多尘环境下液压系统用冷凝器及螺旋旋风分离器特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冷却器作为一种重要的液压辅件,在液压系统正常工作过程中具有重要作用。由于风冷式冷却器与冷媒式冷却器相比,其冷却效果差,无法彻底解决液压系统油温过高的问题。因此,有必要对适应于工程机械的冷媒式冷却器及其相关组成部件进行研究。本文所研究的冷凝器及螺旋旋风分离器是为在多尘环境下工作的工程机械液压系统所用冷媒式冷却器的研发打下基础。因此,分析粉尘在冷凝器换热表面的沉积机理,采用合理的除尘方式降低气流中的含尘量对冷媒式冷却器的正常工作具有重要意义。
     本文以某一应用对象的液压系统为例,根据计算所得散热功率对翅片管冷凝器的结构进行了设计计算。结合港口的大气环境,分析了港口环境对冷凝器换热效果所产生的影响。通过分析对比,本文选择螺旋旋风分离器作为多尘环境下冷媒式冷却器的除尘装置,并利用计算流体力学(CFD)分析方法,对分离器进行了数值模拟仿真。选择基于各向异性的RSM模型对螺旋旋风分离器内的三维强旋流动进行了模拟,通过仿真得出了分离器内的速度特性、压力特性及湍流特性,从而揭示了螺旋旋风分离器内的流动状态和能量损失。采用DPM模型对分离器内的气固两相流动进行了模拟,得出了分离器的分级效率,并利用相间耦合的随机轨道模型对颗粒的轨迹进行了跟踪。在改变操作参数及结构参数的基础上,分析了不同风速、螺旋圈数及锥体高度时的分离特性。为分离器的结构优化提供了依据。
     利用计算得出的翅片管冷凝器结构参数,建立了翅片管的传热模型。通过数值模拟分析了翅片的对流耦合换热,并得出了翅片换热性能与风速的对应关系。本文对污垢的类别进行了阐述,建立了颗粒污垢的沉积模型,揭示了粉尘颗粒在换热表面的沉积机理,并综合分析了影响粉尘沉积的主要因素。此外,通过数值模拟得出了在不同污垢厚度下翅片管冷凝器的换热特性。结果表明,污垢的增加将导致迎面风速降低,流动阻力增加。与洁净换热表面相比,当污垢厚度达到0.25mm时,翅片管的换热量下降了16%。
As an important hydraulic accessory, the cooler has an important role during normal operation of the hydraulic system. Compared with refrigerant cooler, the air-cooled cooler has poor cooling effect and the overheat problem of hydraulic oil can't be solved completely. So, as for the refrigerant cooler used in construction machinery, it's necessary to research on the cooler and its component parts. The condenser and spiral cyclone separator studied in this paper can lay the foundation for the development of the refrigerant cooler, which will be used for the hydraulic system of the construction machinery adapted to dusty environment. Therefore, for the normal work of refrigerant cooler, it's significant to analyze the dust deposition mechanism on the heat transfer and select a reasonable method to reduce the content of dust in the air flow.
     In this paper, based on the hydraulic system of an application object, the design calculation of the finned tube condenser is completed according to the calculated heat dissipation power. Combined with the atmospheric environment of the port, the impact of port environment on heat transfer performance of the condenser is analyzed. On the basis of comparison, the spiral cyclone separator is selected as the dust removal device of the refrigerant cooler used in dusty environment, and numerical simulation on the separator is completed by the computational fluid dynamics (CFD) analysis method. The three-dimensional strongly swirling flow in the separator is simulated based on the nonisotropic RSM model, the characteristics of speed, pressure and turbulence, which can reveal the flow state and energy loss inside the spiral cyclone separator, have also been obtained by simulation. The gas-solid two-phase flow inside the separator is simulated based on DPM model, the classification efficiency of the separator is obtained and the paths of particles are tracked with the coupling discrete random walk model. On the basis of changing the operation and structure parameters, the separation characteristics are analyzed when the wind speed, the number of spiral circle and the height of cone are different. These can provide basis for the structure optimization of the separator.
