机舱个人喷嘴通风系统对人体热舒适的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
飞机作为人们长途出行的首选交通工具,致使人们暴露于机舱内热环境的时间越来越多,但作为典型的特殊微环境,与室内环境相比,具有明显的差异,主要体现在空间狭小、人员密度高、不能任意走动。有关调查数据显示,约有25%的旅客对座舱热环境不满意,远比建筑内的不满意率(5%~10%)高很多,因此,营造“健康”、“舒适”的座舱环境,已成为大型客机的主要竞争指标之一。为了控制舱内热环境,现役飞机上设置了两个空气分配系统,一个是主通风系统,另一个是个人喷嘴送风系统。主通风系统主要是营造舱内较为稳定的热环境,以满足多乘客的健康和舒适要求,而个人喷嘴送风系统是根据乘客存在个体差异的需求,为乘客提供自我控制调节的送风方式。个人喷嘴送风系统较为特殊,对该领域的研究一直处于空白,尤其是该系统对乘客的舒适影响研究方面。因此,系统分析个人喷嘴送风系统对人体热舒适影响作用对现役飞机空调系统进一步优化有重要意义。本文基于国家重点基础研究发展计划(973计划)项目“大型客机座舱内空气环境控制的关键科学问题研究”,重点围绕客舱个人喷嘴通风系统对人体热舒适影响作用开展研究。
     论文首先对飞机实际飞行过程中座舱热环境现状开展调查研究。在一年半时间里,进行了不同季节下的23个航班舱内空气温度和相对湿度的测量和热舒适问卷调查,结果表明:在巡航状态,舱内空气温度和相对湿度基本保持相对稳定,空气温度保持在25℃~28℃的范围内,相对湿度保持在20%~30%范围内;超过60%的乘客认为有必要设置个人喷嘴送风系统,主要原因是闷热;多数乘客选择部分开启状态进行调节,调节部位主要是集中在上身部位。
     其次,搭建三排座飞机模型舱,采用现役飞机上真实的个人通风喷嘴,营造与飞机巡航中较为相似的舱内热环境,通过模拟乘客从登机到稳定整个变化过程的实验,分析受试者主观热反应的变化规律和对个人通风喷嘴的使用规律。结果表明:不同上座率下,人体整体平均热感觉投票值最大出现在刚进入座舱时,然后随着时间变化热感觉投票值逐渐降低,气流感投票值变化规律与热感觉相反;有超过50%以上的受试者因为闷热等原因,开启个人通风喷嘴,对上身部位进程调节来改善热舒适;喷嘴的使用率和开度均随时间先增大后逐渐降低,并趋于稳定,开度上多数处于部分开启状态。在此基础上开展不同开度个人通风喷嘴等温射流流动特性测试和分析,结果表明:在射流主体段轴心风速随截面距离的增大而不断减小,不同截面上风速的分布近似呈轴对称的规律,基本符合圆形射流的衰减规律。并通过经验公式计算得到了座舱内喷嘴等温射流在全开和半开状态下的紊流系数a和射流扩散角,并得到了轴心速度的无量纲衰减规律。
     再次,基于三排座飞机模型舱,在等温送风和喷嘴送风与座舱环境存在5℃温差的非等温送风工况下,结合主要生理指标测试,开展喷嘴对身体主要部位吹风时对人体热舒适的影响研究,结果表明:在对上身部位进行调节时,人体热感觉、气流感和平均皮肤温度的变化最大;在相同的调节部位下,喷嘴开度为2/3和全开时对整体热感觉和皮肤温度的影响较大,1/3开度影响最小,但2/3开度和全开的影响程度差异较小;利用一一配对T检验,对等温送风和5℃温差的非等温送风实验结果进行显著性分析,结果表明两者之间并没有显著性差异。结合平均皮肤温度和整体热感觉的分析发现平均皮肤温度与整体热感觉有明显的线性关系。另外平均气流感与平均热感觉也存在负相关的线性关系。
     最后,结合主成分分析法对身体各局部部位做进一步的归类处理,确定了两大部位,分别是头部部位和头部一下部位(躯干和四肢部位),并求得头部以下部位总的平均热感觉。在此基础上通径分析方法,对身体这两大部位平均热感觉对整体热感觉的直接影响效应和间接影响效应进行分析,结果表明了干肢部位热感觉对整体热感觉的直接影响较大;在间接影响中,头部部位通过上身部位对整体热感觉存在一定的间接影响,干肢部位通过头部对整体热感觉的间接影响较小;以热感觉的生理机理分析为基础,结合平均皮肤温度的权重系数、身体冷热点的分布密度和回归分析的结果,确定了此模型舱热环境下两大部位平均热感觉与整体热感觉的最终预测模型,权重系数分别是0.31和0.69并利用实验数据进行验证。
     论文提出了个人喷嘴通风较优的调节角度和送风开度,为更好设置座舱内个人通风喷嘴提供依据,同时从送风工况下,建议减少送风温差,这对座舱内空调系统实际运行中具有一定的节能效果,并提出了模型舱内人体整体热感觉预测模型,为座舱环境的调控和评价提供参考。
Sincethe aircraft has become the most favorite mode of transportfor people inlong-distance trips, the time people are exposed to the thermal environment of aircraftcabin has been longer and longer. Compared with the buildings indoor environment,aircraft cabin isa typical special micro environment withits obvious features, which arenarrow space, and high density of staff without movement. It is said that about25%ofthe passengers feel unsatisfied in the cabin, which is far higher than that in the buildingenvironment (5%~10%).Therefore, creating a "safe" and "comfortable" aircraft cabinenvironment has become the main focus of competition of large civil aircraft. Two airsupply systems have a strong relationship with the thermal environment of the aircraftcabin. One is the main air supply system, another is the personal airflow system. Mainair supply system is mainly to create a more stable thermal environment to meet thepassengers’ health and comfort requirements. The personal airflow system providespassengers a self-control and regulation of air supply which can meet the individualpreferencesbased on passengers’ demand. The personal airflow system is more special.However, previous studies,in this field havenot been reported,especially on theinfluence to the passengers’ comfort. Therefore, it is necessary to analyze the personalairflow system affecting human thermal comfort tooptimize the air-condition system ofaircraft. This paper is based on the National Basic Research Program of China (973Program)”Research on the key scientific issues in the control of air environment in largeaircraft cabin”, and conduct research focus on individual nozzle ventilation system’sinfluence on human thermal comfort.
