大型轴流管壳式换热器中的深度换热
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
管壳式换热器具有机械密封性好、承压能力强等特点,是动力、能源、冶金、硫酸工业等行业的关键通用设备。换热器热流体与冷流体的出口温度比例α(αT_(H2) T_(L2))可表征换热器的换热深度。当热流体的出口温度低于冷流体的出口温度即α<1时,换热器进入深度换热状态。工业中有一些场合需要冷热流体作深度换热,例如在硫酸生产转化系统中SO_2 /SO_3气体的换热,在乙烯或炼油系统中的冷热油料换热等。近些年来随着硫酸工业生产规模的扩大,转化工序中换热设备也越来越大型化。换热器大型化过程中,长径比(L/D)锐减的同时也伴随出现了深度换热难以实现的问题。在超大型换热器中采用壳程多通道结构是改善深度换热受限的有效方法,但其内部速度分布尚不清楚,本论文将对此进行研究。壳程多通道管壳式换热器相当于一个由若干个长宽比为L/W的并列分置管壳式换热器组成的换热器网络。在壳程多通道超大型管壳式换热器中,深度换热之所以得以实现是由于并列分置管束管壳式换热器的L/W远大于超大型管壳式换热器L/D,因此研究L/W与深度换热的关系很有必要。
     在本论文中,根据几何相似原理抽取壳程多通道超大型管壳式换热器中具有代表性的并列分置管束单元流路区域进行数值模拟研究,运用大型计算流体力学商业软件FLUENT研究了长宽比对并列分置管束单元流路区域模型的深度换热性能的影响,给出了并列分置管束单元流路区域的速度场分布,由于并列分置管束单元流路区域与壳程多通道大型管壳式换热器的壳程流路具有极高的相似性,所得结果对了解壳程多通道超大型管壳式换热器的壳程流路有意义。
     壳程多通道超大型管壳式换热器中可看作是由并列分置管束单元流路区域模型组成的换热器网络。本论文根据并列分置管束单元流路区域模型制造了5个并列分置管束管壳式换热器。运用实验与数值模拟相结合的方法对5个并列分置管束管壳式换热器的传热与流阻性能进行了研究。实验结果与数值模拟结果具有很好的一致性。建立了并列分置管束管壳式换热器实验平台,对实验装置与测试系统的可靠性进行了系统分析,得到了不同L/W的管壳式换热器的总传热系数,总结了L/W对管壳式换热器深度换热性能的影响规律。换热器的深度换热性能与长宽比L/W密切关联,随着换热器L/W的减小,换热器壳程流场分布越来越不均匀,换热器性能下降剧烈并且壳程压降急剧增大。在管壳程平均流速均为10 m·s~(-1)时,冷热流体在长宽比L/W≥4.62的并列分置管束管壳式换热器可以进行深度换热,而在长宽比L/W≤3.08的并列分置管束管壳式换热器中不能产生深度换热。
     以温差场均匀性原则为指导,从管程与壳程温差场的协同关系角度分析了换热器性能随L W减小而下降的机理。将并列分置管束管壳式换热器划分为若干个微元,每个微元均可看作一个子换热器,在子换热器中,冷热流体的特征(平均)温度分别为t h和t c,所以对于每一个子换热器都存在着一个冷热流体温度差H ,从而在整个换热器中形成冷热流体的温差场H(x,y,z)=t_h(x,y,z)-t_c(x,y,z)冷热流体温度场间的搭配,即温差场的特性本质决定了换热器的性能。冷热流体的温度场都是空间的函数,它们的函数形式越接近时,它们的协同就越好。在本论文中将并列分置管束管壳式换热器分为若干个子元素,通过数值模拟的方法将其内部温差场以二维图形式直观显现、计算了5个并列分置管束管壳式换热器的温差均匀性因子,定量表述了其温差场的均匀程度,经过分析得出结论:换热器深度换热性能随L/W的减小而下降是因为换热器温差场的均匀性随L/W的减小而下降,这与过增元院士提出的温差场均匀性原则是相符合的。
     换热效率不仅取决于冷热流体的进口温度差和传热单元数,还取决于冷热流体的流动形式(顺流、叉流、逆流)。逆流换热器之所以具有最高的换热效率是因为它的传热温差场最均匀,即同等条件下,错流、顺流换热器相对于逆流换热器温差场的不均匀程度反映了错流、逆流换热器中传热温差相对于逆流换热器传热温差的损失程度。在本论文中采用流路分析的方法对管壳式换热器壳程进出口折流区域的传热温差进行研究,并比较了不同换热深度条件下折流较纯逆流换热的传热温差损失。经数学分析知,为确保换热器能发生深度换热,应使换热器传热温差较纯逆流的偏移量小于5%,这可以通过控制折流区域面积占总传热面积的比例小于0.6/R_(1a,c)来实现, R_(1a,c)为临界点逆流冷流体出口、进口温差与平均温差之比。
     壳程多通道管壳式换热器已应用于工业生产系统中,换热效率较高,取得了很大的经济效益。本论文采用流道分区方法对壳程多通道管壳式换热器进行简化,在实验室条件下完成了其壳程流路分析,给出了其内部速度分布;通过实验和数值分析的方法研究了壳程多通道管壳式换热器的子换热器——并列分置管束管壳式换热器的L/W与其深度换热性能的关系,给出了L/W在何种范围内的并列分置管束管壳式换热器能发生深度换热;以温差场均匀性原则为指导进行了机理分析;采用流路分析的方法对不同换热深度条件下壳程折流区域较逆流的传热温差损失进行研究,给出了折流区域占总壳程面积的合理比例,这为壳程多通道超大型管壳式换热器的设计提供了理论依据,在工业应用中具有参考价值。
Shell-and-tube heat exchangers (STHXs) are the most important general equipments widely used in power, energy, metallurgy, chemical industries, etc. In STHXs, the ratio, ? (outlet temperature of hot fluid to that of cold one) indicates heat exchange depth. When outlet temperature of hot fluid is lower than that of cold fluid, ? ? 1 deep heat transfer is achieved. Deep heat transfer state is meaningful in some industries; for example, in sulphuric acid manufacture transforming system, ethylene production system, and distillation system. In sulphuric acid industry, STHXs have a trend to be super large as the production scale is getting larger. L/D (ratio of length to diameter) of super large STHXs is getting smaller because the length of STHXs (L) is unchanged but the diameter of STHXs (D) is getting larger. However, deep heat transfer is getting more