Tol2转座子介导的斑马鱼诱变及Grhl2对内耳发育的调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
斑马鱼是优良的模式脊椎动物,其胚胎的早期发育受到许多基因的调控,突变体筛选是鉴定具有特定功能的基因的重要手段。为寻找参与调控斑马鱼胚胎早期发育的基因,本研究利用Tol2转座子介导的基因捕获技术筛选早期发育异常的突变体,并通过对突变体的研究阐明相关基因在胚胎发育中的作用及机理。
     本次筛选共建立了219个表达EGFP的转基因鱼品系,其中绝大部分品系的荧光只在母源期表达或者在母源期和合子期均表达,并且大部分品系的荧光是广泛表达的。本研究共鉴定出了8种突变体,克隆了其中3个品系中Tol2转座子捕获到的基因,并对其中一个T086/grhl2b品系进行了详细的研究。
     grhl2b品系转基因鱼的荧光在内耳和侧线等多种器官中表达,纯合体胚胎的内耳表现出耳腔增大、耳石变小甚至消失、半规管发育畸形等缺陷,使突变体的听力降低并且不能维持身体的平衡。在该品系中,Tol2转座子插入到grhl2b基因的第一个内含子中使其表达明显减少。抑制grhl2b的表达可使野生型胚胎产生类似grhl2b突变体的表型,而过表达grhl2b能挽救突变体内耳的缺陷,表明其表型确实是由于grhl2b基因被捕获造成的。进一步的分析表明,grhl2b基因突变不影响内耳的诱导及图式形成,也不影响毛细胞和位听神经节的发育和成熟,而是使内耳上皮的屏障功能降低并使耳腔内淋巴液的稳态失衡,最终导致内耳的发育异常。在这一过程中,Grhl2b直接与细胞连接和黏附蛋白基因cldnb和epcam的启动子或增强子结合促进它们在内耳中的转录,进而促进内耳上皮细胞紧密连接的生长以维持内耳上皮的屏障功能。转基因实验分析表明,cldnb启动子上的Grhl2结合位点对于cldnb在内耳中的表达是必需的。
     斑马鱼Grhl2b与小鼠及人类Grhl2蛋白的序列有很高的保守性,过表达小鼠和人类Grhl2mRNA可以促进斑马鱼cldnb和epcam的表达,并且可以挽救grhl2b突变体的缺陷,表明Grhl2在功能上也是保守的。鉴于人类GRHL2基因突变会导致常染色体非综合征型耳聋DFNA28发生,本研究筛选出的斑马鱼grhl2b突变体可以作为DFNA28型耳聋的动物模型来研究其病因并寻找可以缓解或者治愈这一疾病的药物。
     本课题证实了Tol2转座子介导的基因捕获技术可用于筛选斑马鱼突变体,并且建立了首个人类DFNA28型耳聋的动物模型,阐明了grhl2b基因调控内耳发育的机制。
Zebrafish is an excellent vertebrate model organism to explore the molecular mech-anisms of embryonic development, in which many genes involve. Generating geneticmutants is an effective approach to identify new functional genes implicated in specificdevelopmental processes. In this study, the Tol2transposon-mediated gene trap methodisutilizedtoisolatenewzebrafishmutantsandtoelucidatetherolesandmolecularmech-anisms of the trapped genes in embryonic development.
     This study generates219transgenic zebrafish lines, most of which express ubiq-uitous EGFP maternally with or without zygotic expression. From these lines, eightmutants are isolated. The trapped genes in three mutant lines are identified, includinggrhl2b gene from the T086line.
     The transgenic embryos of the T086/grhl2b line express EGFP in many organs in-cluding the inner ear and lateral line neuromasts. Mutant ears exhibit severe defectssuch as expanded otocysts, decreased or eliminated otoliths, malformed semicircularcanals, etc., resulting in hearing impairment and swimming imbalance. In this line, theTol2transposon element is inserted into the first intron of thegrhl2b locus, which causesa sharp reduction of the amount of normal transcripts. The mutant phenotype can bemimicked in wild-type embryos by knockdown of grhl2b using specific morpholinosand can be rescued by injecting grhl2b mRNA, indicating that the mutant phenotype isascribed to the loss of normal grhl2b transcripts. Further studies reveal that grhl2b isdispensable for otic induction and patterning as well as for hair cell and statoacousticganglion development. Instead, grhl2b plays an crucial role in the maintenance of theotic epithelial barrier and the endolymph homeostasis. Mechanistically, Grhl2b proteinbinds to the promoter or enhancer and regulates the transcription of cldnb and epcam,which encode junctional proteins essential for tight junction formation in the otic epithe-lial cells. Promoter assay by transgenic approach confirms that the Grhl2b binding sitein the cldnb promoter is required for the Grhl2b-dependent expression of cldnb in theinner ear.
     Zebrafish Grhl2b protein shares a highly conserved sequence with mouse and hu-man Grhl2proteins. Overexpression of mouse or human Grhl2mRNA can rescue theotic defects of grhl2b mutant embryos and promote the transcription of cldnb and ep- cam in wild-type embryos, indicating that Grhl2is also functionally conserved. Sincehuman GRHL2mutation leads to autosomal non-syndromic hearing loss DFNA28, thezebrafish grhl2b mutants may serve as the first animal model of DFNA28to analyze itsetiology and develop drugs that can alleviate or cure the disease.
     This study substantiates the application of Tol2transposon-mediated gene trap ingenerating zebrafish mutants. Meanwhile, this study provides the first animal model ofDFNA28and clarifies the essential roles and the molecular mechanisms of grhl2b ininner ear development.
引文
[1] Westerfield M. The zebrafish book. Eugene: University of Oregon Press,1995.
    [2] Kimmel C B, Ballard W W, Kimmel S R, et al. Stages of embryonic development of thezebrafish. Dev Dyn,1995,203(3):253–310.
    [3] Walker C, Streisinger G. Induction of mutations by gamma-rays in pregonial germ cells ofzebrafish embryos. Genetics,1983,103(1):125–136.
    [4] Haffter P, Granato M, Brand M, et al. The identification of genes with unique and essentialfunctions in the development of the zebrafish, Danio rerio. Development,1996,123:1–36.
    [5] Driever W, Solnica-Krezel L, Schier A F, et al. A genetic screen for mutations affectingembryogenesis in zebrafish. Development,1996,123:37–46.
    [6] Gaiano N, Amsterdam A, Kawakami K, et al. Insertional mutagenesis and rapid cloning ofessential genes in zebrafish. Nature,1996,383(6603):829–832.
    [7] Amsterdam A, Burgess S, Golling G, et al. A large-scale insertional mutagenesis screen inzebrafish. Genes Dev,1999,13(20):2713–2724.
    [8] Kawakami K, Takeda H, Kawakami N, et al. A transposon-mediated gene trap approachidentifies developmentally regulated genes in zebrafish. Dev Cell,2004,7(1):133–144.
    [9] Sivasubbu S, Balciunas D, Davidson A E, et al. Gene-breaking transposon mutagenesis re-veals an essential role for histone H2afza in zebrafish larval development. Mech Dev,2006,123(7):513–529.
    [10] Nagayoshi S, Hayashi E, Abe G, et al. Insertional mutagenesis by the Tol2transposon-mediated enhancer trap approach generated mutations in two developmental genes: tcf7andsynembryn-like. Development,2008,135(1):159–169.
    [11] Clark K J, Balciunas D, Pogoda H M, et al. In vivo protein trapping produces a functionalexpression codex of the vertebrate proteome. Nat Methods,2011,8(6):506–515.
    [12] Streisinger G, Walker C, Dower N, et al. Production of clones of homozygous diploid zebrafish (Brachydanio rerio). Nature,1981,291(5813):293–296.
    [13] MoensCB,YanYL,AppelB,etal. valentino:azebrafishgenerequiredfornormalhindbrainsegmentation. Development,1996,122(12):3981–3990.
    [14] Wiellette E, Grinblat Y, Austen M, et al. Combined haploid and insertional mutation screenin the zebrafish. Genesis,2004,40(4):231–240.