     Firstly,air temperature and relative humidity were measuredfor one and half yearsin the aircraft cabin of23flights under different flight conditions in different seasons.Based on the measured data, the changes of main thermal environment parameters withthe running time have beenanalyzed. The results show that: in the state of cruising, airtemperature and relative humidity keep relatively stable, air temperature keeps in therange of25℃~28℃, relative humidity keeps in the range of20%~30%. More than60%of the passengers deem that it is necessary to set the personal airflow nozzle. Themain reason is stuffiness. Most passengers choose to open nozzle partly for regulatingthe upper body.
     Secondly, three row seat aircraft simulation cabin wasbuiltwith real nozzles which are used on actual aircraft cabin. A similar cabin thermal environment was created asthe actual operation of the aircraft, the thermal reaction of the passengers and the usebehavior of personal airflow nozzle wereanalyzed by simulating the whole process fromboarding the cabin to steadying. The results show that: under different attendance rates,the maximum value of mean overall thermal sensation vote appears at the beginning,and then gradually reduces with time. However, the minimum value of mean airmovement sensation vote appears in the start time, and increases withtime. Both of themwill remain relatively stable in the end. In the thermal environment, More than50%ofthe subjects opened the personal airflow nozzles to improve their thermal comfort byadjusting their upper body part. The nozzle using rate and degree are increased first andthen decreased with time, and tended to be stable. Open degree is kept in the partialopen station in most cases. Based on the above result, test and analysis of the flowcharacteristic of personal airflow nozzle weredone in isothermal air supply conditions.The result shows that the nozzle jet axis velocity decrease with an increase of distancefrom the section to the outlet section; the distribution of air speed in different sections isapproximately symmetrical pattern, being similar to the attenuation law of circular jet;combined with empirical formulae, the turbulent coefficient values and spread angles ofthe isothermal jet flow are established with the vents fully open and half open; the axialvelocity attenuation rule is also confirmed.
     Thirdly, using the three row seat aircraft simulation cabin, the investigation of theaffect human thermal comfort wascarried out while the nozzle blows the main parts ofthe body with testing the main physiological index in isothermal air supply andnon-isothermal air supply conditions. The results show that: when the nozzle adjusts theupper part of body, human thermal sensation changes, air movement sensation and theaverage skin temperature is maximum. In the same regulation part of body, theinfluence of2/3open and full open nozzle on overall thermal sensation and skintemperature are stronger with the same degree, the1/3open’s impact is minimal.Howeverthe influence of the2/3open is basically the same as the full open. Isothermaland non-isothermal air supply the experimental results were analyzed using the pairedt-test. The result shows no significant difference between the two conditions. Combinedwith the mean skin temperature and thermal sensation, there is an obvious linearrelationship between both of them. In addition, the mean air movement sensation andmean thermal sensation also has a positive linear relationship.
