翅片管换热器传热特性的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的飞速发展,我国能源需求量迅猛增长,能源供应不足已成为制约我国经济社会发展的一大重要因素,这对我国的节能减排事业提出了更高要求。工业生产中的热能,约50%以低品位余热的形式直接排放,既浪费能源又污染环境。作为电能消耗大户,铝电解过程中约30%的输入能量最终以低温烟气(100-200℃)的形式经烟管汇总、收尘后直接排放。回收和利用这部分热能进行发电对铝电解行业的节能减排具有重要的现实意义。
     本文以湖南省高新领域工业支撑科技计划重点项目“低温烟气余热发电关键技术研究”为依托,采用数值模拟方法,对铝电解低温烟气余热发电系统中翅片管式换热器的传热性能进行了深入研究。
     本文的主要研究内容与结论如下:
     (1)以大型计算流体动力学商业软件FLUENT为平台,建立了翅片管传热的计算模型。在建模时,经过综合比较,截取单元管长进行计算,并将管内工质对流换热与管外烟气对流换热进行耦合计算,从而避免了以往计算中将管壁设置为恒热流或恒壁温边界条件时,所造成的与管内外实际对流换热情况存在的差异。
     (2)对管外烟气及管内液态与气态工质在不同流速与温度时的换热特性进行了数值模拟,结果表明:随着管外烟气和管内工质流速的增大,其各自的平均换热系数增大,换热得到加强;而当温度提高时,管外烟气与管内液态工质换热系数增大,但因为受到物性参数的影响,气态工质换热系数随温度的提高而有所下降。计算域内烟气侧换热系数在50-130W/(m2·K)之间,工质侧换热系数在190-1900W/(m2·K)之间。
     (3)沿用实验研究的思路,将各工况下的数值模拟结果整理成Nu数的形式,分别得到了烟气和工质的换热特性曲线,并通过最小二乘法原理拟合得到了二者的换热准则方程式。同时,搭建了小型实验平台,采用传热有效度——传热单元数方法,通过编制计算程序对单元翅片管进行迭加,从而实现了数值模拟结果与试验热交换器测试结果的检验,结果表明,计算值与实验值的最大相对误差不超过20%,数值模拟结果可靠。
With the rapid development of economy, the energy demand is increasing surprisingly in China. Energy short supply has been one of the principal elements restricting the development of economy and society, which makes energy-saving and emission-reduction becomes an urgent task. In industrial processes, almost 50% of thermal energy transforms into low-grade waste heat discharged directly, which leads to energy waste and environmental pollution. In aluminum electrolysis enterprises, the main energy consumers, nearly 30% of input energy transforms into low temperature (100-200℃) flue waste heat and is discharged after the dust collection process. Recycling and utilizing those waste heat energy to generate power is of great significance for energy-saving in the aluminum electrolysis industrials.
     Based on the program "The research of key technologies in the power generation system using low temperature flue waste heat" supported by the high-tech plan in the industrial filed in Hunan province, the thermal performance of finned tube heat exchanger was studied by using the numerical simulation method in this dissertation.
     The main contents and conclusions are as following:
     (1) The calculation model of heat transfer in the finned tube heat exchanger was established by using the computational fluid dynamics software-FLUENT. In present model, comparisons were performed synthetically and finned tube with unit length was chosen to be calculated. In order to avoid the difference between the actual situation and the situation in which the constant heat flux boundary condition or constant wall temperature boundary condition was set on the tube wall, the coupling calculation method was applied to investigate the convective heat transfer performance of waste flue outside the tube and working fluid inside the tube.
     (2) The influences of temperature and velocity on thermal performance were researched among waste flue, liquid and gaseous working fluid. The results of numerical simulation show that as the velocity increased, for waste flue and working fluid, the average surface heat transfer coefficient increases and heat transfer performance is promoted. As the temperature increases, the average surface heat transfer coefficient of waste flue and liquid working fluid increase, however, that of gaseous working fluid decreases due to the difference property parameters between the liquid and gas. In the calculation zone, the average surface heat transfer coefficient on waste flue side ranges from 50 to 130 W/(m2·K), and ranges from 190 to 1900 W/(m2·K) on working fluid side.
     (3) According to experimental study, the result data of numerical simulation under various operating conditions is usually arranged into the form of Nu. The characteristic curve of heat transfer was obtained and dimensionless equations of heat transfer were fitted by least square method. An experimental platform was built and a calculation program was programmed based onε-NTU method. Finned tube units were accumulated using programming, by which numerical solutions and experimental conclusions were compared. Conclusions show the max relative error of results between program and experiment is below 20%. The results show the reliability of the numerical simulation.
