松辽盆地南部长岭、十屋断陷层构造演化与沉积响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文以全球板块构造活动论、地质历史发展的地区性和阶段性等基本理论观点为指导思想,运用现代构造地质学和盆地分析的新概念、新方法,通过野外地质研究、火山岩特征、地震剖面、钻井和测井资料综合研究,讨论位于松辽裂谷南部的长岭地区断陷层盆地的几何学、运动学和地球动力学特征,揭示了白垩纪早期长岭地区断陷盆地的构造演化过程、阐述了松南地区断陷盆地伸展过程中地壳应变机制的差异。
     长岭凹陷白垩至今发育的地层可划分为三个构造层。底部断陷层可划分为四个组,自下而上分别是:火石岭组、沙河子组、营城组、登娄库组,代表了白垩纪早期不同阶段的沉积。断拗转换界面位于登娄库组内S1-4-2、S1-4-3层序之间。断陷层构造层序中发育了与裂陷背景相关的沉积体系类型,如扇三角洲、辫状河三角洲、冲积扇、辫状河冲积平原及湖泊沉积体系等,它们在空间上有机配置,反映了裂谷盆地的正断层边缘和缓坡边缘分别对盆地沉积体系发育的控制作用。
     断陷层切入基地的控盆断裂存在两个主展布方向:NE向和NW向。地震剖面平衡恢复的结果显示盆地过程中的伸展方向存在自NE向至近E-W向的顺时针旋转。初期火石岭期,伸展方向为NE向,沉降中心沿NW向展布形成三条沉降带。随后沙河子期盆地伸展方向发生旋转,最终营城期伸展方向为近E-W向,并在长岭地区形成了统一的NE向延伸的沉降带。伴随伸展方向的转变,盆地内部的构造样式在不同时期也存在着变化,显示存在不同的应变模式。基于地震剖面的构造样式分析显示在形成断陷盆地的过程中存在两种应变模式。初期主要发育地堑、地垒式构造样式,为纯剪切应变的产物。随后转为叠瓦状的半地堑构造样式(变质核杂岩构造),为简单剪切应变产物。后期构造叠加在前期构造之上造成了长岭地区复杂的构造样式。
     研究发现,在盆地的伸展过程中地壳或岩石圈的厚度与应变模式之间存在相关性。在岩石圈厚度较大的高原背景下,地壳的伸展变形以发育地堑、地垒式构造样式为代表的纯剪切应变(对称伸展)为特征;变质核杂岩式构造所代表的简单剪切应变(不对称伸展)形成于较薄的岩石圈背景下。两种应变机制不仅存在于岩石圈伸展的不同构造层内,也存在于伸展过程中的不同阶段。
Guiding by the rules of the global plate tectonics mobilism and the basic theory of spatial and temporal/episodic development of regional geology, using the new concepts and methods of the Modern Tectonic Geology as well as the Basin Analysis, this paper discussed the geometric, kinematical and geodynamical characters of the Changling Area’s faulted depressions in the southern Songliao rift by the comprehensive research basing on the geological field investigation, volcanic features, seismic profiles, drilling and logging data Basing on those studies, it described the structural evolution of the fault depressions in Changling Area during the early Cretaceous and discovered the differentiation of the strain pattern during the crustal extension in the southern Songliao Basin.
     The stratigraphies of Changling Sag Basin from Cretaceous to Quaternary could be divided into three Tectono-stratigraphic units. The lower unit filled into the faulted depression can be also divided into four groups, such as: Huoshiling Group, Shahezi Group, Yingcheng Group as well as Denglouku Group from the bottom to the top, which represent the different stage’s sediments of early Cretaceous. The surface between the fault basin and depression basin is defined in the middle of Denglouku Group. The types of sediment facies, such as fan delta sediment, braided delta sediment, alluvial fan sediment, fluvial plain sediment of braided river as well as lacustrine sediment, organized together and reflected the control of the margin of syn-normal fault and the broken-slope to sediment facies.