     Finally, based on the Principal component analysis, all of the local part of body was classified to two parts, head part and other parts (trunk and extremity), and theirthermal sensation was calculated. Path analysis method was adopted.The direct andindirect impacts of two parts of the body mean thermal sensation on overall thermalsensation wereanalyzed. The results show that the whole other parts of body thermalsensation have a greater direct impact on overall thermal sensation. In the indirect effect,head has the indirect effect by whole other parts ofbody to the overall thermal sensation,but the whole other part of body has feebly indirect impact on overall thermal sensationby head. Based on analysis of physiological mechanism of thermal sensation, combinedwith the distribution density of cold spots and hot spots in human body and the weightcoefficient of mean skin temperature, the weight coefficient of two main parts isconfirmed. And then combined with the weight coefficient from regression analysis, thefinal prediction model of head, the whole other body of mean thermal sensation to theoverall thermal sensation is obtained and the weight coefficient is respectively0.31, and0.69. The model is verified by experimental data.
     This paper proposes the better adjusting angle and opening degree of the personalairflow nozzle, which provide evidences for setting personal airflow nozzle morereasonably. Comparing different air supply conditions, reducing the temperaturedifference is promoted which has certain effect on saving energy for the actualoperation of the air conditioning system. The prediction model of overall thermalsensation in aircraft simulation cabin is also reported, which provides the reference forcontrol and evaluation of aircraft cabin environment.
引文
[1] http://paper.people.com.cn/rmrb/html/2009-11/30/content_394105.htm
    [2]朱春玲,飞行器环境控制与安全救生[M],北京航空航天大学出版社,2006,北京
    [3]楼林,李力涛.民用飞机客舱空气品质评价体系研究[J],科技信息,781-782
    [4] Hunt E, Reid D, Space D, et al. Commercial airline environmental control system[C].Aerospace Medical Association Annual Meeting, May1995.
    [5]李鹏辉,大型商业客机舱内气流组织的研究[D],大连,大连理工大学,2010年
    [6] Olsen S, Chang H, Cheung T, et al. Transmission of the severe acute respiratory syndrome onaircraft [J]. New England Journal of Medicine,2003,349:2416-2422.
    [7] http://www.caijing.com.cn/2008-04-16/100057146.html
    [8] Bar-Shalom Doron. Altitude effects on heat transfer processes in aircraft electronic equipmentcooling[C]. Israel: Ben-Gurion University;1989. Master paper:15-17.
    [9] Howells I. The problems of cooling high performance aircraft. AGARD Conference proceeding
    [C]N.196On: Avionic Cooling and Power Supplies for Advanced Aircraft, November,1976
    [10] Liping Pang, Jie Xu, Lei Fang, Mengmeng Gong, Hua Zhang, Yu Zhang. Evaluation of animproved air distribution system for aircraft cabin[J], Building and Environment,2013,59:145-152
    [11] FAR-25Federal Aviation Regulations: Part25-Transport Category Airplane [S]. FederalAviation
    [12] Administration, Department of Transportation,2003JAA. Joint airworthiness requirements:Part25: Large airplanes. Airworthiness Authorities Steering Committee[S]. Civil AviationAuthority Cheltenham, U.K
    [13]中国民用航空局.中国民用航空规章:第25部:运输类飞机适航标准CCAR-25-R3[S].民航总局令第100号,1985.
    [14] ASHRAE, Inc. ASHRAE Handbook:HAVC Applications[S], Chapter10: Aircraft,2007.
    [15] ASHRAE STANDARD161Air Quality within Commercial Aircraft[S],Atlanta, GA,American Society of Heating, Ventilating and Air-Conditioning Engineers, Inc,2007
    [16] GB9673-1996国家技术监督局[S].公共交通工具卫生标准,北京,中国标准出版社
    [17]周翔,大型客机座舱内热环境及污染物关键参数设计范围的界定研究[R],同济大学,同济大学博士后研究工作报告,2010年
    [18]王浚.飞机座舱温度数学模型[J].北京航空学院学报,1981,2:45-60
    [19]杨春信.飞机座舱热力特性的数值模拟研究[J].航空学报,1995,16:64-68.
    [20] Vincenzo Bianco, Oronzio Manca, Sergio Nardini, Mario Roma. Numerical investigation oftransient thermal and fluid dynamic fields in an executive aircraft cabin[J], Applied ThermalEngineering29(2009)3418–3425
    [21]王连江,赵竞全.飞机座舱温度场数值仿真研究[J],计算机仿真,2008,25(5),44-46
    [22] Singh A, Hosni M, Horstman R. Numerical simulation of airflow in an aircraft cabin section[J]. ASHRAE Transactions,2002,108:1005-1013.
    [23] Mizuno T, Warfield M. Development of three-dimensional thermal airflow analysis computerprogram and verification test [J]. ASHRAE Transactions,1992,98:329-338.