and more uneasy to be achieved as L/D is smaller and smaller. Setting multi-parallel-channel structure (MPC) in the shell side of super large STHXs is a way to solve the problem. Super large STHX with MPC in the shell side can be seen as a heat exchanger network composed of many parallel-tube-bundle STHXs. In super large STHXs with MPC in the shell side, deep heat transfer can be achieved because of L/W of parallel-tube-bundle STHX is large though L/D of super large STHXs is small. It is necessary to study on L/W and deep heat transfer characteristics of parallel-tube-bundle STHXs. Super large STHXs with MPC in the shell side have been applied in industries, but velocity field in the shell side is unclear. In this thesis, velocity field in the shell side of super large STHXs with MPC also will be studied.
     In this thesis, super large STHXs with MPC in the shell side can be divided into a lot of parallel-tube-bundle by adding clapboards in the shell side. Based on geometric similar principle, a classical parallel-tube-bundle flow path in the super large STHXs with MPC in the shell side is studied by numerical analysis to get the velocity field in the shell side. As it is similar to the flow path in the shell side of super large STHXs with MPC in the shell side, the research results are meaningful to show the velocity field in STHXs with MPC in the shell side. The influence of L/W of parallel-tube-bundle flow path to deep heat transfer characteristic is also studied by computational fluid dynamics commercial software FLUENT.
     Super large STHXs with MPC in the shell side can be seemed as a heat exchanger network composed of a lot of parallel-tube-bundle flow path models. Each parallel-tube-bundle flow path model can be seemed as a parallel-tube-bundle STHX. Five parallel-tube-bundle STHXs are made according to the parallel-tube-bundle flow path model. Experimental and numerical study on the five STHXs with different L/W has been done to reveal the influence of L/W on fluid distribution, heat transfer and resistance performances in the shell side. The experimental platform is set up and reliability analysis is carried out on the equipments and test system. Hot air flow in the tube side and cold air flow in the shell side of parallel-tube-bundle STHXs. Numerical results have a good agreement with experimental results. Inlet temperature of hot air in five STHXs is the same, also is the inlet temperature of cold air. The total heat transfer coefficients are obtained. The influence of L/W on deep heat transfer performance in STHXs is summarized. The results show that in the condition of average velocity is 10 m·s~(-1) both in shell and tube side, velocity distribution in shell side is more and more uneven with L/W decreasing. At the same time, heat transfer performances decline sharply and pressure drop in shell side increases dramatically with L/W decreasing. Deep heat transfer can be achieved in parallel-tube-bundle STHXs when L/W≥4.62. But in parallel-tube-bundle STHXs with L/W≤3.08, deep heat transfer performance can’t be achieved any more.