     The syn-sedimentary faulting cut into the basement have two mainly directions-the NE and the SW- which controlled the formation of the fault basin. The analysis of the balanced section based on the seismic profiles across the fault basin along NE direction and SW direction indicates that the extension which formed the fault basin turned from NE to nearly E-W along the clock direction during the stages mentioned above. At the beginning, Huoshiling stage, the direction of extension is along NE, and the center of subsidence composed three belts and distributed mostly along the NW at Changling fault depression and Qianan fault depression. Following that, the extension direction turned during the Shahezi stage. Finally, the mainly extension direction is nearly along the E-W during the Shahezi stage and Yingcheng stage. It formed a union subsidence belt along NE direction at the three fault depressions. This process can also be find at Shiwu fault depression-a half-graben formed at the same time southeast to Changling area.Accompanied by the change of extension direction, the structure patterns also changed at different stages during the forming of the fault basin. The analysis of structure pattern basing on the seismic section show there are two kinds of strain pattern forming the fault basin at Changling area. At the first stage, the main structure pattern was graben and horst which usually represented the strain pattern of pure-shear deformation. After that, it changed into imbricate half graben which formed usually under the Sample shear conditions. The second type overlaid on the first and made the structure of Changling area complex.
     The studies show that there are some relationship between the thickness of crust or lithosphere and the strain pattern during the extensional process. The Pure-shear Model presented by the way of graben or horst-a symmetry extension-was formed on the plateau background with thicker lithosphere and the Simple-shear Model presented by the form of metamorphic core complexes model-a dissymmetry extension- was usually formed on the thinner lithosphere. Both of the two deformation models are not only exist in the different layer of lithosphere, but also exist in different stage during the extension process.
引文
[1] Alain M, Bernard D G, Antonio TD R, eta.l Structural geometry in the eastern Pyrenees and western Gulf of Lion (Western Mediterranean)[J]. Journal of Structural Geology, 2001, 23(11): 1 701-1 726.
    [2] Allen M B, Vincent S J, Wheeler P J. Late Cenozoic tectonics of the Kepingtage thrust zone: interactions of the Tien Shan and Tarim Basin,Northwest China[J].Tectonics, 1999, 18(4): 639-654.
    [3] Allmendinger R W, Nelson K D, Potter C J. 1987. Deep seismic reflection characteristics of the continental crust[J]. Geology, 15:304—310.
    [4] Bally A W. Basin and subsidence– a summary, in Dynamics of plate interiors, Geodynamic Series[J]. Am. Geol. Soc. 1980, 1:5-20
    [5] Beaumont C, Tankand A J. Sedimentary basin– forming mechanism. Canadian society of petroleum geologists, 1987, memoir 12:527
    [6] Braile L W, Chiang F. 1986. The continental Mohorovicic discontinuity: Results from near-vertial and wide-angle seismic reflection studies[A]. In: Barazzangi M, Brown L D (eds). Reflection Seismology: A Global Perspective. Geodynamics Series (Vol 13), Amer Geophys Union, Washington D C. 257—272.
    [7] Burke K. Intracontinental rift and aulacogens in Continnental Tectonics. National Academy[J]. Geophysics Research Board, 1980, 42-49
    [8] Cross,T.A. High-resolutions stratigraphic correlation from the perspective of base-level cycles and sediment accommodations.1994.
    [9] Cross,T.A, Baker, M.R. Chapin, M.A. et al. Applications of high-resolution sequence stratigraphy to reservoir analysis, in R. Eschard and B. Doligez,(eds), Subsurface reservoir characterization from outcrop observation , proceedings of the 7th Exploration and production research conference.1993.11-33.
    [10] Dahlstrom C D A. Balanced cross sections [J]. Canadian JournalofEarth Sciences, 1969, 6(4): 743-757.
    [11] Depaor D G. Balanced section in thrust belts: Part 1, Construction [J].AAPG Bulletin, 1988, 72(1): 73-90.
    [12] Dickinson W R. Basin Geodynamics. Basin Research. 1993, 5:195-196
    [13] Dickinson W R. Palte Tectonic Evolution of Sedimentary Basins, San Joaquin Geo;. Soc. Short course, SEPM. Spec. Pub, No.22. 1974
    [14] Dickinson W R. The dynamics of Sedimentary Basins[M].[S.L.]:USGC, National academy press. 43 1997
    [15] Dickinson W R. Palte Tectonic Evolution of Sedimentary Basins, AAPG Divergent Basin, AAPG Studies in Geology 41, 184p, Tulsa. For continental margin stratigtaphy, Spec. Publ. Int. Ass. Sediment.1976, 18:93-106
    [16] Elliott D. The construction of balanced cross section [J]. Journal of Structural Geology, 1983, 5(2): 101.
    [17] Engebretson, D. C., A. Cox, R. G. Gordon, et al. 1985. Relative motions between oceanic and continental plates in the Pacific Basin. Special Paper - Geological Society of America 206.