    [24] Wang A, Zhang Y, Topmiller J, et al. Tracer study of airborne disease transmission in anaircraft cabin mock-up [J]. ASHRAE Transactions,2006,112:697-705
    [25] Wei Yan, Yuanhui Zhang, Yigang Sun, Dongning Li. Experimental and CFD study ofunsteady airborne pollutant transport within an aircraft cabin mock-up[J], Building andEnvironment44(2009)34-43
    [26] Zhang Z, Chen X, Mazumdar S. Experimental and numerical investigation of airflow andContaminant transport in an airliner cabin mock-up[J].Building and Environment,2009,44:85-94
    [27] Stephane B. Poussou, Sagnik Mazumdar, Michael W. Plesniak, Paul E. Sojka, Qingyan Chen,Flow and contaminant transport in an airliner cabin induced by a moving body: Modelexperiments and CFD predictions[J], Atmospheric Environment,2010,44:2830-2839
    [28] Katarzyna G, adyszewska-Fiedoruk. Indoor air quality in the cabin of an airliner[J], Journal ofAir Transport Management,2012,20,:28-30
    [29] Dechowm, Sohnh, Steinhanses J. Concentrations of selected contaminants in cabin air ofairbus aircrafts [J].Chemosphere,1997,35:21-31.
    [30] Waters M, Bloom T, Grajewski B. Measurements of indoor air quality on commercialtransport aircraft[C].Proceedings of Indoor Air2002.
    [31] BeverlyK.Coleman, HugoDestaillats, AlfredT. Hodgson, etc. Ozone consumption and volatilebyproduct formation from surface reactions with aircraft cabin materials and clothingfabrics[J]. Atmosphere environment.2008,42(4):642-654.
    [32] Aakash Chand Rai, Qingyan Chen, Simulations of Ozone Distributions in an Aircraft CabinUsing Computational Fluid Dynamics[J], Atmospheric Environment
    [33] Jun Guan, Kai Gao, Chao Wang, Xudong Yang, Chao-Hsin Lin, Caiyun Lu, Peng Gao.Measurements of volatile organic compounds in aircraft cabins Part I: Methodology anddetected VOC species in107commercial flights[J], Building and Environment,2014,72:154-161
    [34] Kog, Thompsonk, Nardele. Estimation of tuberculosis risk on a commercial airliner[J].RiskAnalysis,2004,24:379-388
    [35] Lin CH, Dunn KH, Horstman RH. Numerical simulation of airflow and airborne pathogentransport in aircraft cabins-part (I): Numerical Simulation of the Flow Field [J]. ASHRAETransactions,2005,111(1):755-763
    [36] Linc, Horstman R, Ahlers M,et al. Numerical simulation of airflow and airborne Pathogentrans Port in aircraft ceabins-Part2: Numerical simulation airborne Pathogentransport[J].ASHRAE Transaetions,2005,111:764-768
    [37] Sagnik Mazumdar, Stephane B. Poussou, Chaohsin Lin, Sastry S. Isukapalli, Michael W.Plesniak,Qingyan Chen, Impact of scaling and body movement on contaminant transport inairliner cabins[J], Atmospheric Environment,2011,45:6019-6028
    [38] Miao Wang, Chao-Hsin Lin, Qingyan Chen. Determination of particle deposition in enclosedspaces by Detached Eddy Simulation with the Lagrangian method[J], AtmosphericEnvironment,2011,45:5376-5384
    [39] Ryan K. Dygert, Thong Q, Dang. Experimental validation of local exhaust strategies forimproved IAQ in aircraft cabins[J], Building and Environment,2012,47:76-88
    [40] Liping Pang, Jie Xu, Lei Fang, Mengmeng Gong, Hua Zhang, Yu Zhang. Evaluation of animproved air distribution system for aircraft cabin[J], Building and Environment,2013,59:145-152
    [41] Olesns, Cheng H, Cheungt, et al. Transmission of the Severe acute respiratory Syndrome onaircraft t [J].New England Journal of Medicine,2003,349:2416-2422.
    [42] Suny, Zhang Y, Wang A et al. Experimental characterization of airflows in aircraft cabins,Partl: Experimental system and measurement procedure [J].ASHRAE Transactions,2005,111:45-52.
    [43] Zhang Y, Suny, Wang A, et al. Experimental characterization of airflows in aircraft cabins,Part2: Results and research recommendations [J].ASHRAE Transactions,2005,111:53-59.