    [15] PelegriF,DekensMP,Schulte-MerkerS,etal. Identificationofrecessivematernal-effectmu-tations in the zebrafish using a gynogenesis-based method. Dev Dyn,2004,231(2):324–335.
    [16] Postlethwait J H, Talbot W S. Zebrafish genomics: from mutants to genes. Trends Genet,1997,13(5):183–190.
    [17] Knapik E W, Goodman A, Ekker M, et al. A microsatellite genetic linkage map for zebrafish(Danio rerio). Nat Genet,1998,18(4):338–343.
    [18] Zhang J, Talbot W S, Schier A F. Positional cloning identifies zebrafish one-eyed pinhead asa permissive EGF-related ligand required during gastrulation. Cell,1998,92(2):241–251.
    [19] Shimoda N, Knapik E W, Ziniti J, et al. Zebrafish genetic map with2000microsatellitemarkers. Genomics,1999,58(3):219–232.
    [20] RawlsJF,FriedaMR,McadowAR,etal. Coupledmutagenesisscreensandgeneticmappingin zebrafish. Genetics,2003,163(3):997–1009.
    [21] Bradley K M, Elmore J B, Breyer J P, et al. A major zebrafish polymorphism resource forgenetic mapping. Genome Biol,2007,8(4):R55.
    [22] Bradley K M, Breyer J P, Melville D B, et al. An SNP-based linkage map for zebrafish revealssex determination loci. G3(Bethesda),2011,1(1):3–9.
    [23] Stickney H L, Schmutz J, Woods I G, et al. Rapid mapping of zebrafish mutations with SNPsand oligonucleotide microarrays. Genome Res,2002,12(12):1929–1934.
    [24] Gupta T, Marlow F L, Ferriola D, et al. Microtubule actin crosslinking factor1regulatesthe Balbiani body and animal-vegetal polarity of the zebrafish oocyte. PLoS Genet,2010,6(8):e1001073.
    [25] Bowen M E, Henke K, Siegfried K R, et al. Efficient mapping and cloning of mutations inzebrafish by low-coverage whole-genome sequencing. Genetics,2012,190(3):1017–1024.
    [26] Nasevicius A, Ekker S C. Effective targeted gene ‘knockdown’ in zebrafish. Nat Genet,2000,26(2):216–220.
    [27] Draper B W, Morcos P A, Kimmel C B. Inhibition of zebrafish fgf8pre-mRNA splicingwith morpholino oligos: a quantifiable method for gene knockdown. Genesis,2001,30(3):154–156.
    [28] KloostermanWP,LagendijkAK,KettingRF,etal. TargetedinhibitionofmiRNAmaturationwithmorpholinosrevealsaroleformiR-375inpancreaticisletdevelopment. PLoSBiol,2007,5(8):e203.
    [29] Choi W Y, Giraldez A J, Schier A F. Target protectors reveal dampening and balancing ofNodal agonist and antagonist by miR-430. Science,2007,318(5848):271–274.
    [30] Robu M E, Larson J D, Nasevicius A, et al. p53activation by knockdown technologies. PLoSGenet,2007,3(5):e78.
    [31] Eisen J S, Smith J C. Controlling morpholino experiments: don’t stop making antisense.Development,2008,135(10):1735–1743.
    [32] Grabher C, Joly J S, Wittbrodt J. Highly efficient zebrafish transgenesis mediated by themeganuclease I-SceI. Methods Cell Biol,2004,77:381–401.
    [33] RemboldM,LahiriK,FoulkesNS,etal. Transgenesisinfish:efficientselectionoftransgenicfish by co-injection with a fluorescent reporter construct. Nat Protoc,2006,1(3):1133–1139.
    [34] Huang C J, Tu C T, Hsiao C D, et al. Germ-line transmission of a myocardium-specific GFPtransgene reveals critical regulatory elements in the cardiac myosin light chain2promoter ofzebrafish. Dev Dyn,2003,228(1):30–40.
    [35] Long Q, Meng A, Wang H, et al. GATA-1expression pattern can be recapitulated in livingtransgenic zebrafish using GFP reporter gene. Development,1997,124(20):4105–4111.
    [36] Lawson N D, Weinstein B M. In vivo imaging of embryonic vascular development usingtransgenic zebrafish. Dev Biol,2002,248(2):307–318.
    [37] Cross L M, Cook M A, Lin S, et al. Rapid analysis of angiogenesis drugs in a live fluorescentzebrafish assay. Arterioscler Thromb Vasc Biol,2003,23(5):911–912.
    [38] Park H C, Kim C H, Bae Y K, et al. Analysis of upstream elements in the HuC promoterleads to the establishment of transgenic zebrafish with fluorescent neurons. Dev Biol,2000,227(2):279–293.
    [39] Higashijima S, Hotta Y, Okamoto H. Visualization of cranial motor neurons in live trans-genic zebrafish expressing green fluorescent protein under the control of the islet-1pro-moter/enhancer. J Neurosci,2000,20(1):206–218.
    [40] ZhaoC,HeX,TianC,etal. TwoGC-richboxesinhuCpromoterplaydistinctrolesincontrol-ling its neuronal specific expression in zebrafish embryos. Biochem Biophys Res Commun,2006,342(1):214–220.
    [41] Taylor M R, Kikkawa S, Diez-Juan A, et al. The zebrafish pob gene encodes a novel proteinrequired for survival of red cone photoreceptor cells. Genetics,2005,170(1):263–273.
    [42] Takeuchi M, Kaneko H, Nishikawa K, et al. Efficient transient rescue of hematopoietic mu-tant phenotypes in zebrafish using Tol2-mediated transgenesis. Dev Growth Differ,2010,52(2):245–250.
    [43] Curado S, Anderson R M, Jungblut B, et al. Conditional targeted cell ablation in zebrafish: anew tool for regeneration studies. Dev Dyn,2007,236(4):1025–1035.
    [44] Wang J, Panakova D, Kikuchi K, et al. The regenerative capacity of zebrafish reverses cardiacfailure caused by genetic cardiomyocyte depletion. Development,2011,138(16):3421–3430.
    [45] SusterML,SumiyamaK,KawakamiK. Transposon-mediatedBAC transgenesisinzebrafishand mice. BMC Genomics,2009,10:477.
    [46] WienholdsE,VanEedenF,KostersM,etal. Efficienttarget-selectedmutagenesisinzebrafish.Genome Res,2003,13(12):2700–2707.
    [47] Sood R, English M A, Jones M, et al. Methods for reverse genetic screening in zebrafish byresequencing and TILLING. Methods,2006,39(3):220–227.
    [48] Wang D, Jao L E, Zheng N, et al. Efficient genome-wide mutagenesis of zebrafish genes byretroviral insertions. Proc Natl Acad Sci U S A,2007,104(30):12428–12433.
    [49] WinklerS,GscheidelN,BrandM. MutantgenerationinvertebratemodelorganismsbyTILL-ING. Methods Mol Biol,2011,770:475–504.
    [50] LawsonND,WolfeSA. Forwardandreversegeneticapproachesfortheanalysisofvertebratedevelopment in the zebrafish. Dev Cell,2011,21(1):48–64.
    [51] Urnov F D, Rebar E J, Holmes M C, et al. Genome editing with engineered zinc fingernucleases. Nat Rev Genet,2010,11(9):636–646.
    [52] Meng X, Noyes M B, Zhu L J, et al. Targeted gene inactivation in zebrafish using engineeredzinc-finger nucleases. Nat Biotechnol,2008,26(6):695–701.
    [53] Doyon Y, Mccammon J M, Miller J C, et al. Heritable targeted gene disruption in zebrafishusing designed zinc-finger nucleases. Nat Biotechnol,2008,26(6):702–708.
    [54] SiekmannAF,StandleyC,FogartyKE,etal. Chemokinesignalingguidesregionalpatterningof the first embryonic artery. Genes Dev,2009,23(19):2272–2277.
    [55] Cifuentes D, Xue H, Taylor D W, et al. A novel miRNA processing pathway independent ofDicer requires Argonaute2catalytic activity. Science,2010,328(5986):1694–1698.
    [56] Bussmann J, Wolfe S A, Siekmann A F. Arterial-venous network formation during brain vas-cularization involves hemodynamic regulation of chemokine signaling. Development,2011,138(9):1717–1726.