    [18] Galloway, W.E. Genetic stratigraphic sequences in basin analysisⅠ: architecture and genesis of flooding-surface bounded depositional units: AAPG Bulletin,1989.73.125-142.
    [19] Ingersoll R V, Busby C J. Tectonic of sedimentary basins. Cambridge: Blackwell science,1995, 1-51
    [20] Kusznir N J, Park R G. Continental lithosphere strength: The critical role of lower crustal deformation [A].DAWSON J B. The Nature of the Lower Continental Crust [M].[s.l.]: Blackwell Scientific Publications,1986.79-106.
    [21] Liu S F, Nummedal D. Late Cretaceous subsidence in Wyoming: Quantifying the dynamic component. Geology, 2004, 32(5): 397-400
    [22] Maruyama, S., T. Send 1986. Orogeny and relative plate motions: Example of the Japanese Islands[J]. Tectonophysics 127 (3-4): 305-329.
    [23] Meng, Q. R. 2003. What drove late Mesozoic extension of the northern China-Mongolia tract? Tectonophysics 369 (3-4): 155-174.
    [24] Mitchum, R.M. Vail, P.R., and Thompson, S.Ⅲ, et al. Seismic stratigraphy and global changes of sea level, part 2; the depositional sequence as a basin unit for stratigraphic analysis, in Payton C.E., ed,Seismic stratigraphy application to hydrocarbon exploration: AAPG Memoir 26,1977.3-62.
    [25] Mouthereau F, Lacombe O, Deffontaines B, eta.l Deformation history of the southwestern Taiwan foreland thrust belt: insights from tectono-sedimentary analyses and balanced cross-sections[J].Tectonophysics, 2001, 333(1): 293-322.
    [26] Nelson K D, Arnow J A, McBride J H,et al. 1985. New COCORP profiling in the southeastern United States, late Paleozoic suture and Mesozoic rift basin[J]. Geology, 13: 714—718.
    [27] Nelson K D. 1991. A unified view of craton evolution motivated by recent deep seismic reflection and refraction results[J]. Geophy Jour Int, 105: 25—35.
    [28] Northrup, C. J., L. H. Royden, B. C. Burchfiel, et al. 1995. Motion of the Pacific Plate relative to Eurasia and its potential relation to Cenozoic extension along the eastern margin of Eurasia[J]. Geology 23 (8): 719-722.
    [29] Posamentier, H.W,and Vail, P.R. Eustatic controls on clastic depositionⅡ-sequence and systems tract models, in Wilgus C.K. et al, eds, Sea-level changes: an integrated approach: SEPM Special Publication 42,1988.125-154.
    [30] Posamentier, H.W, Allen, G.P., James, D.P.,and Tesson M., et al. Forced regressions in a sequence stratigraphic framework: concepts, examples, and exploration significance: AAPG Bulletino,1992.76.1687-1709.
    [31] Reks I J, Gray D R. Strain patterns and shortening in a folded thrust sheet: an example from the southern Appalachians [J].Tectonophysics, 1983, 93(1): 99-128.
    [32] Reston T J. 1990. Shear in the lower crust during extension: not so pure and simple[J]. Tectonophysics, 173:175—183.
    [33] Sengor A M C, Natal’in B A. Paleotectonics of Asia: fragments of a synthesis. In: Yin A, Harrison T M, eds. The Tectonic Evolution of Asia. Cambridge: Cambridge University Press, 1996, 486-640.
    [34] Shahram S, Jean L. Variation of structural style and basin evolution in the central Zagros(Izeh zone and Dezful Embayment), Iran[J].Marine and Petroleum Geology, 2004, 21(5): 535-554.
    [35] T. McCann, A. Saintot. Tracing tectonic deformation using the sedimentary record: an overview[J].Geological Society, London, Special Publications, January 1, 2003; 208(1): 1 - 28.
    [36] Taboada A, Rivera L A, Fuenzalida A, et a.l Geodynamics of the northern Andes: subductions and intracontinental deformation (Colombia)[J].Tectonics, 2000, 19(5): 787-813.
    [37] Thomas F, Martin H. Folded basement-cored tectonic wedges along the northern edge of the Amadeus Basin, Central Australia: evaluation of orogenic shortening [J]. Journal of Structural Geology, 1999, 21(4): 399-412.