     Temperature field uniformity principle is used to analysis the mechanism of heat transfer performance decline with L/W decreasing. A parallel-tube-bundle STHX can be divided into a lot of sub-elements. This is equivalent to take a whole heat exchanger as a heat exchanger network composed of several sub-STHXs. In sub-STHXs, there is a characteristic hot fluid temperature ( t_h) and a characteristic cold fluid temperature ( t_c), and their difference is named local characteristic temperature difference ( H ). The aggregate of these local characteristic temperature differences forms a temperature difference field (in short: TDF) of the STHX H(x,y,z)=t_h(x,y,z)-t_c(x,y,z) Heat transfer performance of STHXs is determined by the synergy between hot fluid temperature field and cold fluid temperature field, that is, temperature difference field. Hot and cold fluid temperature is a function of space. The closer of their functional form, the better synergy they are. In this thesis, parallel-tube-bundle STHXs are divided into a lot of sub elements. By this method, the internal temperature difference field is shown in the form of 2D figures. In order to quantitatively describe the uniformity of temperature difference field in a STHX, a factor named the uniformity factor of TDF is defined. After analysis, conclusions are obtained: the inherent reason why heat transfer efficiency decreases with L/W decreasing is that the uniformity of temperature difference field decreases with L/W decreasing. It is consistent with the principle of uniformity of temperature difference field proposed by GUO.
     Heat transfer efficiency depends not only on numbers of transfer units and temperature differences between both the inlet t and outlet temperature of hot fluid and cold fluid, but also on the fluid flow pattern (co-current flow, counter-current flow, cross flow). Countercurrent heat exchanger has the highest heat transfer efficiency depends on the most uniform field of heat transfer temperature difference compared to co-current and cross heat exchangers. At the same condition, compared with TDF in the counter-current flow pattern, the degree of uneven of TDF in cross flow or co-current flow reflects the loss of temperature difference. In this thesis, heat transfer temperature difference in baffle flow pattern is compared with that in counter flow pattern in terms of flow path distribution analyses. The deviation of heat transfer temperature difference between the two flow patterns have been analyzed at differentα. In order to make the whole heat transfer temperature difference in STHXs lose under 5% forα<1, the ratio of baffle flow area to the whole area of heat exchangers should be smaller than 0.6 / R_(1a,c) and R_(1a,c) is R_1 at critical point of deep heat transfer in countercurrent flow pattern.
     Super large STHXs with MPC in the shell side have been applied in industrial production systems, and have made great economic benefits by the higher efficiency. In this thesis, velocity field in the shell side of super large STHXs with MPC in the shell side is studies based on geometric similar principle. Five parallel-tube-bundle STHXs have been made to do experimental study on the influence of L/W to deep heat transfer characteristic. The range at with L/W deep heat transfer can be achieved is obtained based on the experimental and numerical study. The mechanism of heat transfer performance decreases with L/W decreasing is analyzed on the basis of the uniformity principle of temperature difference field. Based on flow path analysis research, the deviation of heat transfer temperature difference between baffle flow area and counter flow area for differentαis given. In order to achieve deep heat transfer, the reasonable ratio of baffle flow area to the whole heat transfer area has been given. Research work in this thesis provides a theoretical reference for design of super large STHXs with MPC in the shell side, and is useful in industrial applications.
引文
[1]李安军,邢桂菊,周丽雯.换热器强化传热技术的研究进展[J].冶金能源, 2008. 27(1): 50-54.
    [2] Lam, K., et al. Experimental study and large eddy simulation of turbulent flow around tube bundles composed of wavy and circular cylinders[J]. International Journal of Heat and Fluid Flow, 2010. 31(1): 32-44.
    [3] Bergles, A. E. ExHFT for fourth generation heat transfer technology[J]. Experimental Thermal and Fluid Science, 2002. 26(2-4): 335-344.
    [4]安越里,赵丽,黄新元.螺纹槽管错排管束的传热特性及流动阻力特性研究[J].热能动力工程, 2006. 21(4): 358-361.
    [5]崔海亭,彭培英.强化传热新型技术及应用[M]. 2006,北京:化学工业出版社.
    [6]靳遵龙,董其伍,刘敏珊,张富强.缩放管结构优化数值研究[J].郑州大学学报(工学版), 2010. 31(4): 105-107.
    [7]陈颖,邓先和,丁小江.缩放管内湍流对流换热(Ⅰ)场协同控制机理[J].化工学报, 2004. 55(11): 1759-1763.