     Based on the calculated parameters of the finned tube condenser, the heat transfer model of the finned tube is built. The coupled heat transfer of fins is analyzed by simulation, and the corresponding relation between the heat transfer performance and wind speed is obtained. The species of fouling are described in this paper, and the deposition model of particle fouling is built, at last, the mechanism of particle deposition on the heat exchanger surface is revealed and the main factors that affect the particle deposition are analyzed. In addition, the heat transfer performances of the finned tube condenser with different fouling thickness are obtained by simulation. The results show that the increase of the fouling will lead to lower wind speed and higher flow resistance. Compared with the clean heat transfer surface, the heat transfer rate of the finned tube has decreased by16%when the thickness of fouling reaches to0.25mm.
引文
[1]李壮云.液压元件与系统[M].机械工业出版社,2005.
    [2]唐文红,游善兰.行走机械的液压冷却系统[J].工程机械,2001,32(6).
    [3]郝国强,刘淑强,丁秀爱,邵珠诚.液压油散热器在装载机上的应用和设计改进[J].工程机械,2006.
    [4]徐效增,杨晓峰.液压系统发热原因及对策[J].液压与气动,2006.
    [5]陆望龙.一种新型的油冷却器[J].液压与气动,1990(4):41-42.
    [6]张光玉,詹水芬,张晓春.港口散货粉尘污染防治理论与技术方法[M].北京:人民交通出版社,2009.
    [7]崔亚伟,叶菁.新型多层式旋风除尘器性能理论与实验研究[J].武汉工业大学学报,1995,14(1):13-17.
    [8]潘效良,赵家林,高庆有.螺线形旋风收尘器的研究[J].中国建材,1995(8):37-40.
    [9]Muley, A. Manglik, P. M. Experimental Study of Turbulent Flow Transfer and Pressure Drop in a plate Heat Exchanger with Chevro Plates[J]. Journal of Heat Transfer,1999,121(1): 110-117.
    [10]B.Prabhakara, P.Krishna Kumar, Sarit K. Das. Effect of flow distribution to the channel on the thermal performance of a plate heat exchanger[J]. Chemical Engineering and Processing. 2002,41:49-58.
    [11]Lozza, Giovanni Merlo, Umberto. An experimental investigation of heat transfer and friction losses of interrupted and wavy fins for fin-and-tube heat exchangers[J]. International Journal of Refrigeration,2001,24(5):409-416.
    [12]张建成,徐通明.冷态下高含尘气流绕流直翅片管管束的积灰研究[J].南京化工学院学报,1994(16):56-61.
    [13]浦晖,丁国良,马小魁,等.微生物污垢对翅片管换热器空气侧换热和压降特性的影响[J].上海交通大学学报,2008,42(3):404-408.
    [14]张薇.典型换热单元流动与传热问题的数值仿真研究[D].杭州:浙江大学,2007.
    [15]王厚华,方赵嵩.空气外掠圆孔翅片管的流动与换热数值模拟[J].同济大学学报(自然科学版),2009,37(7):969-973.
    [16]李鹤.多尘环境下特种空调机的性能及优化研究[D].上海:同济大学,2005.
    [17]陈明邵,吴光先.除尘技术的基本理论与应用[M].北京:中国建筑工业出版社,1981.
    [18]刘金红.旋风分离器的发展与理论研究现状[J].化工装备技术,1998,19(5):49-50.
    [19]Rosin P, Rammler E and Intelmann W. Grundlagen and Grenzen der Zyklonentsaubung[J]. Z, Ver. Dtsch.Ing.1932,76(16):433.
    [20]Barth W. Berechnung and Auslegung Von Zyklonabscheidern auf Grund neuerer Untersuchungen[J]. Brennstoff Warme-Kraft,1956,8(1).
    [21]Leith D and Lieht W. The Colleetion Efficiency of Cyclone TyPe Particle Collectors-A New Theoretical Approach[J]. A.I.Ch.E.Symp,1972,126(68):196.
    [22]Boysan F, Ayers W H and Swithenbank J. A Fundamental Mathematical Modeling Approach to Cyclone Design[J]. Trans.Inst.Chem.Engrs.,1982,60:222-230.