    [57] Sanjana N E, Cong L, Zhou Y, et al. A transcription activator-like effector toolbox for genomeengineering. Nat Protoc,2012,7(1):171–192.
    [58] Christian M, Cermak T, Doyle E L, et al. Targeting DNA double-strand breaks with TALeffector nucleases. Genetics,2010,186(2):757–761.
    [59] Boch J, Scholze H, Schornack S, et al. Breaking the code of DNA binding specificity ofTAL-type III effectors. Science,2009,326(5959):1509–1512.
    [60] Moscou M J, Bogdanove A J. A simple cipher governs DNA recognition by TAL effectors.Science,2009,326(5959):1501.
    [61] Li T, Huang S, Zhao X, et al. Modularly assembled designer TAL effector nucleases fortargetedgeneknockoutandgenereplacementineukaryotes. NucleicAcidsRes,2011,39(14):6315–6325.
    [62] CermakT,DoyleEL,ChristianM,etal. EfficientdesignandassemblyofcustomTALENandotherTALeffector-basedconstructsforDNA targeting. NucleicAcids Res,2011,39(12):e82.
    [63] Wood A J, Lo T W, Zeitler B, et al. Targeted genome editing across species using ZFNs andTALENs. Science,2011,333(6040):307.
    [64] Huang P, Xiao A, Zhou M, et al. Heritable gene targeting in zebrafish using customizedTALENs. Nat Biotechnol,2011,29(8):699–700.
    [65] Tesson L, Usal C, Menoret S, et al. Knockout rats generated by embryo microinjection ofTALENs. Nat Biotechnol,2011,29(8):695–696.
    [66] Hockemeyer D, Wang H, Kiani S, et al. Genetic engineering of human pluripotent cells usingTALE nucleases. Nat Biotechnol,2011,29(8):731–734.
    [67] Chakrabarti S, Streisinger G, Singer F, et al. Frequency of gamma-ray induced specific lo-cus and recessive lethal mutations in mature germ cells of the zebrafish, Brachydanio Rerio.Genetics,1983,103(1):109–123.
    [68] Grunwald D J, Streisinger G. Induction of recessive lethal and specific locus mutations in thezebrafish with ethyl nitrosourea. Genet Res,1992,59(2):103–116.
    [69] Mullins M C, Hammerschmidt M, Haffter P, et al. Large-scale mutagenesis in the zebrafish:in search of genes controlling development in a vertebrate. Curr Biol,1994,4(3):189–202.
    [70] Solnica-Krezel L, Schier A F, Driever W. Efficient recovery of ENU-induced mutations fromthe zebrafish germline. Genetics,1994,136(4):1401–1420.
    [71] Amsterdam A, Hopkins N. Mutagenesis strategies in zebrafish for identifying genes involvedin development and disease. Trends Genet,2006,22(9):473–478.
    [72] Dosch R, Wagner D S, Mintzer K A, et al. Maternal control of vertebrate development beforethe midblastula transition: mutants from the zebrafish I. Dev Cell,2004,6(6):771–780.
    [73] Wagner D S, Dosch R, Mintzer K A, et al. Maternal control of development at the midblastulatransition and beyond: mutants from the zebrafish II. Dev Cell,2004,6(6):781–790.
    [74] Pelegri F, Schulte-Merker S. A gynogenesis-based screen for maternal-effect genes in thezebrafish, Danio rerio. Methods Cell Biol,1999,60:1–20.
    [75] Vihtelic T S, Hyde D R. Zebrafish mutagenesis yields eye morphological mutants with retinaland lens defects. Vision Res,2002,42(4):535–540.
    [76] JinSW,HerzogW,SantoroMM,etal. Atransgene-assistedgeneticscreenidentifiesessentialregulators of vascular development in vertebrate embryos. Dev Biol,2007,307(1):29–42.
    [77] Schibler A, Malicki J. A screen for genetic defects of the zebrafish ear. Mech Dev,2007,124(7-8):592–604.
    [78] Alexander J, Stainier D Y, Yelon D. Screening mosaic F1females for mutations affectingzebrafish heart induction and patterning. Dev Genet,1998,22(3):288–299.
    [79] PanzerJA,GibbsSM,DoschR,etal. Neuromuscularsynaptogenesisinwild-typeandmutantzebrafish. Dev Biol,2005,285(2):340–357.
    [80] XiaoT,RoeserT,StaubW,etal. AGFP-basedgeneticscreenrevealsmutationsthatdisruptthearchitecture of the zebrafish retinotectal projection. Development,2005,132(13):2955–2967.
    [81] Gulati-Leekha A, Goldman D. A reporter-assisted mutagenesis screen using alpha1-tubulin-GFP transgenic zebrafish uncovers missteps during neuronal development and axonogenesis.Dev Biol,2006,296(1):29–47.
    [82] Kazakova N, Li H, Mora A, et al. A screen for mutations in zebrafish that affect myelin geneexpression in Schwann cells and oligodendrocytes. Dev Biol,2006,297(1):1–13.
    [83] TredeNS,OtaT,KawasakiH,etal. ZebrafishmutantswithdisruptedearlyT-cellandthymusdevelopment identified in early pressure screen. Dev Dyn,2008,237(9):2575–2584.
    [84] Covassin L D, Siekmann A F, Kacergis M C, et al. A genetic screen for vascular mutantsin zebrafish reveals dynamic roles for Vegf/Plcg1signaling during artery development. DevBiol,2009,329(2):212–226.
    [85] Johnson S L, Weston J A. Temperature-sensitive mutations that cause stage-specific defectsin Zebrafish fin regeneration. Genetics,1995,141(4):1583–1595.
    [86] Baraban S C, Dinday M T, Castro P A, et al. A large-scale mutagenesis screen to identifyseizure-resistant zebrafish. Epilepsia,2007,48(6):1151–1157.
    [87] Frazer J K, Meeker N D, Rudner L, et al. Heritable T-cell malignancy models established ina zebrafish phenotypic screen. Leukemia,2009,23(10):1825–1835.
    [88] TschoppM,TakamiyaM,CervenyKL,etal. Funduscopyinadultzebrafishanditsapplicationto isolate mutant strains with ocular defects. PLoS One,2010,5(11):e15427.
    [89] Jin P, Tian T, Sun Z, et al. Generation of mutants with developmental defects in zebrafish byENU mutagenesis. Chinese Science Bulletin,2004,49(20):2154–2158.
    [90] Amsterdam A, Nissen R M, Sun Z, et al. Identification of315genes essential for early ze-brafish development. Proc Natl Acad Sci U S A,2004,101(35):12792–12797.
    [91] Amsterdam A, Varshney G K, Burgess S M. Retroviral-mediated insertional mutagenesis inzebrafish. Methods Cell Biol,2011,104:59–82.
    [92] Zhang Y, Morimoto K, Danilova N, et al. Zebrafish models for dyskeratosis congenita revealcriticalrolesofp53activationcontributingtohematopoieticdefectsthroughRNAprocessing.PLoS One,2012,7(1):e30188.
    [93] Mcclintock B. The origin and behavior of mutable loci in maize. Proc Natl Acad Sci U S A,1950,36(6):344–355.
    [94] Ivics Z, Hackett P B, Plasterk R H, et al. Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell,1997,91(4):501–510.
    [95] Davidson A E, Balciunas D, Mohn D, et al. Efficient gene delivery and gene expression inzebrafish using the Sleeping Beauty transposon. Dev Biol,2003,263(2):191–202.
    [96] Yergeau D A, Johnson Hamlet M R, Kuliyev E, et al. Transgenesis in Xenopus using theSleeping Beauty transposon system. Dev Dyn,2009,238(7):1727–1743.
    [97] Horie K, Kuroiwa A, Ikawa M, et al. Efficient chromosomal transposition of a Tc1/mariner-liketransposonSleepingBeautyinmice. ProcNatlAcadSciUSA,2001,98(16):9191–9196.
    [98] Balciunas D, Davidson A E, Sivasubbu S, et al. Enhancer trapping in zebrafish using theSleeping Beauty transposon. BMC Genomics,2004,5(1):62.