    [8]顾艳艳,陈玉博,李冬.缩放换热管应力分析[J].石油化工设备, 2010. 39(2): 23-26.
    [9] Narayanan, C. M. Studies on performance characteristics of variable area heat exchangers[J]. Journal of Chemical Engineering of Japan, 1998. 31(6): 903-907.
    [10] Taymaz, I. and Y. Islamoglu. Prediction of convection heat transfer in converging-diverging tube for laminar air flowing using back-propagation neural network[J]. International Communications in Heat and Mass Transfer, 2009. 36(6): 614-617.
    [11]徐志明,张仲彬,詹海波,邵天成.缩放管混合污垢特性的实验研究[J].工程热物理学报, 2008. 29(2): 320-322.
    [12]詹海波,张仲彬,邵天成,徐志明,董新.缩放管流动阻力与传热性能的实验研究[J].东北电力大学学报, 2008. 29(2): 320-322.
    [13]黄维军,邓先和,周水洪.缩放管强化传热机理分析[J].流体机械, 2006. 34(2): 76-79.
    [14] Kedzierski, M. A. Enhancement of R123 pool boiling by the addition of N-hexane[J]. Journal of Enhanced Heat Transfer, 1999. 6(5): 343-355.
    [15] Kedzierski, M. A. Enhancement of R123 pool boiling by the addition of hydrocarbons[J]. International Journal of Refrigeration-Revue Internationale Du Froid, 2000. 23(2): 89-100.
    [16] Liu, Z. H. and J. Yi. Falling film evaporation heat transfer of water/salt mixtures fromroll-worked enhanced tubes and tube bundle[J]. Applied Thermal Engineering, 2002. 22(1): 83-95.
    [17]黄钰期,俞小莉,陆国栋.锯齿型翅片单元的流动与传热数值模拟[J].浙江大学学报(工学版), 2008. 42(8): 1462-1468.
    [18]郭丽华,覃峰,陈江平,陈芝久,张文锋,冯宗会.不同流动角度下锯齿型错列翅片性能的试验研究[J].高校化学工程学报, 2007. 21(5): 747-752.
    [19]郭丽华,覃峰,陈江平,夏立峰,陈芝久.低雷诺数工况下锯齿型翅片性能的参数化研究[J].农业机械学报, 2007. 38(7): 168-171.
    [20]张正国,林培森,王世平.花瓣形翅片管的开发及其纵向冲刷冷凝强化传热的研究[J].石油化工设备, 1998. 25(3): 3-6.
    [21]张正国,王世平,林培森.非共沸混合工质在花瓣形翅片管管束上的冷凝传热及强化[J].高校化学工程学报, 1998. 12(2): 186-188.
    [22]周兴求,王世平,邓颂九.双组分混合物在花瓣形翅片管上的冷凝传热[J].华南理工大学学报(自然科学版), 1998. 26(6): 121-126.
    [23]史月涛,孙奉仲,刘杰,韩志航,陶文铨.气固两相流绕流螺旋翅片管的实验研究[J].西安交通大学学报, 2005. 39(11): 1190-1193.
    [24]王乃华,滕斌,高翔,骆仲泱,岑可法.螺旋翅片管束换热过程的熵产分析[J].动力工程, 2009. 29(2): 163-168.
    [25]何法江,曹伟武,匡江红,严平,钱尚源,梁怀琪,韩永华.螺旋翅片管束传热和阻力特性的试验研究[J].动力工程, 2009. 29(5): 460-464.
    [26]王厚华,方赵嵩.空气外掠圆孔翅片管的流动与换热数值模拟[J].同济大学学报(自然科学版), 2009. 37(7): 969-973.
    [27]王厚华,方赵嵩,郑爽英.圆孔翅片管式制冷换热器的节能性能试验[J].西南交通大学学报, 2009. 44(3): 455-460.
    [28] Tao, Y. B., et al. Three-dimensional numerical study and field synergy principle analysis of wavy fin heat exchangers with elliptic tubes[J]. International Journal of Heat and Fluid Flow, 2007. 28(6): 1531-1544.
    [29] Kim, N. H., J. H. Ham, and J. P. Ch. Experimental investigation on the airside performance of fin-and-tube heat exchangers having herringbone wave fins and proposal of a new heat transfer and pressure drop correlation[J]. Journal of Mechanical Science and Technology, 2008. 22(3): 545-555.