    [44] Gao N P, Niu J L. Personalized ventilation for commercial aircraft cabins[J].Journal OfAircraft,2008,45:508-512
    [45] Zhang T, Cheng Q. Novel air distribution Systems for Commercial aircraft cabins[J].Bu1lding and Environment,2007,42:1675-1684
    [46] Tengfei (Tim) Zhang, Shi Yin, Shugang Wang, An under-aisle air distribution systemfacilitating humidification of commercial aircraft cabins[J], Building and Environment,2010,45:907-915
    [47] R K.Dygert, T Q.Dang. Mitigation of cross-contamination in an aircraft cabin via Localizedexhaust [J], Building and Environment,2010,45:2015-2026
    [48] P. Zítek, T. Vyhlídal, G. Simeunovi, L. Nováková, J._Cí_zek. Novel personalized andhumidified air supply for airliner passengers[J], Building and Environment,2010,45:2345-2353
    [49] Chaofan Wu, Noor A. Ahmed, A Novel Mode of Air Supply for Aircraft Cabin Ventilation,Building and Environment[J],2012,56(10):47-56
    [50] Tengfei (Tim) Zhang, Penghui Li, Shugang Wang. A personal air distribution system with airterminals embedded in chair armrests on commercial airplanes[J], Building andEnvironment,2012,47:89-99
    [51] Wei Liu, Jizhou Wen, Chao-Hsin Lin, Junjie Liu, Zhengwei Long, Qingyan Chen. Evaluationof various categories of turbulence models for predicting air distribution in an airliner cabin[J],Building and Environment,2013,65:118-131
    [52] Fanger P O. Thermal comfort-analysis and application in environment engineering [M].Copenhagen: Danish Technology Press,1970
    [53] ASHRAE, ANSI/ASHRAE Standard55-2010: Thermal Environment Conditions for HumanOccupancy [S]. Atlanta, GA, American Society of Heating, Ventilating and Air-ConditioningEngineers, Inc.,2011.
    [54] ISO7730-2005: Ergonomics of the thermal environment—Analytical determination andinterpretation of thermal comfort using calculation of the PMV and PPD indices and localthermal comfort criteria[S]. Geneva, International Organization for Standardization,2005
    [55] Johnson RW. Criteria for thermal regulation for manned spacecraft cabins[R]. NASA TND-3349,1966
    [56] Kuznetz LH. Automatic control of human thermal comfort with a liquid-cooledgarment[R].NASA TM-58305,1977
    [57]袁修干.飞机座舱热力学特性的数学模型及其应用[J],中国航空科技文献, HJB830088,1983
    [58]吴玉庭,林国华,袁修干.空调座舱热舒适性计算[J].北京航空航天大学学报.2000,26(1):56-59.
    [59]王连江,赵竞全.飞机座舱温度场数值仿真研究[J].计算机仿真,2008,25(5):44-46
    [60]张大林,昂海松.飞机座舱内空气速度和温度分布的数值模拟[J].南京航空航天大学学报,2002,34(5):484-487
    [61]熊贤鹏,刘卫华,昂海松等.教练机座舱气流组织和热舒适性[J].应用科学学报,2007,25(6):639-644
    [62] Farzaneh Y, Tootoonchi AA. Controlling automobile thermal comfort using optimizedfuzzycontroller [J]. Applied Thermal Engineering,2008,28:1906-1917
    [63] Matthias Kuhn, Johannes Bosbach, Claus Wagner. Experimental parametric study of forcedand mixed convection in a passenger aircraft cabin mock-up[J], Building and Environment,2009,44:961-970
    [64]何乐,客机机舱环境热舒适研究[D],天津:天津大学,2011年
    [65] Sumee Park, Runa T. Hellwig, Gunnar Grün, Andreas Holm, Local and overall thermalcomfort in an aircraft cabin and their interrelations[J], Building and Environment,2011,46:1056-1064
    [66] Ingo Baumann, Michael Trimmel. Distribution of subjective assessments in a controlledaircraft environment[J], Aerospace Science and Technology,2013,25(1):93-101
    [67] P. Vink, C. Bazley, I. Kamp, M. Blok,Possibilities to improve the aircraft interior comfortexperience[J], Applied Ergonomics,2012,43:354-359
    [68] Gunnar Grün, Michael Trimmel, Andreas Holm. Low humidity in the aircraft cabinenvironment and its impact on well-being-Results from a laboratory study[J], Building andEnvironment,2012,47:23-31
    [69] Carlo Giaconia, Aldo Orioli, Alessandra Di Gangi. Air quality and relative humidity incommercial aircrafts: An experimental investigation on short-haul domestic flights[J],Building and Environment,2013,67:69-81
    [70] Schmid T M, Mullerd, Markwart M. Numerical study of different air distribution Systems foraircraft cabins [C], Proceedings of Indoor Air2008,2008, ID:922, Copenhagen, Denmark.
    [71]李鹏辉,张腾飞,王树刚.飞机座舱个性化送风系统模拟研究[C].2010辽港(大连)建筑设备工程技术交流研讨会.中国大连,2010.