    [23]S.M.Mousavian, A.F.Najafi. Numerical simulation of gas-liquid-solid flows in a hydro cyclone separator[J]. Archive of Applied Mechanics.2009,79(5):395-405.
    [24]王浩.旋风分离器内两相流动的数值模拟研究[D].兰州:兰州理工大学,2007.
    [25]易林,王灿星.螺旋型旋风分离器两相流场的数值模拟[J].应用数学与力学,2006,27(2):223-228.
    [26]Kern. D. Q, Seaton. R.E. A Theoretical Analysis of Thermal Surface Fouling[J]. Chem Eng Prog,1959,4:258-262.
    [27]Epstein. N. Particle Deposition and Its Mitigation:Understanding Heat Exchanger Fouling and Its Mitigation[M]. New York:Begell House Inc,1997:3-21.
    [28]Maron. P, Andre P. A Study of Resuspended Particle from A Line Bed at the Wall of A Fluid Flow. Statistical Aspects[J]. Particle and Particle Systems Characterization,1997,14:41-47.
    [29]XU.Z M, Yang. S. R. A New Predictive Model for Particulate Fouling[C]. Proc of International Conference on Understanding Heat Exchanger Fouling and Its Mitigation, 1997.115-122.
    [30]毕月虹,RIZZO Gerhard, MUELLER-STEINHAGEN Hans,等.微粒污垢沉积率的理论分析与实验研究[J].热科学与技术,2007,6(3):246-251.
    [31]刘洪涛,张力.微细颗粒壁面沉积的数值研究[J].工程热物理学报,2010,31(3):431-434.
    [32]Li A, Ahmadi G. Computer simulation of deposition of aerosols in a turbulent channel flow with rough walls[J]. Aerosol Science and Technology,1993,18(1):11-24.
    [33]Li A, Ahmadi G, Bayer R G, Gaynes M A. Aerosol particle deposition in an obstructed turbulent duct flow[J]. Journal of Aerosol Science,1994,25(1):91-112.
    [34]王剑鹏,秦四成,田中笑.50型轮式装载机液压系统热平衡分析与验证[J].工程机械,2008,39:54-57.
    [35]徐进永.轮式装载机液压系统热平衡计算[J].建筑机械,1995(7):24-25.
    [36]杨振刚.高温多尘环境下的空调技术[D].上海:同济大学,2004.
    [37]谢华阳,丁攀,王文堂,等.浅谈汽车空调制冷剂的发展[J].农业装备与车辆工程,2005(2):34-36.
    [38]吴业正.小型制冷装置设计指导[M].北京:机械工业出版社,2004.
    [39]李明.固体微颗粒粘附与清除的机理及表面保洁技术的研究[D].长沙:中南大学,2009.
    [40]焦红光,黄定国,马娇,等.潮湿细粒煤在筛分面上的粘附机理[J].辽宁工程技术大学学报,2006(6):25-26.
    [41]吴超,吴桂湘,李孜军.气溶胶粉尘在玻璃表面的沉积行为研究[J].工业安全与环保,2006,32(9):1-3.
    [42]夏捍东.工程机械防海水盐雾腐蚀技术[J].国防科技,2003(7).
    [43]董言治,周晓东,审同圣,等.舰船设备盐雾防护及实验技术研究进展[J].腐蚀科学与防护技术,2004,16(1):29-32.
    [44]王福军.计算流体动力学分析[M].北京:清华大学出版社,2004.
    [45]韩占忠,王敬,兰小平FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004.
    [46]W.P.Jones and B.C.Launder. The Prediction of Laminarization with a Two-equation Model of Turbulence[J]. Int.J.Heat and mass Transfer,1972, Vol.15:301-314.
    [47]V.Yakhot and S.A.Orszag. Development of Turbulence Models for Shear Flows by a double Expansion Technique[J]. Physics.Fluids A,1992, Vol.4, No.7:1510-1520.