    [30] Pirompugd, W., C. C. Wang, and S. Wongwises. Finite circular fin method for wavy fin-and-tube heat exchangers under fully and partially wet surface conditions[J]. International Journal of Heat and Mass Transfer, 2008. 51(15-16): 4002-4017.
    [31] Tsuzuki, N., et al. Advanced Microchannel Heat Exchanger with S-shaped Fins[J]. Journal of Nuclear Science and Technology, 2009. 46(5): 403-412.
    [32] Garcia-Cascales, J. R., et al. Assessment of boiling heat transfer correlations in the modelling of fin and tube heat exchangers[J]. International Journal of Refrigeration-Revue Internationale Du Froid, 2007. 30(6): 1004-1017.
    [33] Zilio, C., et al. An assessment of heat transfer through fins in a fin-and-tube gas cooler for transcritical carbon dioxide cycles[J]. Hvac&R Research, 2007. 13(3): 457-469.
    [34] Saricay, T. and L. B. Erbay. Numerical assessment of thermohydraulic performance of a deep freeze evaporator[J]. Isi Bilimi Ve Teknigi Dergisi-Journal of Thermal Science and Technology, 2008. 28(1): 33-41.
    [35] Akbari, M. M., et al. Effects of Vortex Generator Arrangements on Heat Transfer Enhancement over a Two-Row Fin-and-Tube Heat Exchanger[J]. Journal of Enhanced Heat Transfer, 2009. 16(4): 315-329.
    [36] Joardar, A. and A. M. Jacobi. Heat transfer enhancement by winglet-type vortex generator arrays in compact plain-fin-and-tube heat exchangers[J]. International Journal of Refrigeration-Revue Internationale Du Froid, 2008. 31(1): 87-97.
    [37] Lawson, M. J. and K. A. Thole. Heat transfer augmentation along the tube wall of a louvered fin heat exchanger using practical delta winglets[J]. International Journal of Heat and Mass Transfer, 2008. 51(9-10): 2346-2360.
    [38] Mohseni-Languri, E., R. Masoodi, and M. Gorji-Bandpy. A numerical study of flow and temperature fields in circular tube heat exchanger with elliptic vortex generators[J]. Thermal Science, 2008. 12(2): 129-136.
    [39] Tang, L. H., M. Zeng, and Q. W. Wang. Experimental and numerical investigation on air-side performance of fin-and-tube heat exchangers with various fin patterns[J]. Experimental Thermal and Fluid Science, 2009. 33(5): 818-827.
    [40]黄德斌,邓先和,王扬君,黄素逸.螺旋椭圆扁管强化传热研究[J].石油化工设备, 2003. 32(3): 1-5.
    [41]高学农,邹华春,王端阳,陆应生.高扭曲比螺旋扁管的管内传热及流阻性能[J].华南理工大学学报(自然科学版), 2008. 36(11): 17-21.
    [42]思勤,夏清,梁龙虎,李定绪.螺旋扁管换热器传热与阻力性能[J].化工学报, 1995.46(5): 601-607.
    [43]张杏祥,魏国红,桑芝富.螺旋扭曲扁管换热器传热与流阻性能试验研究[J].化学工程, 2007. 35(2): 17-20,25.
    [44]贺群武,罗来勤,王秋旺,曾敏,陶文铨.波纹内翅片管中对流换热与阻力特性的实验研究[J].工程热物理学报, 2003. 24(4): 655-657.
    [45]吴峰,林梅,田林,王秋旺,罗来勤.纵向内翅片管对流换热特性的实验研究及数值模拟[J].化工学报, 2005. 56(11): 2065-2068.
    [46]田林,王秋旺,谢公南,赵存陆,罗来勤.三种内翅片管管内流动与换热特性[J].化工学报, 2006. 57(11): 2543-2548.
    [47]林梅,曾敏,王秋旺.基于田口方法的波纹内翅片管参数优化研究[J].工程热物理学报, 2008. 29(10): 1752-1754.
    [48] Bergles, A. E. Toward fourth-generation heat transfer technology[J]. Hvac&R Research, 1998. 4(2): 117-118.
    [49] Chang, S. W., Y. J. Jan, and J. S. Liou. Turbulent heat transfer and pressure drop in tube fitted with serrated twisted tape[J]. International Journal of Thermal Sciences, 2007. 46(5): 506-518.
    [50] Eiamsa-ard, S. and P. Promvonge. Thermal characteristics in round tube fitted with serrated twisted tape[J]. Applied Thermal Engineering, 2010. 30(13): 1673-1682.