    [99] Ogura E, Okuda Y, Kondoh H, et al. Adaptation of GAL4activators for GAL4enhancertrapping in zebrafish. Dev Dyn,2009,238(3):641–655.
    [100] Clark K J, Geurts A M, Bell J B, et al. Transposon vectors for gene-trap insertional mutage-nesis in vertebrates. Genesis,2004,39(4):225–233.
    [101] Izsvak Z, Ivics Z, Plasterk R H. Sleeping Beauty, a wide host-range transposon vector forgenetic transformation in vertebrates. J Mol Biol,2000,302(1):93–102.
    [102] Zayed H, Izsvak Z, Walisko O, et al. Development of hyperactive sleeping beauty transposonvectors by mutational analysis. Mol Ther,2004,9(2):292–304.
    [103] Urasaki A, Morvan G, Kawakami K. Functional dissection of the Tol2transposable elementidentified the minimal cis-sequence and a highly repetitive sequence in the subterminal regionessential for transposition. Genetics,2006,174(2):639–649.
    [104] Koga A, Suzuki M, Inagaki H, et al. Transposable element in fish. Nature,1996,383:30–30.
    [105] Kawakami K, Shima A. Identification of the Tol2transposase of the medaka fish Oryziaslatipes that catalyzes excision of a nonautonomous Tol2element in zebrafish Danio rerio.Gene,1999,240(1):239–244.
    [106] Koga A. Transposition mechanisms and biothechnology applications of the medaka fish tol2transposable element. Adv Biophys,2004,38(Complete):161–180.
    [107] Koga A, Hori H. Homogeneity in the structure of the medaka fish transposable element Tol2.Genet Res,1999,73(1):7–14.
    [108] Kawakami K, Koga A, Hori H, et al. Excision of the tol2transposable element of the medakafish, Oryzias latipes, in zebrafish, Danio rerio. Gene,1998,225(1-2):17–22.
    [109] Parinov S, Kondrichin I, Korzh V, et al. Tol2transposon-mediated enhancer trap to identifydevelopmentally regulated zebrafish genes in vivo. Dev Dyn,2004,231(2):449–459.
    [110] Hamlet M R, Yergeau D A, Kuliyev E, et al. Tol2transposon-mediated transgenesis in Xeno-pus tropicalis. Genesis,2006,44(9):438–445.
    [111] Sato Y, Kasai T, Nakagawa S, et al. Stable integration and conditional expression of electro-porated transgenes in chicken embryos. Dev Biol,2007,305(2):616–624.
    [112] Keng V W, Ryan B J, Wangensteen K J, et al. Efficient transposition of Tol2in the mousegermline. Genetics,2009,183(4):1565–1573.
    [113] Urasaki A, Kawakami K. Analysis of genes and genome by the tol2-mediated gene and en-hancer trap methods. Methods Mol Biol,2009,546:85–102.
    [114] Urasaki A, Asakawa K, Kawakami K. Efficient transposition of the Tol2transposable el-ement from a single-copy donor in zebrafish. Proc Natl Acad Sci U S A,2008,105(50):19827–19832.
    [115] Kwan K M, Fujimoto E, Grabher C, et al. The Tol2kit:a multisite gateway-based constructionkit for Tol2transposon transgenesis constructs. Dev Dyn,2007,236(11):3088–3099.
    [116] Kondrychyn I, Teh C, Garcia-Lecea M, et al. Zebrafish Enhancer TRAP transgenic linedatabase ZETRAP2.0. Zebrafish,2011,8(4):181–182.
    [117] Sarrazin A F, Villablanca E J, Nunez V A, et al. Proneural gene requirement for hair celldifferentiation in the zebrafish lateral line. Dev Biol,2006,295(2):534–545.
    [118] Hernandez P P, Olivari F A, Sarrazin A F, et al. Regeneration in zebrafish lateral line neu-romasts: expression of the neural progenitor cell marker sox2and proliferation-dependentand-independent mechanisms of hair cell renewal. Dev Neurobiol,2007,67(5):637–654.
    [119] Davison J M, Akitake C M, Goll M G, et al. Transactivation from Gal4-VP16transgenicinsertions for tissue-specific cell labeling and ablation in zebrafish. Dev Biol,2007,304(2):811–824.
    [120] Asakawa K, Suster M L, Mizusawa K, et al. Genetic dissection of neural circuits by Tol2transposon-mediated Gal4gene and enhancer trapping in zebrafish. Proc Natl Acad Sci U SA,2008,105(4):1255–1260.
    [121] Kotani T, Kawakami K. Misty somites, a maternal effect gene identified by transposon-mediated insertional mutagenesis in zebrafish that is essential for the somite boundary main-tenance. Dev Biol,2008,316(2):383–396.
    [122] ZhaoL,ZhaoX,TianT,etal. Heart-specificisoformoftropomyosin4isessentialforheartbeatin zebrafish embryos. Cardiovasc Res,2008,80(2):200–208.
    [123] Petzold A M, Balciunas D, Sivasubbu S, et al. Nicotine response genetics in the zebrafish.Proc Natl Acad Sci U S A,2009,106(44):18662–18667.
    [124] Zhao X, Zhao L, Tian T, et al. Interruption of cenph causes mitotic failure and embryonicdeath, and its haploinsufficiency suppresses cancer in zebrafish. J Biol Chem,2010,285(36):27924–27934.
    [125] Han Y, Mu Y, Li X, et al. Grhl2deficiency impairs otic development and hearing ability in azebrafish model of the progressive dominant hearing loss DFNA28. Hum Mol Genet,2011,20(16):3213–3226.
    [126] Ding Y, Sun X, Huang W, et al. Haploinsufficiency of target of rapamycin attenuates car-diomyopathies in adult zebrafish. Circ Res,2011,109(6):658–669.
    [127] Kondrychyn I, Garcia-Lecea M, Emelyanov A, et al. Genome-wide analysis of Tol2transpo-son reintegration in zebrafish. BMC Genomics,2009,10:418.
    [128] Kotani T, Nagayoshi S, Urasaki A, et al. Transposon-mediated gene trapping in zebrafish.Methods,2006,39(3):199–206.
    [129] Maddison L A, Lu J, Chen W. Generating conditional mutations in zebrafish using gene-trapmutagenesis. Methods Cell Biol,2011,104:1–22.
    [130] Schnutgen F, Ghyselinck N B. Adopting the good reFLEXes when generating conditionalalterations in the mouse genome. Transgenic Res,2007,16(4):405–413.
    [131] Ciruna B, Weidinger G, Knaut H, et al. Production of maternal-zygotic mutant zebrafish bygerm-line replacement. Proc Natl Acad Sci U S A,2002,99(23):14919–14924.
    [132] Nicolson T. The genetics of hearing and balance in zebrafish. Annu. Rev. Genet.,2005,39:9–22.
    [133] Bever M M, Fekete D M. Atlas of the developing inner ear in zebrafish. Dev Dyn,2002,223(4):536–543.
    [134] Bang P I, Sewell W F, Malicki J J. Morphology and cell type heterogeneities of the inner earepithelia in adult and juvenile zebrafish (Danio rerio). J Comp Neurol,2001,438(2):173–190.
    [135] Issa F A, O’brien G, Kettunen P, et al. Neural circuit activity in freely behaving zebrafish(Danio rerio). J Exp Biol,2011,214(Pt6):1028–1038.
    [136] Abbas L, Whitfield T T. The zebrafish inner ear//Perry S F, Ekker M, Farrell A P, et al. FishPhysiology. London: Academic Press,2010:123–171.
    [137] Grande T, Young B. The ontogeny and homology of the Weberian apparatus in the zebrafishDanio rerio (Ostariophysi: Cypriniformes). Zoological Journal of the Linnean Society,2004,140(2):241–254.
    [138] Haddon C, Lewis J. Early ear development in the embryo of the zebrafish, Danio rerio. JComp Neurol,1996,365(1):113–128.
    [139] Tanimoto M, Ota Y, Horikawa K, et al. Auditory input to CNS is acquired coincidentallywith development of inner ear after formation of functional afferent pathway in zebrafish. JNeurosci,2009,29(9):2762–2767.