    [72] Julia Winzen, Claudia Marggraf-Micheel. Climate preferences and expectations and theirinfluence on comfort evaluations in an aircraft cabin[J], Building and Environment,2013,64:146-151
    [73]民用建筑室内热湿环境评价标准[S], GB/T50785-2012,中国建筑工业出版社,2012
    [74]谈美兰.夏季相对湿度和风速对人体热感觉的影响研究[D],重庆:重庆大学,2012
    [75]谭青.夏季教室通风对人体热舒适影响的研究[D],重庆:重庆大学,2011
    [76]袁建文,李科研.关于样本量计算方法的比较研究[J],统计与策略,2013,1(373):22-25
    [77]刘锋.市场调查中样本量的确定[J],商业研究,2003,16(276):143-144
    [78] Wang Peishan, West Roy, Edlavitch Stanly A. et al. Epidemiology[M], TianJin Science&Technology Translation&Publishing Corp,2011
    [79]刘春燕,中国成年女性尿失禁的流行病学调查研究[D],北京:中国协和医科大学,2007
    [80]王启华,邱学才.临床人体解剖生理学[M],中山大学出版社,2007年
    [81] Zhang H, Human Thermal Sensation and Comfort in Transient and Non-Uniform ThermalEnvironments[D], PH.D, University of California, Berkeley.2003
    [82]王怀经,张绍祥,局部解剖学[M],人民卫生出版社,2011
    [83] Gagge AP, Nishi Y.Heat exchange between human skin surface and thermal environment [M].In: Lee DHK (ed) Handbook of physiology. American Physiological Society, Bethesda, Md.,1977:69–92
    [84] Melikov AK. Personalized ventilation[C]. Indoor Air2004,14(7):157-67
    [85] Melikov AK, Arakelian RS, Halkjaer L, et al. Spot cooling part1: human responses to coolingwith air jets[J]. ASHRAE Transactions,1994,100(2):476-499
    [86]马仁民,地板送风技术条件与舒适条件的研究[J],暖通空调,1995,6:45-46
    [87]端木琳.桌面工位空调系统室内热环境与热舒适性研究[D],大连,大连理工大学,2007
    [88]张宇峰,赵荣义.座椅与人体接触表面最佳热流通量的实验研究[J].清华大学学报(自然科学版),2007,47(9):1405-1408
    [89] Brendan Savio Aranjo, Ben Richard Hughes, Hassam Nasarullah Chaudry,Performanceinvestigation of ground cooling for the airbus A380in the United Arab Emirates[J]. AppliedThermal Engineering2012,36:87-95
    [90] Eng W, Harada L, Jagerman L. The wearing of hydrophilic contact lenses aboard acommercial jet aircraft[J]. Aviation Space and Environmental Medicine1982;53(3):235-8
    [91] BRE (British Research Establishment). Study of possible effects on health of aircraft cabinenvironments e stage2[C]. Garston, Watford, UK: British Research Establishment,Environment Division;2001
    [92] Hinninghofen H, Enck P. Passenger well-being in airplanes[J]. Autonomic Neuroscience2006;129(1):80-5
    [93] Thibeault C. Cabin air quality[J]. Aviation, Space and Environmental Medicine1997;68(1):80-2.
    [94] Gao NP, Niu JL. CFD study on micro-environment around human body and personalizedventilation[J]. Building and Environment,2004,39(7):795-805.
    [95] Gao NP, Niu JL. Improvement of facial humidity and reduction of pollutant inhalation incommercial aircraft cabins via application of personalized ventilation[J]. ASHRAETransactions2008,114(2):37-44.
    [96] Gao NP, Niu JL. Personalized ventilation for commercial aircraft cabins[J]. Journal of Aircraft2008;45(2):208-12.