    [51] Chang, S. W. and T. L. Yang. Forced convective flow and heat transfer of upward cocurrent air-water slug flow in vertical plain and swirl tubes[J]. Experimental Thermal and Fluid Science, 2009. 33(7): 1087-1099.
    [52]唐玉峰,田茂诚,张冠敏,姜波.平行平板通道内置螺旋线圈流动传热特性[J].中国电机工程学报, 2011. 31(2): 55-61.
    [53]姚寿广,周根明,朱德书.内插螺旋线圈管的强化传热试验及结构优化研究[J].动力工程, 1998. 18(5): 29-31,72.
    [54] Akhavan-Behabadi, M. A., et al. Augmentation of forced convection condensation heat transfer inside a horizontal tube using spiral spring inserts[J]. Journal of Enhanced Heat Transfer, 2005. 12(4): 373-384.
    [55]郑四仙.静态混合器简介及选用[J].化工生产与技术, 2000. 7(2): 33-35.
    [56]张奕.静态混合器在化工生产中的应用[J].杭州化工, 2005. 35(1): 33-39.
    [57] Szalai, E. S. and F. J. Muzzio. Fundamental approach to the design and optimization of static mixers[J]. Aiche Journal, 2003. 49(11): 2687-2699.
    [58] Thakur, R. K., et al. Static mixers in the process industries - A review[J]. Chemical Engineering Research & Design, 2003. 81(A7): 787-826.
    [59] Rahmani, R. K., T. G. Keith, and A. Ayasoufi. Three-dimensional numerical simulation and performance study of an industrial helical static mixer[J]. Journal of Fluids Engineering-Transactions of the Asme, 2005. 127(3): 467-483.
    [60] Rahmani, R. K., T. G. Keith, and A. Ayasoufi. Numerical study of the heat transfer rate in a helical static mixer[J]. Journal of Heat Transfer-Transactions of the Asme, 2006. 128(8): 769-783.
    [61]叶楚宝,施龙生,蔡志清. SK型静态混合器用于高黏度介质的强化传热[J].石化技术与应用, 2006. 24(2): 118-120.
    [62]喻九阳,谢国雄,朱兵,冯兴奎.单弓形折流板管孔扩孔试验研究[J].石油化工设备, 2006. 35(4): 9-12.
    [63]谢国雄,朱兵,冯兴奎,喻九阳.单弓形折流板管桥开孔数量与布局[J].石油化工设备, 2006. 35(3): 1-3.
    [64]吴金星,刘敏珊,董其伍,魏新利.换热器管束支撑结构对壳程性能的影响[J].化工机械, 2008. 45(2): 28-31.
    [65]陈姝,高学农,徐娓,王端阳.管壳式换热器壳侧在强化传热方面的进展[J].广东化工, 2006. 33(5): 18-21.
    [66]周兵,陈亚平,王伟晗.管壳式换热器壳侧强化传热与管束支撑方式的研究进展[J].节能, 2009. 10(3): 10-20.
    [67]邓先和,陈详明,张志孝.空心环管壳式换热器工业化应用回顾[J].硫酸工业, 2001. 6(3): 4-5.
    [68]汪卫东,赵景波.空心环缩放管管壳式换热器生产应用[J].化工装备, 2002. 3(3): 19-23.
    [69]宋素芳,马利斌,罗彩霞.螺旋折流板换热器研究进展[J].广东化工, 2010. 37(4): 20-21.
    [70]张剑飞,李军,黄文江.螺旋折流板换热器流动与传热特性的试验分析[J].工程热物理学报, 2009(1): 147-149.
    [71]宋雷,高磊.螺旋角度不同的螺旋折流板换热器壳程传热性能研究[J].机械设计与制造, 2009(4): 120-122.
    [72]张少维,桑枝富.螺旋折流板换热器壳程流体流动的数值模拟研究[J].南京工业大学学报, 2004. 26(2): 81-84.
    [73] Lei, H., D. Henry, and H. BenHadid. Numerical study of the influence of a longitudinal sound field on natural convection in a cavity[J]. International Journal of Heat and Mass Transfer, 2006. 49(19-20): 3601-3616.
    [74] Bergles, A. E. The implications and challenges of enhanced heat transfer for the chemical process industries[J]. Chemical Engineering Research & Design, 2001. 79(A4): 437-444.
    [75]布列茨J.超声技术及其应用[M].北京:海洋出版社, 1992..
    [76] Loh, B. G. and D. R. Lee. Heat transfer characteristics of acoustic streaming by longitudinal ultrasonic vibration[J]. Journal of Thermophysics and Heat Transfer, 2004. 18(1): 94-99.