    [38] Van Wagoner,J.C., Mitchum, R.M., Campion,K.M. and Rahmanian, V.D., et al. Siliclastic se-quence stratigraphy in well logs, cores, and out crop concepts for high-resolution correlation of time and facies: AAPG Methods in Exploration Series 7,1990.55.
    [39] Van Wagoner,J. C., Posamentier, H. W.,Mitchum, R.M. Vail, P.R., Sarg J.F., Loutit T.S., and Hardenb J., et al. An overview of sequence stratigraphy and key definitions, in Wilgus C. W. et al., eds, Sea level changes: an integrated approach: SEPM Special Publication 42,1988.39-45.
    [40] WU F Y, WALKER R J, REN X W, et al. Osmium isotopic constraints on the age of lithospheric mantle beneath northeastern China[J].Chem Geol, 2003, 196:107-129.
    [41] Wilgus,C. K. Posamentier,H,et al. Sea-level Changes: An Integrated Approach, SEPM Special Publication 42,1988.
    [42] Woodward N B, Boyer S E, Suppe J. Balanced geological cross-sections: an essential technique in geological research and exploration [A] //Crawford M L. Short course in geology[C].Washington: American Geophysics Union, 1989: 132.
    [43] X XU, SY O’REILLY, W. L. GRIFFIN, et al. Genesis of Young Lithospheric mantle in Southeastern China: An LAM-ICPMS trace element study[J]. Journal of Petrology, 2000, 41: 111-148.
    [44] XU Y G, SUN M, YAN W, et al. Xenolith evidence for poly-baric melting and stratification of the upper mantle beneath south China[J].JAsian Earth Sci,2002, 20: 937-954.
    [45] Ziergler P A. Evolution of the Arctic- north Atlantic and the western Tethys. AAPG Memory, 43. 1988
    [46] Ziergler P A. Plate tectonics. Plate moving mechanism and rifting. In: Ziergler P A (eds), Geodynamics of rifting and implications for hydrocarnbon habitat. Volume 3. Thematic Discussions. Tectophysics,1992, 215:9-34
    [47]程三友.中国东北地区区域构造特征与中、新生代盆地演化. [博士学位论文].中国地质大学(北京),2006.
    [48]丁国瑜,卢演俦.板内块体的现代运动[A].中国岩石圈动力学地图集[Z].北京:中国地图出版社,1989.21
    [49]邓宏文·美国层序地层研究中的新研究组———高分辨层序地层学[J].石油与天然气地质,1995·16(2):89-97·
    [50]黄清华,郑玉龙,杨明杰等.松辽盆地白垩纪古气候研究[J].微体古生物学报, 1999, 16(1):95-103
    [51]高君,李占林,李勤学.松辽盆地北部深部地壳结构及盆地成因机制[J].大庆石油地质与开发,2002,21(1):20-23
    [52]高明修. 1983.中国东部中新生代盆地与北美西部盆岭省对比研究[A].见:朱夏主编.中国中新生代盆地构造和演化.北京:科学出版社.
    [53]高瑞祺,蔡希源. 1997.松辽盆地油气田形成条件与分布规律[A].北京:石油工业出版社.
    [54]顾家裕.陆相盆地层序地层学格架概念及模式[J].石油勘探与开发,1995,22(4):
    [55]顾家裕,郭彬程,张兴阳.中国陆相盆地层序地层格架及模式[J].石油勘探与开发,2005,32(5):
    [56]付立新,王东林,肖玉永.伸展断层作用对油气二次运移的影响[J].石油大学学报:自然科学版, 2000, 24(4): 71-74.
    [57]傅维洲,杨宝俊,刘财等,1998,中国满洲里-绥芬河地学断面地震学研究[J],长春科技大学学报,28(2),206-211
    [58]黑龙江省地质矿产局.黑龙江省区域地质志[A].北京:地质出版社, 1993
    [59]吉林省地质矿产局.吉林省区域地质志[A].北京:地质出版社, 1988
    [60]纪友亮.陆相断陷湖盆层序地层学[M],北京:石油工业出版社,1996
    [61]林强,葛文春,孙德有,等.中国东北地区中生代火山岩的大地构造意义[J].地质科学, 1998, 33(2): 129-139
    [62]李锦轶,牛宝贵,宋彪,等.长白山北段地壳的形成与演化[J].北京:地质出版社, 1999
    [63]李锦轶,和政军,莫申国,等.大兴安岭北部绣峰组下部砾岩的形成时代及其大地构造意义[J].地质通报, 2004a, 23(2): 120-129.