    [140] Kozlowski D J, Murakami T, Ho R K, et al. Regional cell movement and tissue patterning inthe zebrafish embryo revealed by fate mapping with caged fluorescein. Biochem Cell Biol,1997,75(5):551–562.
    [141] Schlosser G. Making senses: development of vertebrate cranial placodes. Int Rev Cell MolBiol,2010,283:129–234.
    [142] Kobayashi M, Osanai H, Kawakami K, et al. Expression of three zebrafish Six4genes in thecranial sensory placodes and the developing somites. Mech Dev,2000,98(1-2):151–155.
    [143] Sahly I, Andermann P, Petit C. The zebrafish eya1gene and its expression pattern duringembryogenesis. Dev Genes Evol,1999,209(7):399–410.
    [144] Kwon H J, Bhat N, Sweet E M, et al. Identification of early requirements for preplacodalectoderm and sensory organ development. PLoS Genet,2010,6(9):e1001133.
    [145] Litsiou A, Hanson S, Streit A. A balance of FGF, BMP and WNT signalling positions thefuture placode territory in the head. Development,2005,132(18):4051–4062.
    [146] Esterberg R, Fritz A. dlx3b/4b are required for the formation of the preplacodal region andotic placode through local modulation of BMP activity. Dev Biol,2009,325(1):189–199.
    [147] Leger S, Brand M. Fgf8and Fgf3are required for zebrafish ear placode induction, mainte-nance and inner ear patterning. Mech Dev,2002,119(1):91–108.
    [148] SunSK,DeeCT,TripathiVB,etal. EpibranchialandoticplacodesareinducedbyacommonFgfsignal,buttheirsubsequentdevelopmentisindependent. DevBiol,2007,303(2):675–686.
    [149] Hans S, Liu D, Westerfield M. Pax8and Pax2a function synergistically in otic specifica-tion, downstream of the Foxi1and Dlx3b transcription factors. Development,2004,131(20):5091–5102.
    [150] Solomon K S, Kudoh T, Dawid I B, et al. Zebrafish foxi1mediates otic placode formationand jaw development. Development,2003,130(5):929–940.
    [151] Hans S, Christison J, Liu D, et al. Fgf-dependent otic induction requires competence providedby Foxi1and Dlx3b. BMC Dev Biol,2007,7:5.
    [152] Mackereth M D, Kwak S J, Fritz A, et al. Zebrafish pax8is required for otic placode in-duction and plays a redundant role with Pax2genes in the maintenance of the otic placode.Development,2005,132(2):371–382.
    [153] Nikaido M, Doi K, Shimizu T, et al. Initial specification of the epibranchial placode in ze-brafish embryos depends on the fibroblast growth factor signal. Dev Dyn,2007,236(2):564–571.
    [154] Ladher R K, O’neill P, Begbie J. From shared lineage to distinct functions: the developmentof the inner ear and epibranchial placodes. Development,2010,137(11):1777–1785.
    [155] Padanad M S, Riley B B. Pax2/8proteins coordinate sequential induction of otic and epi-branchial placodes through differential regulation of foxi1, sox3and fgf24. Dev Biol,2011,351(1):90–98.
    [156] Kollmar R, Nakamura S K, Kappler J A, et al. Expression and phylogeny of claudins invertebrate primordia. Proc Natl Acad Sci U S A,2001,98(18):10196–10201.
    [157] Padanad M S, Bhat N, Guo B, et al. Conditions that influence the response to Fgf during oticplacode induction. Dev Biol,2012,364(1):1–10.
    [158] Whitfield T T, Hammond K L. Axial patterning in the developing vertebrate inner ear. Int JDev Biol,2007,51(6-7):507–520.
    [159] Feng Y, Xu Q. Pivotal role of hmx2and hmx3in zebrafish inner ear and lateral line develop-ment. Dev Biol,2010,339(2):507–518.
    [160] Haddon C, Jiang Y J, Smithers L, et al. Delta-Notch signalling and the patterning of sensorycell differentiation in the zebrafish ear: evidence from the mind bomb mutant. Development,1998,125(23):4637–4644.
    [161] Kwak S J, Vemaraju S, Moorman S J, et al. Zebrafish pax5regulates development of theutricular macula and vestibular function. Dev Dyn,2006,235(11):3026–3038.
    [162] Groves A K, Fekete D M. Shaping sound in space: the regulation of inner ear patterning.Development,2012,139(2):245–257.
    [163] KwakSJ,PhillipsBT,HeckR,etal. Anexpandeddomainoffgf3expressioninthehindbrainof zebrafish valentino mutants results in mis-patterning of the otic vesicle. Development,2002,129(22):5279–5287.
    [164] Lecaudey V, Ulloa E, Anselme I, et al. Role of the hindbrain in patterning the otic vesicle: astudy of the zebrafish vhnf1mutant. Dev Biol,2007,303(1):134–143.
    [165] Hammond K L, Whitfield T T. Fgf and Hh signalling act on a symmetrical pre-pattern tospecify anterior and posterior identity in the zebrafish otic placode and vesicle. Development,2011,138(18):3977–3987.
    [166] HammondKL,LoynesHE,FolarinAA,etal. Hedgehogsignallingisrequiredforcorrectan-teroposterior patterning of the zebrafish otic vesicle. Development,2003,130(7):1403–1417.
    [167] Hammond K L, Van Eeden F J, Whitfield T T. Repression of Hedgehog signalling is requiredfor the acquisition of dorsolateral cell fates in the zebrafish otic vesicle. Development,2010,137(8):1361–1371.
    [168] Nayak G D, Ratnayaka H S, Goodyear R J, et al. Development of the hair bundle and me-chanotransduction. Int J Dev Biol,2007,51(6-7):597–608.
    [169] Whitfield T T, Riley B B, Chiang M Y, et al. Development of the zebrafish inner ear. DevDyn,2002,223(4):427–458.
    [170] Alsina B, Giraldez F, Pujades C. Patterning and cell fate in ear development. Int J Dev Biol,2009,53(8-10):1503–1513.
    [171] Sweet E M, Vemaraju S, Riley B B. Sox2and Fgf interact with Atoh1to promote sensorycompetence throughout the zebrafish inner ear. Dev Biol,2011,358(1):113–121.
    [172] MillimakiBB,SweetEM,DhasonMS,etal. Zebrafishatoh1genes:classicproneuralactivityin the inner ear and regulation by Fgf and Notch. Development,2007,134(2):295–305.
    [173] Riley B B, Chiang M, Farmer L, et al. The deltaA gene of zebrafish mediates lateral inhibi-tion of hair cells in the inner ear and is regulated by pax2.1. Development,1999,126(24):5669–5678.
    [174] Seiler C, Nicolson T. Defective calmodulin-dependent rapid apical endocytosis in zebrafishsensory hair cell mutants. J Neurobiol,1999,41(3):424–434.
    [175] Riley B B, Zhu C, Janetopoulos C, et al. A critical period of ear development controlled bydistinct populations of ciliated cells in the zebrafish. Dev Biol,1997,191(2):191–201.
    [176] Tanimoto M, Ota Y, Inoue M, et al. Origin of inner ear hair cells: morphological and func-tional differentiation from ciliary cells into hair cells in zebrafish inner ear. J Neurosci,2011,31(10):3784–3794.
    [177] Mcdermott J, Baucom J M, Hudspeth A J. Analysis and functional evaluation of the hair-celltranscriptome. Proc Natl Acad Sci U S A,2007,104(28):11820–11825.
    [178] Andermann P, Ungos J, Raible D W. Neurogenin1defines zebrafish cranial sensory gangliaprecursors. Dev Biol,2002,251(1):45–58.
    [179] RadosevicM,Robert-MorenoA,CoolenM,etal. Her9repressesneurogenicfatedownstreamof Tbx1and retinoic acid signaling in the inner ear. Development,2011,138(3):397–408.
    [180] Babb-Clendenon S, Shen Y C, Liu Q, et al. Cadherin-2participates in the morphogenesis ofthe zebrafish inner ear. J Cell Sci,2006,119(Pt24):5169–5177.