    [77] Oh, Y. K. and H. D. Yang. A study on correlation between pressure variations and augmentation of heat transfer in acoustic fields[J]. Ksme International Journal, 2004. 18(9): 1630-1639.
    [78]全贞花,马重芳,陈永昌,王春明,李兵.超声波抗垢强化传热技术的研究进展[J].应用声学, 2006. 25(1): 61-64.
    [79]张登庆,张锁龙,陆怡.诱导换热管流体弹性振动的换热及结垢性能研究[J].化工进展, 2005. 24(7): 773-776.
    [80]张锁龙,尤侯平.流体弹性诱导振动阻垢技术的研究[J].江苏工业学院学报, 2003. 15(3): 40-43.
    [81]程林,田茂诚,张冠敏,邱燕.流体诱导振动复合强化传热的理论分析[J].工程热物理学报, 2002. 23(3): 330-332.
    [82] Morthland, T. E. and J. S. Walker. Convective heat transfer due to thermocapillary convection with a strong magnetic field parallel to the free surface[J]. International Journal of Heat and Mass Transfer, 1997. 40(14): 3283-3291.
    [83] Yoon, H. S., et al. A numerical study on the fluid flow and heat transfer around a circular cylinder in an aligned magnetic field[J]. International Journal of Heat and Mass Transfer, 2004. 47(19-20): 4075-4087.
    [84]何俊,赵宗泽,李跃华,白更春,赵鹤云.物理方法除垢阻垢技术的研究现状及进展[J].工业水处理, 2010. 30(9): 5-9.
    [85] Feng, Y. S. and J. Seyed-Yagoobi. Understanding of electrohydrodynamic conduction pumping phenomenon[J]. Physics of Fluids, 2004. 16(7): 2432-2441.
    [86] Tomar, G., et al. Influence of electric field on saturated film boiling[J]. Physics of Fluids,2009. 21(3): 032107-1-8.
    [87] Yazdani, M. and J. Seyed-Yagoobi. Heat Transfer Augmentation of Parallel Flows by Means of Electric Conduction Phenomenon in Macro- and Microscales[J]. Journal of Heat Transfer-Transactions of the Asme, 2010. 132(6):062402-1-9.
    [88] Zhang, H. B., Y. Y. Yan, and Y. Q. Zu. Numerical modelling of EHD effects on heat transfer and bubble shapes of nucleate boiling[J]. Applied Mathematical Modelling, 2010. 34(3): 626-638.
    [89] Guo, Z. Y., et al. Principle of uniformity of temperature difference field in heat exchanger[J]. Science in China Series E-Technological Sciences, 1996. 39(1): 68-75.
    [90]程新广,李志信,过增元.基于最小热量传递势容耗散原理的导热优化[J].工程热物理学报, 2003. 24(1): 94-96.
    [91]宋伟民,孟继安,梁新刚等.一维换热器中温差场均匀性的证明[J].化工学报, 2008. 59(10): 2460-2464.
    [92]孟继安,基于场协同理论的纵向涡强化换热技术及应用[D].北京:清华大学, 2003.
    [93]苏欣,程新广,孟继安等.层流场协同的验证及其性质[J].工程热物理学报, 2005. 26(2): 289-291.
    [94] Arumemi-Ikhide, M., et al. Investigation of flow boiling in circulating three-phase fluidised bed - Part I: Experiments and results[J]. Chemical Engineering Science, 2008. 63(4): 881-895.
    [95] Delsman, E. R., et al. Design and operation of a preferential oxidation microdevice for a portable fuel processor[J]. Chemical Engineering Science, 2004. 59(22-23): 4795-4802.
    [96] Galeazzo, F. C. C., et al. Experimental and numerical heat transfer in a plate heat exchanger[J]. Chemical Engineering Science, 2006. 61(21): 7133-7138.
    [97]苏欣,孟继安,程新广,过增元.圆筒内层流对流换热的最佳速度场及工程应用[J].清华大学学报(自然科学版), 2005. 45(5): 677-680.
    [98]邓颂九.传递过程原理[M].广州:华南理工大学出版社. 1985.
    [99]过增元,杨鸿飞,换热器的熵产分析,高等学校第二届工程热物理全国学术会议. 1986: 79-84.
    [100] Guo, Z. Y., et al. Theoretical analysis and experimental confirmation of the uniformity principle of temperature difference field in heat exchanger[J]. International Journal of Heat and Mass Transfer, 2002. 45(10): 2119-2127.
    [101]过增元,魏澍,程新广.换热器强化的场协同原则[J].科学通报, 2003. 48(22):2324-2327.
