator [J]. Precision Engineering,1996, (44):14-15.
    [51]王寰斌.叠堆驱动二维惯性压电驱动机构研究[D].长春:吉林大学,2009.
    [52]朱立达,朱春霞,蔡光起.PID调节在PMAC运动控制器中的应用[J].控制与检测,2007,(2):50-53.
    [53]石林锁.可编程多轴控制器PMAC及其应用[J].新技术新工艺,1995,(6):4-5.
    [54]孙真和,王海英,贲放.基于PLC的电气_液压精确控制的研究[J].自动化技术与应用,2009,28(12):19-21.
    [55]李晓静,吴庆宪.PMAC控制程序在双轴运动平台中的实现[J].现代制造工程2005,5(132):29-33.
    [56]赵艳涛,吕丽军.采用柔性铰链实现镜子的四自由度精密调整[J].机械设计与研究,2007,23(1):61-64.
    [57]沈健,朱仁胜,赵韩.单自由度微位移机构柔性铰链的研究[J].上海交通大学学报,2004,38(6):932-936.
    [58]王姝歆,陈国平,周建华,颜景平.复合型柔性铰链机构特性及其应用研究[J].光学精密工程,2005,(6):491-494.
    [59]孙宝玉,薛军.光学反射镜柔性锥套连接结构的设计与分析[J].光学技术,2008,34(2):230-232.
    [60]田俊,张宪民.基于柔顺机构的两自由度微动精密定位平台的分析与设计[J].机械设计与制造,2009,(5):205-207.
    [61]魏玉凤,余晓芬.六自由度微动工作台柔性铰链设计[J].纳米技术与精密工程,2004,2(2):152-155.
    [62]杜金平,王桂梅,高术振.正交试验法在切削参数优化中的应用研究[J].煤矿机械,2007,28(4):130-132.
    [63]刘玉波,赵灿,冯明军.基于正交试验法的高速铣削工艺参数优化设计[J].工艺与装备,2008,(9):68-71.
    [64]曾孝云,樊庆文,谢玉凤.正交试验在难加工材料切削参数优化中的应用[J].工具技术,2004,38(6):43-44.