    [97] T.T. Chow, K.F.Fong, B.Givoni, Zhang Lin, A.L.S. Chan, Thermal sensation of Hong Kongpeople with increased air speed, temperature and humidity in air-conditioned environment[J].Building and Environment,2010,45:2177-2183
    [98] P.O.Fanger, Thermal Comfort[M], Robert. Krieger Publishing Company, Malabar, FL,1982
    [99]范少光,汤浩,潘伟丰.人体生理学[M],北京:北京医科大学出版社,2000
    [100]金振星.不同气候区居民热适应行为及热舒适区研究[D].重庆:重庆大学,2011
    [101] Nunneley S A, Maldonado R J. Head and/or torso cooling during simulated cockpit heatstress[J]. Aviat space Environ Med,1983,54(6):496-499
    [102] Stevens J C, Marks L E, Simonson D C, Regional sensitivity and spatial summation in thewarmth sense[J]. Physiol Bchav,1974,13:825-836
    [103] Crawshaw L I, Nadel E R, Stolwijk J A J, et al. Effect of local cooling on sweating rate andcold sensation[J]. European J of Physiology,1975,354:19-27
    [104]李俊,个体送风特性及人体热反应研究[D],清华:清华大学,2004
    [105]张宇峰,局部热暴露对人体热感觉的影响[D],清华大学,北京,2007
    [106]刘大海,李宁,晁阳. SPSS15.0统计分析从入门到精通[M],清华大学出版,2008
    [107] http://wenku.baidu.com/link?url=G_M_5ogcneV_7oPPqIOIZsAyOQ4RQ4LUKqQUqw538bK89ErgiE7rwpSxOos07P-k9tHJj8BdSqGgONICQlQjzWSx-RLmFTKKTXPx3PYIBIW
    [108]陆亚俊,暖通空调[M],中国建筑工业出版社,2007年
    [109] G L Tuve. Air velocities in ventilating jets[J]. ASHVE Trans,1959,59:261~282
    [110](苏联).BB,巴图林著,刘永年译,工业通风原理[M],中国工业出版社,1965
    [111] Alfred Koestyel, PhiliP Hemrnn, G.L.Tuve, Comparative Study of Ventilating Jets fromvarious Types of Outlets[J],ASHVE,1950,44(1)
    [112] VHassnai,T.Malmsrtom,A,T.Kirkpatrick,INDOOR THERMAL ENVIRONMENT OFCOLD AIR DISTRIBUTION SYSTEMS[J], ASHRAE Trna,1993,96(1),13-59
    [113] YKashirajima,.TSugiura,M.Takahaashi,Ph.D.,YSugihara,Ph.D.,N.Ooshima,.PE.,Experimental Study of Indoor Thermal Environment for Cold Air Distribution SystemsUsing Various Air Outlets[J], ASHRAE Trna,2002,96(2),7
    [114] P V Nielsen. Flow in air conditioned rooms (English Translation):[Ph D Thesis].Copenhagen: Technical University of Denmark,1976.
    [115]方修睦,建筑环境测试技术[M],中国建筑工业出版社,2011年
    [116]陈家乐,卫之羽,刘守模等.圆管送风口射流的扩散角度[R],三机部四院喷漆通风模拟实验小组
    [117]《飞机设计手册》总编委员会编,飞机设计手册-第15册生命保障和环控系统设计[S],航空工业出版,1999
    [118]刘沛清,自由紊流射流理论[M],北京航空航天大学出版社,2008
    [119] N. Rajaratnam. Turbulent Jets[M].Elsevier Scientific Publishing Company,Amsterdam.1976.
    [120] Z H Li, J S Zhang, A M Zhivov, et al. Characteristics of diffuser air jets and airflow in theoccupied regions of mechanically ventilated rooms-a literature review[J]. ASHRAE Trans,1993,99.1119-1126.
    [121]谢象春,湍流射流理论与计算[M],科学出版社,1975,北京
    [122]龙天渝,蔡增基,流体力学[M],建筑工工业出版社,2004
    [123]薛殿华,空气调节[M],清华大学出版社,1991
    [124]宋高举,12种典型送风口射流流型可视化及紊流系数试验研究[D],西安:西安建筑科技大学,2005年
    [125]余常昭,紊动射流[M],高等教育出版社,1993
    [126] http://baike.baidu.com/link?url=sNS0-VDkGnH_Fbv_7aGzcC1Z_RY8KF6db4QfchCIfRMw9WERjxRcR19WBOEW7oVS
    [127] Melikov A K, Arakelian R S, Halkjaer L, et al. Spot cooling part1: human responses tocooling with air jets [J]. ASHRAE Transaction,1994,100(2):476-99.
    [128] Bauman F S,Carter T G, Baughman A V,et al. Field study of the impact of a desktoptask/ambient conditioning system in office buildings[J]. ASHRAE Transaction,1998,104(1):1153-71.
    [129] Brook J E, Parsons K C. An ergonomics investigation into human thermal comfort using anautomobile seat heated with encapsulated carbonized fabric [J]. Ergonomics1999,42(5):661-73.
    [130] Taniguchi Y, Aoki H, Fujikake K,et al. Study on car air conditioning system controlled bycar occupants' skin temperatures-Part1: Research on a method of quantitative evaluation ofcar occupants' thermal sensations by skin temperatures[J]. SAE Technical Paper Series,1992,920169:13-19.
    [131] Arens E, Zhang H, Huizenga C. Partial-and whole body thermal sensation and comfort, partI: uniform environmental conditions [J]. Journal of Thermal Biology,2006,31(1):53-59.
    [132] Zhang H, Arens E,Kim D, Buchberger E, et al. Comfort, perceived air quality, and workperformance in a low-power task-ambient conditioning system [J]. Building andEnvironment,2010,45(1):29-39.
    [133] Hagino M, Hara J. Development of a method for predicting comfortable airflow in thepassenger compartment[C], SAE Technical Paper Series, NO922131,1992:1-10.
    [134]丁千茹,非均匀环境对局部热感觉对整体热反应的影响[D].人连:人迮理工大学,2008.