    [181] WilsonAL,ShenYC,Babb-ClendenonSG,etal. Cadherin-4playsaroleinthedevelopmentof zebrafish cranial ganglia and lateral line system. Dev Dyn,2007,236(3):893–902.
    [182] Liu Q, Dalman M R, Sarmah S, et al. Cell adhesion molecule cadherin-6function in zebrafishcranial and lateral line ganglia development. Dev Dyn,2011,240(7):1716–1726.
    [183] Bricaud O, Collazo A. The transcription factor six1inhibits neuronal and promotes hair cellfate in the developing zebrafish (Danio rerio) inner ear. J Neurosci,2006,26(41):10438–10451.
    [184] Bricaud O, Collazo A. Balancing cell numbers during organogenesis: Six1a differentiallyaffects neurons and sensory hair cells in the inner ear. Dev Biol,2011,357(1):191–201.
    [185] Pisam M, Jammet C, Laurent D. First steps of otolith formation of the zebrafish: role ofglycogen? Cell Tissue Res,2002,310(2):163–168.
    [186] S llner C, Burghammer M, Busch-Nentwich E, et al. Control of crystal size and lattice for-mation by starmaker in otolith biomineralization. Science,2003,302(5643):282–286.
    [187] S llner C, Nicolson T. The zebrafish as a genetic model to study otolith formation//EdmundB. Biomineralization: from biology to biotechnology and medical application. Weinheim:Wiley-VCH Verlag GmbH&Co. KGaA,2005:229–242.
    [188] Riley B B, Moorman S J. Development of utricular otoliths, but not saccular otoliths, isnecessaryforvestibularfunctionandsurvivalinzebrafish. JNeurobiol,2000,43(4):329–337.
    [189] Hughes I, Thalmann I, Thalmann R, et al. Mixing model systems: using zebrafish and mouseinner ear mutants and other organ systems to unravel the mystery of otoconial development.Brain Res,2006,1091(1):58–74.
    [190] Murayama E, Herbomel P, Kawakami A, et al. Otolith matrix proteins OMP-1and Otolin-1are necessary for normal otolith growth and their correct anchoring onto the sensory maculae.Mech Dev,2005,122(6):791–803.
    [191] Petko J A, Millimaki B B, Canfield V A, et al. Otoc1: a novel otoconin-90ortholog requiredfor otolith mineralization in zebrafish. Dev Neurobiol,2008,68(2):209–222.
    [192] Kang Y J, Stevenson A K, Yau P M, et al. Sparc protein is required for normal growth ofzebrafish otoliths. J Assoc Res Otolaryngol,2008,9(4):436–451.
    [193] Cruz S, Shiao J C, Liao B K, et al. Plasma membrane calcium ATPase required for semicir-cular canal formation and otolith growth in the zebrafish inner ear. J Exp Biol,2009,212(Pt5):639–647.
    [194] Shiao J C, Lin L Y, Horng J L, et al. How can teleostean inner ear hair cells maintain theproper association with the accreting otolith? J Comp Neurol,2005,488(3):331–341.
    [195] Blasiole B, Canfield V A, Vollrath M A, et al. Separate Na,K-ATPase genes are requiredfor otolith formation and semicircular canal development in zebrafish. Dev Biol,2006,294(1):148–160.
    [196] Hardison A L, Lichten L, Banerjee-Basu S, et al. The zebrafish gene claudinj is essential fornormalearfunctionandimportantfortheformationoftheotoliths. MechDev,2005,122(7-8):949–958.
    [197] Clendenon S G, Shah B, Miller C A, et al. Cadherin-11controls otolith assembly: evidencefor extracellular cadherin activity. Dev Dyn,2009,238(8):1909–1922.
    [198] Slanchev K, Carney T J, Stemmler M P, et al. The epithelial cell adhesion molecule Ep-CAM is required for epithelial morphogenesis and integrity during zebrafish epiboly and skindevelopment. PLoS Genet,2009,5(7):e1000563.
    [199] Colantonio J R, Vermot J, Wu D, et al. The dynein regulatory complex is required for ciliarymotility and otolith biogenesis in the inner ear. Nature,2009,457(7226):205–209.
    [200] Yu X, Lau D, Ng C P, et al. Cilia-driven fluid flow as an epigenetic cue for otolith biominer-alization on sensory hair cells of the inner ear. Development,2011,138(3):487–494.
    [201] Wu D, Freund J B, Fraser S E, et al. Mechanistic basis of otolith formation during teleostinner ear development. Dev Cell,2011,20(2):271–278.
    [202] Omata Y, Nojima Y, Nakayama S, et al. Role of Bone morphogenetic protein4in zebrafishsemicircular canal development. Dev Growth Differ,2007,49(9):711–719.
    [203] Hammond K L, Loynes H E, Mowbray C, et al. A late role for bmp2b in the morphogenesisof semicircular canal ducts in the zebrafish inner ear. PLoS One,2009,4(2):e4368.
    [204] Neuhauss S C, Solnica-Krezel L, Schier A F, et al. Mutations affecting craniofacial develop-ment in zebrafish. Development,1996,123:357–367.
    [205] Walsh E C, Stainier D Y. UDP-glucose dehydrogenase required for cardiac valve formationin zebrafish. Science,2001,293(5535):1670–1673.
    [206] Busch-Nentwich E, Sollner C, Roehl H, et al. The deafness gene dfna5is crucial for ugdhexpressionandHAproductioninthedevelopingearinzebrafish. Development,2004,131(4):943–951.
    [207] Blasiole B, Kabbani N, Boehmler W, et al. Neuronal calcium sensor-1gene ncs-1a is essentialfor semicircular canal formation in zebrafish inner ear. J Neurobiol,2005,64(3):285–297.
    [208] Petko J A, Kabbani N, Frey C, et al. Proteomic and functional analysis of NCS-1bindingproteins reveals novel signaling pathways required for inner ear development in zebrafish.BMC Neurosci,2009,10:27.
    [209] Wang L, Sewell W F, Kim S D, et al. Eya4regulation of Na+/K+-ATPase is required forsensory system development in zebrafish. Development,2008,135(20):3425–3434.
    [210] Hammond K L, Whitfield T T. The developing lamprey ear closely resembles the zebrafishotic vesicle: otx1expression can account for all major patterning differences. Development,2006,133(7):1347–1357.
    [211] Dutton K, Abbas L, Spencer J, et al. A zebrafish model for Waardenburg syndrome type IVreveals diverse roles for Sox10in the otic vesicle. Dis Model Mech,2009,2(1-2):68–83.
    [212] Rotllant J, Liu D, Yan Y L, et al. Sparc (Osteonectin) functions in morphogenesis of thepharyngeal skeleton and inner ear. Matrix Biol,2008,27(6):561–572.
    [213] Piotrowski T, Ahn D G, Schilling T F, et al. The zebrafish van gogh mutation disruptstbx1, which is involved in the DiGeorge deletion syndrome in humans. Development,2003,130(20):5043–5052.
    [214] Ghanem T A, Breneman K D, Rabbitt R D, et al. Ionic composition of endolymph and peri-lymph in the inner ear of the oyster toadfish, Opsanus tau. Biol Bull,2008,214(1):83–90.
    [215] Blasiole B, Degrave A, Canfield V, et al. Differential expression of Na,K-ATPase alpha andbeta subunit genes in the developing zebrafish inner ear. Dev Dyn,2003,228(3):386–392.
    [216] Lowery L A, Sive H. Initial formation of zebrafish brain ventricles occurs independently ofcirculation and requires the nagie oko and snakehead/atp1a1a.1gene products. Development,2005,132(9):2057–2067.
    [217] Ellertsdottir E, Ganz J, Durr K, et al. A mutation in the zebrafish Na,K-ATPase subunitatp1a1a.1provides genetic evidence that the sodium potassium pump contributes to left-rightasymmetry downstream or in parallel to nodal flow. Dev Dyn,2006,235(7):1794–1808.
    [218] Abbas L, Whitfield T T. Nkcc1(Slc12a2) is required for the regulation of endolymph vol-ume in the otic vesicle and swim bladder volume in the zebrafish larva. Development,2009,136(16):2837–2848.