    [102] Guo, Z. Y., S. Wei, and X. G. Cheng. A novel method to improve the performance of heat exchanger - Temperature fields coordination of fluids[J]. Chinese Science Bulletin, 2004. 49(1): 111-114.
    [103]周森泉,换热器温差场均匀性原则及其应用[D].北京:清华大学, 1995.
    [104]吕岩岩,崔国民,郭佳等.多股流换热器设计的量纲1-温差场均匀性优化因子[J].化工学报, 2007. 58(10): 2469-2473.
    [105]杨善让,杨沫,李中伯等.多背压凝汽器温差场均匀性分析[J].工程热物理学报, 1993. 14(3): 313-316.
    [106]郜时旺,杨沫,徐志明等.多背压凝汽器中温差场均匀性原则的直接证明[J].工程热物理学报, 1997. 18(6): 741-743.
    [107]郜时旺,杨沫,何坚忍等.传热系数变化时多背压凝汽器的温差场均匀性分析[J].热力发电, 1998(5): 32-35,43.
    [108]谈冲,陈德华.换热器中的温度交叉分析[J].化学工程, 1992. 20(1): 20-24.
    [109]王英双,马雷,韦杰,刘志春,黄素逸,刘伟.折流杆换热器中折流杆形状对流动和传热特性的影响[J].水电能源科学, 2010. 28(11): 128-130.
    [110]郑潮方.空心环缩放管管壳式换热器生产应用[J].中国化工装备, 2007: 19-24.
    [111]朱新生,梁海卫.碟环式换热器设计及转化调节副线的改造[J].硫磷设计与粉体工程, 2011(1): 37-39.
    [112]邓先和,张亚君,壳程多通道并流进出口结构的管壳式换热器,中国专利,CN1719176, 2006.01.
    [113]帕坦卡.传热与流体流动的计算[M]. 1984,北京:科学出版社.
    [114]王福军.计算流体动力学分析[M]. 2004,北京:清华大学出版社.
    [115]韩占忠,王敬,兰小平. FLUENT流体工程仿真计算实例与应用[M]. 2004,北京:北京理工大学出版社.
    [116] Fluent.inc, FLUENT User's Guide.2003, Fluent.inc.
    [117] Fluent.inc, GAMBIT Modeling Guide. 2003, Fluent.inc.
    [118]焦安军,换热器入口物流分配特性研究与优化设计[D].西安:西安交通大学. 2002.
    [119] Yu, B., et al. Discussion on numerical stability and boundedness of convective discretized scheme[J]. Numerical Heat Transfer Part B-Fundamentals, 2001. 40(4): 343-365.
    [120]谭天恩,麦本熙,丁惠华.化工原理[M].北京:化学工业出版社. 2002: 224-225.
    [121]张正国,王世平,耿建军,邓颂九.非共沸混合工质在水平管束上的冷凝传热及强化[J].化工学报, 1996. 47(5): 642-644.
    [122]赵晓曦,邓先和,陆恩锡.空心环支撑菱形翅片管油冷凝器传热性能[J].石油化工设备, 2003. 32(1): 1-3.
    [123]王秋红.差压式T型阿牛巴流量计的应用[J].石油化工自动化, 2005(6): 82-84.
    [124]杨世铭,陶文铨.传热学(第三版)[M].北京:高等教育出版社. 1998.
    [125] S.J. Kline, F.A. Mcclintock. Describing uncertainties in single-sample experiments[J]. Mechanical Engineering 1953: 3-8.
    [126] Moffat, R.J. Contributions to the theory of single-sample uncertainty analysis[J]. ASME J. Fluids Engineering, 1986: 250-260.
    [127]崔国民,高孝忠,郭佳,吕岩岩,关欣.多股流换热器网络优化的衍生网络法[J].工程热物理学报, 2008. 29(8): 1403-1406.
    [128] Sama, DA. The use of the second law of thermodynamics in process design[J]. Journal of energy resources technology, 1995. 117: 179.
    [129] Sama, DA. Differences between second law analysis and pinch technology[J]. Journal of energy resources technology, 1995. 117: 186.
    [130] Hausen, H. Heat Transfer in Counterflow, Parallel Flow and Cross Flow[J]. McGraw-Hill Book Company, xx+ 515, 23 x 16 cm, illustrated, pounds sterling 45. 25, 1983.
    [131]邓先和,蒋夫花.换热器大型化发展中的深度换热问题讨论[J].硫酸工业, 2009(6): 1-5.