    [64]李锦轶,莫申国,和政军,等.大兴安岭北段地壳左行走滑运动的时代及其对中国东北及邻区中生代以来地壳构造演化重建的制约[J].地学前缘, 2004b, 11(3): 157-168.
    [65]李四光.地质力学概论[A].1974.北京:科学出版社.
    [66]李思田. 1983.东北中生代断陷盆地群分布规律与形成机制[A].见:朱夏主编.中国中新生代盆地构造和演化〔M〕.北京:科学出版社.
    [67]辽宁省地质矿产局.辽宁省区域地质志.北京:地质出版社, 1989
    [68]刘德来,马莉.松辽盆地裂谷期前火山岩与裂谷盆地关系及动力学过程[J].地质论评, 1998,44(2):130—135.
    [69]刘和甫,李晓清,刘立群等.伸展构造与裂谷盆地成藏区带[J].石油与天然气地质,2005,26(5):537-552.
    [70]刘俊来,关会,梅纪沫等.华北晚中生代变质核杂岩构造及其对岩石圈减薄机制的约束[J].自然科学进展,2006,16(1):21-26.
    [71]刘少峰,程三友,苏三.东北地区区域构造特征与盆地演化研究.中国石化东北勘探新区项目管理部,北京:中国地质大学, 2006
    [72]刘少峰,张国伟.盆山关系研究的基本思路、内容和方法[J].地学前缘, 2005, 12 (3): 101-111
    [73]刘少峰,张金芳,李忠,等.燕山承德地区晚侏罗世盆地充填记录及对盆缘构造作用的指示[J].地学前缘, 2004, 11(3): 245-254
    [74]刘少峰等.松南断陷层构造沉积研究(沉积).内部资料.2008
    [75]刘招君,董清水,王嗣敏等.陆相层序地层学导论与应用.北京:石油工业出版社,2002,1-178.
    [76]林畅松,李思田,袁荣等.东北典型断陷的层序地层及构造地层分析及主要储集层和原岩研究中的应用[R].中国石油天然气总公司新区勘探事业部,内部资料. 1995.
    [77]马瑾.从断层中心论向块体中心论转变—论活动块体在地震活动中的应用[J].地学前缘,1999,6:363-370
    [78]马正.油气测井地质学[M].武汉:中国地质大学出版社,1994,1-131
    [79]毛小平,吴冲龙,袁艳斌.地质构造的物理平衡剖面法[J].地球科学—中国地质大学学报, 1998, 23(2): 167-170.
    [80]内蒙古自治区地质矿产局.内蒙古自治区区域地质志.北京:地质出版社, 1993
    [81]聂逢君.层序地层学的起源及其发展[J].铀矿地质, 2001,17(4):194-203
    [82]任纪舜,陈廷愚,牛宝贵.中国东部及邻区大陆岩石圈的构造演化及成矿.北京:科学出版社, 1990
    [83]任纪舜,王作勋,陈炳蔚,等.从全球看中国大地构造-中国及邻区大地构造图简要说明.北京:地质出版社, 2002. 1-50
    [84]任纪舜,王作勋,陈廷愚,等.从全球看中国大地构造-中国及邻区大地构造图简要说明.北京:地质出版社, 1999
    [85]邵济安,唐克东.中国东北地体与东北亚大陆边缘演化[J].北京:地质出版社, 1995
    [86]邵济安,王成源,唐克东.乌苏里地区构造新探索[J].地质论评, 1992, 38(1): 33-38
    [87]任纪舜,姜春发,张正坤,等..中国大地构造及其演化[M].北京:科学出版社. 1980.
    [88]施泽进,彭大钧,施央申,等.苏北溱潼凹陷的拉张量研究及构造运动强度分析[J].大地构造与成矿学, 1994, 18(1): 43-52.
    [89]陶建元,欧少佳,张永华,等.平衡剖面技术在新疆焉耆盆地断裂和圈闭研究中的应用[J].河南地质, 1999, 17(4): 297-302.
    [90]汤济广,梅廉夫,沈传波等.平衡剖面技术在盆地构造分析中的应用进展及存在的问题[J].油气地质与采收率,2006,13(6):19-22
    [91]万天丰.中国大地构造学纲要.北京:地质出版社,2004,l-387.