    [219] Payan P, Kossmann H, Watrin A, et al. Ionic composition of endolymph in teleosts: originand importance of endolymph alkalinity. J Exp Biol,1997,200(Pt13):1905–1912.
    [220] Shin K, Fogg V C, Margolis B. Tight junctions and cell polarity. Annu Rev Cell Dev Biol,2006,22:207–235.
    [221] Forster C. Tight junctions and the modulation of barrier function in disease. Histochem CellBiol,2008,130(1):55–70.
    [222]沈励,刘民.听力残疾的流行病学研究进展.中国康复医学杂志,2009,24(3):281–283.
    [223]王秋菊.新生儿聋病基因筛查——悄然的革命.听力学及言语疾病杂志,2008,16(2):83–88.
    [224] OuyangXM,YanD,YuanHJ,etal. Thegeneticbasesfornon-syndromichearinglossamongChinese. J Hum Genet,2009,54(3):131–140.
    [225] CampGV,SmithR. Hereditaryhearinglosshomepage[EB/OL].(2011-12-03)[2012-03-02].http://hereditaryhearingloss.org.
    [226] SchonbergerJ,WangL,ShinJT,etal. MutationinthetranscriptionalcoactivatorEYA4causesdilated cardiomyopathy and sensorineural hearing loss. Nat Genet,2005,37(4):418–422.
    [227] Ernest S, Rauch G J, Haffter P, et al. Mariner is defective in myosin VIIA: a zebrafish modelfor human hereditary deafness. Hum Mol Genet,2000,9(14):2189–2196.
    [228] ShenYC,JeyabalanAK,WuKL,etal. Thetransmembraneinnerear(tmie)genecontributestovestibularandlaterallinedevelopmentandfunctioninthezebrafish(Daniorerio). DevDyn,2008,237(4):941–952.
    [229] Gleason M R, Nagiel A, Jamet S, et al. The transmembrane inner ear (Tmie) protein is es-sential for normal hearing and balance in the zebrafish. Proc Natl Acad Sci U S A,2009,106(50):21347–21352.
    [230] Sollner C, Rauch G J, Siemens J, et al. Mutations in cadherin23affect tip links in zebrafishsensory hair cells. Nature,2004,428(6986):955–959.
    [231] SeilerC,Finger-BaierKC,RinnerO,etal. Duplicatedgeneswithsplitfunctions:independentroles of protocadherin15orthologues in zebrafish hearing and vision. Development,2005,132(3):615–623.
    [232] SeilerC, Ben-David O,Sidi S, et al. Myosin VI is required for structural integrity ofthe apicalsurface of sensory hair cells in zebrafish. Dev Biol,2004,272(2):328–338.
    [233] Kappler J A, Starr C J, Chan D K, et al. A nonsense mutation in the gene encoding a zebrafishmyosin VI isoform causes defects in hair-cell mechanotransduction. Proc Natl Acad Sci U SA,2004,101(35):13056–13061.
    [234] Kozlowski D J, Whitfield T T, Hukriede N A, et al. The zebrafish dog-eared mutation disruptseya1, a gene required for cell survival and differentiation in the inner ear and lateral line. DevBiol,2005,277(1):27–41.
    [235] Patten S A, Jacobs-Mcdaniels N L, Zaouter C, et al. Role of Chd7in zebrafish: a model forCHARGE syndrome. PLoS One,2012,7(2):e31650.
    [236] NissenRM,YanJ,AmsterdamA,etal. ZebrafishfoxionemodulatescellularresponsestoFgfsignaling required for the integrity of ear and jaw patterning. Development,2003,130(11):2543–2554.
    [237] Weiner A M, Scampoli N L, Calcaterra N B. Fishing the molecular bases of treacher collinssyndrome. PLoS One,2012,7(1):e29574.
    [238] Ebermann I, Phillips J B, Liebau M C, et al. PDZD7is a modifier of retinal disease and acontributor to digenic Usher syndrome. J Clin Invest,2010,120(6):1812–1823.
    [239] Whitfield T T, Granato M, Van Eeden F J, et al. Mutations affecting development of thezebrafish inner ear and lateral line. Development,1996,123:241–254.
    [240] Whitfield T T. Zebrafish as a model for hearing and deafness. J Neurobiol,2002,53(2):157–171.
    [241] Wang S, Samakovlis C. Grainy head and its target genes in epithelial morphogenesis andwound healing. Curr Top Dev Biol,2012,98:35–63.
    [242] Traylor-Knowles N, Hansen U, Dubuc T Q, et al. The evolutionary diversification of LSF andGrainyhead transcription factors preceded the radiation of basal animal lineages. BMC EvolBiol,2010,10:101.
    [243] Bray S J, Kafatos F C. Developmental function of Elf-1: an essential transcription factorduring embryogenesis in Drosophila. Genes Dev,1991,5(9):1672–1683.
    [244] Venkatesan K, Mcmanus H R, Mello C C, et al. Functional conservation between members ofan ancient duplicated transcription factor family, LSF/Grainyhead. Nucleic Acids Res,2003,31(15):4304–4316.
    [245] Wilanowski T, Tuckfield A, Cerruti L, et al. A highly conserved novel family of mammaliandevelopmentaltranscriptionfactorsrelatedtoDrosophilagrainyhead. MechDev,2002,114(1-2):37–50.
    [246] Ting S B, Wilanowski T, Cerruti L, et al. The identification and characterization of humanSister-of-MammalianGrainyhead(SOM)expandsthegrainyhead-likefamilyofdevelopmen-tal transcription factors. Biochem J,2003,370(Pt3):953–962.
    [247] Kudryavtseva E I, Sugihara T M, Wang N, et al. Identification and characterization ofGrainyhead-like epithelial transactivator (GET-1), a novel mammalian Grainyhead-like fac-tor. Dev Dyn,2003,226(4):604–617.
    [248] Janicke M, Renisch B, Hammerschmidt M. Zebrafish grainyhead-like1is a common markerof different non-keratinocyte epidermal cell lineages, which segregate from each other in aFoxi3-dependent manner. Int J Dev Biol,2010,54(5):837–850.
    [249] Uv A E, Thompson C R, Bray S J. The Drosophila tissue-specific factor Grainyhead containsnovelDNA-bindinganddimerizationdomainswhichareconservedinthehumanproteinCP2.Mol Cell Biol,1994,14(6):4020–4031.
    [250] Uv A E, Harrison E J, Bray S J. Tissue-specific splicing and functions of the Drosophilatranscription factor Grainyhead. Mol Cell Biol,1997,17(11):6727–6735.
    [251] Auden A, Caddy J, Wilanowski T, et al. Spatial and temporal expression of the Grainyhead-like transcription factor family during murine development. Gene Expr Patterns,2006,6(8):964–970.
    [252] Nusslein-Volhard C, Wieschaus E. Mutations affecting the pattern of the larval cuticle inDrosophila-Melanogaster.I. Zygotic loci on the second chromosome. Wilhelm Roux’s Arch.Dev. Biol.,1984,193(5):267–282.
    [253] Hemphala J, Uv A, Cantera R, et al. Grainy head controls apical membrane growth and tubeelongation in response to Branchless/FGF signalling. Development,2003,130(2):249–258.
    [254] Narasimha M, Uv A, Krejci A, et al. Grainy head promotes expression of septate junctionproteins and influences epithelial morphogenesis. J Cell Sci,2008,121(Pt6):747–752.
    [255] Wilanowski T, Caddy J, Ting S B, et al. Perturbed desmosomal cadherin expression in grainyhead-like1-null mice. EMBO J,2008,27(6):886–897.
    [256] Ting S B, Caddy J, Hislop N, et al. A homolog of Drosophila grainy head is essential forepidermal integrity in mice. Science,2005,308(5720):411–413.
    [257] Ting S B, Caddy J, Wilanowski T, et al. The epidermis of grhl3-null mice displays alteredlipid processing and cellular hyperproliferation. Organogenesis,2005,2(2):33–35.
    [258] Yu Z, Lin K K, Bhandari A, et al. The Grainyhead-like epithelial transactivator Get-1/Grhl3regulates epidermal terminal differentiation and interacts functionally with LMO4. Dev Biol,2006,299(1):122–136.