    [135]金权,非均匀热环境过渡过程人体热感觉的研究[D],大连:大连理工大学,2012
    [136]《飞机设计手册》总编委,飞机设计手册第15册生命保障和环控系统设计[M],航空工业出版社,1999
    [137] FangerPO, Melikov A K, Hanzawa H, et al. Air turbulen ceandsen sation of draught [J].Energy and Buildings,1988,12:21-39
    [138] Ingersoll J G, Kalman T G, et al. Automobile passenger compartment thermal comfortmodel-part II: Human thermal comfort calculation[C]. SAE Technical Paper Series,1992,No.920266:1-11.
    [139] Nunneley S A, Troutman S J, Webb P. Head cooling inwork and heat stcress[J]. AeorsPaceMedicine,1971,42(1):64-68.
    [140]邱仞之.环境高温与热损伤[M].北京:军事座,科学出版社,2000
    [141]钱信忠.中国医学白科全书[M].上海:上海科予技术出版社,1986.
    [142] ASHRAE, ANSI/ASHRAE Standard55-1992: Thermal Environment Conditions forHuman Occupancy [S]. Atlanta, GA, American Society of Heating, Ventilating andAir-Conditioning Engineers, Inc.,1993
    [143] ASHRAE, ANSI/ASHRAE Standard55-2004: Thermal Environment Conditions forHuman Occupancy [S]. Atlanta, GA, American Society of Heating, Ventilating andAir-Conditioning Engineers, Inc.,2005
    [144] A.P. Gagge, J.A.J. Stolwijk, J.D. Hardy. Comfort and thermal sensations and associatedphysiological responses at various ambient temperatures [J]. Environmental Research,1967,1(1):1–20
    [145] Fiala D. First principles modeling of thermal sensation responses in steady state andtransient conditions [J]. ASH RAE Trans,2002,108(1):179-186.
    [146]刘蔚巍.人体热舒适客观评价指标研究[D].上海,上海交通大学,2007.
    [147]余娟.不同室内经历下人体生理热适应对热反应的影响研究[D].上海:.东华大学,2011.
    [148] P.O.Fanger and N.K.Christensen, Perception of draught in ventilated spaces[J], Ergonomics,1986, V29(2):215-235
    [149]廖建科,温度突变的动态环境下人体热舒适研究[D],重庆:重庆大学,2013
    [150] BuleaoCF, FrankSM, RajaSN, etal. Relative contribution of core and skin Temperatures tothermal comfort in humans. Journal of Thermal Biology,2000,25(11-2):147-150
    [151] Tomonori Sakoi, Kazuyo Tsuzuki, Shinsuke Kato,et al. Thermal comfort, Skin temperaturedistribution, and sensible heat loss distribution in the sitting Posture in various asymmetricradiant fields[J].BuildingandEnvironment,2007,42(12):3984-3999
    [152]陈胜可,SPSS统计分析从入门到精通[M],清华大学出版社,2013年5月
    [153]赵铁牛,通径分析及其在医学研究中的应用[D],山西:山西医科大学,2004敬
    [154]汪宝卿,王庆美,张海燕等,北方区试中甘薯农艺性状与产量的多元回归和通经分析[J],中国农学通报,2011,27(5):120-125
    [155]艳辉,邢留伟,通径分析及其应用[J],统计教育,2006,2:24-26
    [156]杜家菊,陈志伟,使用SPSS线性回归实用通径分析方法[J],生物学通报,2010,45(2):4-6
    [157]邱仞之.环境高温与热损失[M].北京:军事医学科学出版社,2000
    [158] Bazett C, B. McGlone, Brocklehurst R J. The Temperatures in the Tissue which AccompanyTemperature Sensations[J].Journal of Physiology,1930,69(1):88-112.
    [159] Kenshalo D R. Cutaneous temperature receptors-some operating characteristics formodel[C]. Pysiological and behavioral temperature regulation. Illinois, USA,1970:802–18
    [160] Zotterman Y. Special Senses: Thermal Receptors [J]. Ann. Rev. Physiology,1953,15:357-372
    [161] Guyton A C. Textbook of medical physiology [M]. Philadephia, London, W.B.SaundersPress,1971.
    [162] McIntyre, indoor Climate, London: Applied Science Publisher,1980.
    [163] Crawshaw L l, Ndael E R, Stolwijk J A J,et al. Effect of local cooling on sweating rate andcold sensation. Pflugers Acrh: European journal of Physiology,1975,vol.354:19-27
    [164]朱颖心,建筑环境学[M],中国建筑工业出版社,2010
    [165] H. Hensel, Thermo-reception and Temperature[C], London: Academic Press,1981.
    [166] Ye Yao, Zhiwei Lian, Weiwei Liu, Qi Shen, Experimental study on physiologicalresponses and thermal comfort under various ambient temperatures[J], Physiology&Behavior,2008,93:310–321