    [48]Launder BE and Morse AP. Numerieal Predietion of axisymmetric free shear flows with Reynolds stress closure in turbulent shear flow[J]. New york:Springer-Verlag,1979.
    [49]王海刚,刘石.不同湍流模型在旋风分离器三维数值模拟中的应用与比较[J].热能动力工程,2003,18(4):337-342.
    [50]岑可法,樊建人.工程气固多相流动的理论及计算[M].浙江:浙江大学出版社,1990.
    [51]K.Srinivas, C.A.J. Fletch. Computational Techniques for Fluid Dynamics[M]. New york: Springer-Verlag,1997.
    [52]Fluent 6.2 User's Guide[Z]. Fluent inc,2005.
    [53]周韬.旋风分离器的气固两相特性研究与数值模拟[D].上海:上海交通大学,2007
    [54]张泽虎,高广德,何璐璐.基于数值模拟的螺旋式旋风分离器气相流场分析[J].煤矿机械,2009,30(2):100-103.
    [55]吴维平.中国沿海港口粉尘污染的防治现状与对策[J].交通环保,1999,20(4).
    [56]赵家林,吕永启,孔宪芳,等.连续螺旋旋风除尘器的测试分析[J].齐齐哈尔轻工学院学报,1997,13(1):22-25.
    [57]潘效良.螺线型旋风收尘器及其粒级收尘效率公式研究探讨[J].中国建材装备,1996(9):15-17.
    [58]吴峰,王秋旺,罗来勤,等.空气横掠波纹管束流动与传热性能的数值模拟[J].工程热物理学报,2003,24(1):109-111.
    [59]Somerscales E F C. Fouling of Heat Transfer Surfaces:A Historical Review[J]. Heat Transfer Engineering,1990, Vol.11 No.1:19-36.
    [60]杨善让,徐志明,孙灵芳.换热设备污垢与对策(第二版)[M].北京:科学出版社,2004.
    [61]Epstein. N. Fouling in Heat Exchangers[C]. Heat Transfer 1978-Proc 6th IHTC,1979,6: 235-253.
    [62]Epstein N. Thinking about heat transfer fouling:a 5x5matrix[J]. Heat Transfer Engineering, 1983,4(1):43-56.
    [63]孙卓辉.换热面上结垢过程数值模拟[D].青岛:中国石油大学(华东),2008.
    [64]连之伟,张寅平,陈宝明,等.热质交换原理与设备[M].北京:中国建筑工业出版社,2001.
    [65]苏畅.污垢对能量传递过程影响的机理研究及其应用[D].重庆:重庆大学,2008.
    [66]Xu Dunqi, Knudsen J. G. Functional correlation of surface temperature and flow velocity on fouling of cooling tower water[J]. Heat Transfer Eng,1986,7(1-2):63-71.
    [67]J.A.Siegel and W.W. Nazaroff. Prediciting particle deposition on HVAC heat exchangers[J]. Atmospheric Enviornment,37(2003):5587-5596.
    [68]Hinds. W. C. Aerosol Technology:Properties Behavior and Measurement of Airborne Particles[M], New York: Wiley,1999.
    [69]Wang. H. c. Theoretical Adhesion Efficiency for Particle Impacting a Cylinder at High Reynolds-Number[J].J Aerosol Sci,1986,17:827-837.
    [70]Israel. R, Rosner. D. E. Use of a Generalized Stokes Number to Determine the Aerodynamic Capture Efficiency of Non-Stokesian Particles from a Compressible Gas-Flow[J]. Aerosol Sci.Technol.,1983,2:45-51.
    [71]L. F. Melo, T. R. Bott and C.A.Bernardo. Fouling Science and Technology[M]. Dordrecht: Kluwer Academic Publishers,1988,191-206.
    [72]Fuchs. N. A. The Mechanics of Aerosols[M]. Oxford. New York:Pergamon Press,1964.
    [73]徐则川,吴志明.减少涂层表面粉尘附着的初步探索(二)[J].红外技术,1997,19(3):21-23.
    [74]佟立志.集中空调通风系统污染对其能耗的影响分析[J].建筑科学,2011,27(6):102-105.