    [259] Yu Z, Mannik J, Soto A, et al. The epidermal differentiation-associated Grainyhead geneGet1/Grhl3also regulates urothelial differentiation. EMBO J,2009,28(13):1890–1903.
    [260] Tao J, Kuliyev E, Wang X, et al. BMP4-dependent expression of Xenopus Grainyhead-like1is essential for epidermal differentiation. Development,2005,132(5):1021–1034.
    [261] Chalmers A D, Lachani K, Shin Y, et al. Grainyhead-like3, a transcription factor identifiedin a microarray screen, promotes the specification of the superficial layer of the embryonicepidermis. Mech Dev,2006,123(9):702–718.
    [262] Mace K A, Pearson J C, Mcginnis W. An epidermal barrier wound repair pathway inDrosophila is mediated by grainy head. Science,2005,308(5720):381–385.
    [263] Pearson J C, Juarez M T, Kim M, et al. Multiple transcription factor codes activate epidermalwound-response genes in Drosophila. Proc Natl Acad Sci U S A,2009,106(7):2224–2229.
    [264] Kim M, Mcginnis W. Phosphorylation of Grainy head by ERK is essential for wound-dependent regeneration but not for development of an epidermal barrier. Proc Natl AcadSci U S A,2011,108(2):650–655.
    [265] Wang S, Tsarouhas V, Xylourgidis N, et al. The tyrosine kinase Stitcher activates Grainy headand epidermal wound healing in Drosophila. Nat Cell Biol,2009,11(7):890–895.
    [266] Boglev Y, Wilanowski T, Caddy J, et al. The unique and cooperative roles of the Grainy head-like transcription factors in epidermal development reflect unexpected target gene specificity.Dev Biol,2011,349(2):512–522.
    [267] Yu Z, Bhandari A, Mannik J, et al. Grainyhead-like factor Get1/Grhl3regulates formation ofthe epidermal leading edge during eyelid closure. Dev Biol,2008,319(1):56–67.
    [268] Guardiola-Serrano F, Haendeler J, Lukosz M, et al. Gene trapping identifies a putative tu-mor suppressor and a new inducer of cell migration. Biochem Biophys Res Commun,2008,376(4):748–752.
    [269] LukoszM,MlynekA,CzypiorskiP,etal. ThetranscriptionfactorGrainyheadlike3(GRHL3)affectsendothelialcellapoptosisandmigrationinaNO-dependentmanner. BiochemBiophysRes Commun,2011,412(4):648–653.
    [270] Brody T, Odenwald W F. Programmed transformations in neuroblast gene expression duringDrosophila CNS lineage development. Dev Biol,2000,226(1):34–44.
    [271] Maurange C, Cheng L, Gould A P. Temporal transcription factors and their targets schedulethe end of neural proliferation in Drosophila. Cell,2008,133(5):891–902.
    [272] Baumgardt M, Karlsson D, Terriente J, et al. Neuronal subtype specification within a lineageby opposing temporal feed-forward loops. Cell,2009,139(5):969–982.
    [273] Cenci C, Gould A P. Drosophila Grainyhead specifies late programmes of neural proliferationby regulating the mitotic activity and Hox-dependent apoptosis of neuroblasts. Development,2005,132(17):3835–3845.
    [274] AlmeidaMS,BraySJ. Regulationofpost-embryonicneuroblastsbyDrosophilaGrainyhead.Mech Dev,2005,122(12):1282–1293.
    [275] Ting S B, Wilanowski T, Auden A, et al. Inositol-and folate-resistant neural tube defects inmice lacking the epithelial-specific factor Grhl-3. Nat Med,2003,9(12):1513–1519.
    [276] Gustavsson P, Greene N D, Lad D, et al. Increased expression of Grainyhead-like-3rescuesspina bifida in a folate-resistant mouse model. Hum Mol Genet,2007,16(21):2640–2646.
    [277] Rifat Y, Parekh V, Wilanowski T, et al. Regional neural tube closure defined by the Grainyhead-like transcription factors. Dev Biol,2010,345(2):237–245.
    [278] Brouns M R, De Castro S C, Terwindt-Rouwenhorst E A, et al. Over-expression of Grhl2causes spina bifida in the Axial defects mutant mouse. Hum Mol Genet,2011,20(8):1536–1546.
    [279] Peters L M, Anderson D W, Griffith A J, et al. Mutation of a transcription factor, TFCP2L3,causes progressive autosomal dominant hearing loss, DFNA28. Hum Mol Genet,2002,11(23):2877–2885.
    [280] Van Laer L, Van Eyken E, Fransen E, et al. The grainyhead like2gene (GRHL2), aliasTFCP2L3, is associated with age-related hearing impairment. Hum Mol Genet,2008,17(2):159–169.
    [281] Werth M, Walentin K, Aue A, et al. The transcription factor grainyhead-like2regulatesthe molecular composition of the epithelial apical junctional complex. Development,2010,137(22):3835–3845.
    [282] Tanaka Y, Kanai F, Tada M, et al. Gain of GRHL2is associated with early recurrence ofhepatocellular carcinoma. J Hepatol,2008,49(5):746–757.
    [283] Kang X, Chen W, Kim R H, et al. Regulation of the hTERT promoter activity by MSH2,the hnRNPs K and D, and GRHL2in human oral squamous cell carcinoma cells. Oncogene,2009,28(4):565–574.
    [284] Chen W, Dong Q, Shin K H, et al. Grainyhead-like2enhances the human telomerase reversetranscriptase gene expression by inhibiting DNA methylation at the5’-CpG island in normalhuman keratinocytes. J Biol Chem,2010,285(52):40852–40863.
    [285] Cieply B, Riley P T, Pifer P M, et al. Suppression of the epithelial-mesenchymal transition byGrainyhead-like-2. Cancer Res,2012..
    [286] Lee H, Adler P N. The grainy head transcription factor is essential for the function of thefrizzled pathway in the Drosophila wing. Mech Dev,2004,121(1):37–49.
    [287] Tuckfield A, Clouston D R, Wilanowski T M, et al. Binding of the RING polycomb pro-teins to specific target genes in complex with the grainyhead-like family of developmentaltranscription factors. Mol Cell Biol,2002,22(6):1936–1946.
    [288] Blastyak A, Mishra R K, Karch F, et al. Efficient and specific targeting of Polycomb groupproteins requires cooperative interaction between Grainyhead and Pleiohomeotic. Mol CellBiol,2006,26(4):1434–1444.
    [289] Hislop N R, Caddy J, Ting S B, et al. Grhl3and Lmo4play coordinate roles in epidermalmigration. Dev Biol,2008,321(1):263–272.
    [290] Horowitz D S, Kobayashi R, Krainer A R. A new cyclophilin and the human homologuesof yeast Prp3and Prp4form a complex associated with U4/U6snRNPs. RNA,1997,3(12):1374–1387.
    [291] Montembault E, Dutertre S, Prigent C, et al. PRP4is a spindle assembly checkpoint proteinrequired for MPS1, MAD1, and MAD2localization to the kinetochores. J Cell Biol,2007,179(4):601–609.
    [292] Coffin A B, Dabdoub A, Kelley M W, et al. Myosin VI and VIIa distribution among inner earepithelia in diverse fishes. Hear Res,2007,224(1-2):15–26.
    [293] Van Der Gun B T, Melchers L J, Ruiters M H, et al. EpCAM in carcinogenesis: the good, thebad or the ugly. Carcinogenesis,2010,31(11):1913–1921.
    [294] Ladwein M, Pape U F, Schmidt D S, et al. The cell-cell adhesion molecule EpCAM interactsdirectly with the tight junction protein claudin-7. Exp Cell Res,2005,309(2):345–357.
    [295] Nubel T, Preobraschenski J, Tuncay H, et al. Claudin-7regulates EpCAM-mediated functionsin tumor progression. Mol Cancer Res,2009,7(3):285–299.
    [296] Pyrgaki C, Liu A, Niswander L. Grainyhead-like2regulates neural tube closure and adhesionmolecule expression during neural fold fusion. Dev Biol,2011,353(1):38–49.