    [92]王清海,许文良.松辽盆地形成与演化的深部作用过程—中生代火山岩探针[J],吉林大学学报(地球科学版),33(1):37-42.
    [93]王正文,赵追,李峰等.陆相盆地层序地层学研究现状及发展趋势[J].河南石油,2002,16(3):8-11
    [94]吴福元,葛文春,孙德有等.中国东部岩石圈减薄研究中的几个问题[J].地学前缘,2003,10(3):51-60.
    [95]吴正文. 1990. COCORP在美国地壳细结构研究中的成就简介[J].见:中国地质科学院编.岩石圈研究基本问题和方法.北京:冶金工业出版社.169—187.
    [96]解习农.陆相盆地层序地层学研究特点[J],地质科技情报,1993,12(1)
    [97]解习农.断陷盆地构造作用与层序样式[J],地质论评,1996,42(3):239-241
    [98]颜丹平,田崇鲁,孟令波,等.伸展构造盆地的平衡剖面及其构造意义—以松辽盆地南部为例[J].地球科学—中国地质大学学报, 2003, 28(3): 275-280.
    [99]杨宝俊,穆石敏,金旭,等.中国满洲里—绥芬河地学断面地球物理综合研究[J].地球物理学报,1996,39(6):772-782
    [100]杨宝俊.在地学断面域内用地震学方法研究大陆地壳[J]. 1999.北京:地质出版社.
    [101]杨克绳.中国含油气盆地结构和构造样式地震解释[M].北京:石油工业出版社,2006.1-614
    [102]杨懋新.松辽盆地断陷期火山岩的形成及成藏条件[J].大庆石油地质与开发,2002,21(5):15-18.
    [103]杨木壮,王明君,梁金强,等.南海万安盆地构造沉降及其油气成藏控制作用[J].海洋地质与第四纪地质, 2003, 23(2): 85-88.
    [104]杨晓松,马瑾.大陆岩石圈解耦及块体运动讨论—以青藏高原-川滇地区为例[J].地学前缘,2003,10suppl:240-247
    [105]杨文采.后板块地球内部物理学导论[J]. 1999.北京:地质出版社.
    [106]杨文采,陈志德.中国东部的多重拱弧地震构造[J].中国科学D辑,2005,35(12):1120-1134
    [107]俞凯,侯洪斌,郭念发,等.松辽盆地南部断陷层系[J].石油天然气地质.北京:石油工业出版社, 2002
    [108]岳华,张洪波,李仁甫.Geosec平衡剖面技术在M盆地构造研究中的应用[J].勘探地球物理进展, 2002, 25(4): 49-52.
    [109]云金表,殷进垠,金之钧.松辽盆地深部地质特征及其盆地动力学演化[J].地震地质, 2003,25(4):595-608
    [110]云金表,金之钧,殷进垠等.松辽盆地徐家围子地区深反射结构及其盆地动力学意义[J].地学前缘,2008,15(4):307-314
    [111]赵文智,李建忠.基底断裂对松辽南部油气聚集的控制作用[J].石油学报,2004, 25(4),1-6
    [112]张梅生,彭向东,孙晓猛.中国东北区古生代构造古地理格局.辽宁地质, 1998, (2): 91-96
    [113]张庆龙等.松南断陷层构造沉积研究汇报(构造).内部资料.2008
    [114]张贻侠,孙运生,张兴洲,等.中国满洲里-绥芬河地学断面1: 1000000说明书.北京:地质出版社, 1998
    [115]张贻侠,孙运生,张兴洲等.中国满洲里-绥芬河地学断面1: 1000000说明书.北京:地质出版社, 1998.
    [116]张晓东,余青,陈发景等.松辽盆地变质核杂岩和伸展断陷的构造特征及成因[J].地学前缘,2000,7(4):411-419.
    [117]张文佑.断块构造导论[M].北京:石油工业出版社,1984.1-23
    [118]邹和平.南海北部陆缘扩张—岩石圈拆沉的地壳响应[J].海洋地质与第四纪地质, 2001, 21: 39-44.
    [119]周建勋,徐凤银,胡勇.柴达木盆地北缘中、新生代构造变形及其对油气成藏的控制[J].石油学报, 2003, 24(1): 19-24.
    [120]朱光,牛漫兰,刘国生等.郑庐断裂带早白至世走滑运动中的构造、岩浆、沉积事件[J].地质学报, 2002,76(3):325-334
    [121]朱志澄.构造地质学[M].武汉:中国地质大学出版社,2004