引文
[1]苑中显.中国能源状况与发展对策[J].中国冶金,2005,15(5):7-9
    [2]汪玉林.低温余热能源发电装置综述[J].热电技术.2007.1:1-5
    [3]中华人民共和国国家发展和改革委员会.中国节能技术政策大纲[EB/OL].2008,http:// www.sdpc.gov.cn/hjbh/t20050711_40086.htm
    [4]周乃君.能源与环境[M].长沙:中南大学出版社,2008:166-167
    [5]Hung T C. Waste heat recovery of Organic Rankine Cycle using dry fluids[J]. Energy Conve-rsion and Management,2001,42(5):539-553
    [6]陈和平.提高能源利用效率促进经济持续发展[J].江西能源,2000,3:1-3
    [7]唐金泉常子冈.水泥窑纯低温余热发电的若干问题[J].水泥,2005,4:5-10
    [8]张滨.玻璃熔窑纯低温余热发电前景看好[J].玻璃,2010,1:45-46
    [9]汪保平,吴朝刚,顾云松.马钢300m2烧结带冷机烟气余热发电工程[J].烧结球团,2007,2(32):8-12
    [10]黄冬.国内工业余热发电市场高达400亿[EB/OL].2008, http://finance.sina. com.cn/chanjing /b/20080121/11084430677.shtml
    [11]熊维平.中国铝工业60年回顾与展望[J].中国有色金属,2009(20):32-35
    [12]关慧勤,陈祺.我国电解铝工业能耗状况及消耗分析[J].嘉兴学院学报,2008,5(20):30-34
    [13]杨进欣,董学清.我国电解铝行业2007年能耗下降节电23亿千瓦时[EB/OL].2008. http://www.gov.cn/jrzg/2008-04/06/content_937435.htm
    [14]中国铝业公司.中铝电解铝节能减排获新突破[J].有色设备,2008,1:27
    [15]周乃君,李劫,姜昌伟,等.导流型铝电解槽技术进展与应用基础研究[J].轻金属,2000,9:29-31
    [16]苏鸿英.世界电解铝工业的现状[J].有色金属工业,2001,9:76-78
    [17]张志军,王天成,肖述兵.浅谈铝电解节能降耗措施及节能产品的应用[J].有色冶金节能,2008,2:21-24
    [18]徐晓村.纯低温余热发电的动力利用分析[J].能源工程,2005,5,4:22-25
    [19]姜涛,张俐,李艳军,等.半导体温差发电器发电电气特性试验研究[J].东北农业大学学报,2008,4:86-89
    [20]黄谦,刘益才,张明研,等.热声热机在铝电解槽余热利用中的研究[C].中国工程热物理学会,2007:620-624
    [21]Owen Bailey, Ernst Worrell. Clean energy technologies:a preliminary inventory of the potential for electricity generation energy analysis department[R]. LBNL 257451, Berkeley:
    University of California,2005
    [22]Luc G. Frechette. Performance Analysis of Brayton and Rankine Cycle Micro-systems for Portable Power Generation[J]. International Mechanical Engineering Congress Exposition New Orleans, Louisiana IMECE2002-39628
    [23]John O.Everett. A Theory of Mapping from Structure to Function Applied to Engineering Thermodynamics[J]. In Proceedings of the 14th International Joint Conference on Artificial Intelligence(Montreal), Morgan Kaufmann,1995:1837-1843
    [24]Panya Yodovard, Joseph Khedari. The Potential of Waste Heat Thermoelectric Power Generation From Diesel Cycle and Gas Turbine Cogeneration Plants[J]. Energy Sources, 2001,(23):213-224
    [25]John Wall Karlskrona. Dynamics Study of an Automobile Exhaust System[J]. Department of Mechanical Engineering Blekinge Institute of Technology,2003,68-70
    [26]王建财.低温余热发电[D]:[硕士论文].哈尔滨:哈尔滨理工大学,2003
    [27]杨智博.基于有机朗肯循环的柴油机废气余热发电系统研究[D]:[硕士论文].哈尔滨:哈尔滨理工大学,2006
    [28]顾伟,翁一武,王艳杰,等.低温热能有机物发电系统热力分析[J].太阳能学报,2008(5):608-612
    [29]方祖捷,陈高庭,叶青,等.太阳能发电技术的研究进展[J].中国激光,2006(1):39-41
    [30]张耀明,王军,张文进,等.聚光类太阳能热发电概述[J].太阳能,2009(1):5-14
    [31]杨家宽,李劲,肖波,等.太阳能烟囱发电新技术[J].太阳能学报,2003(8):565-570
    [32]Krist R.J, K.Energy Transfer system [J]. Alternative Sources of Energy,1983,63:8-11
    [33]Pasurmarthi, Sherif. Performance of a demonstration solar chimney for Power generation[A]. Proceeding of the 1997 35th Heat Transfer and Fluid[C], Sacramento,CA,USA,203-240
    [34]Duncan Graham-Rave. Hello, Sunshine[J]. New scientist,1998,10,160(2155):8-11
    [35]张文进,孙利国,刘晓晖,等.太阳能热发电技术现状与前景[J].太阳能,2006(4):23-25
    [36]Yusuf Ali, Kara Bedri, Yuksel. Evaluation of Low Temperature Geothermal Energy Through The Use of Heat Pump. Energy Conversion and Management,2001,42(6):773-781
    [37]彭第,孙友宏,潘殿琦.地热发电技术及其应用前景[J].可再生能源,2008(12):106-110
    [38]Mehmet Kanoglu Yunus, A. Cenge. Economic Evaluation of Geothermal Power Generation[J]. Heating, Cooling and Energy,1999,24(6):501-509
    [39]M. Kaysler, M. Kaltschmitt. Energy Potential of Geothermal Energy in Germany. Energy Sources,2000,22(5):417-430
    [40]W. John, H. Lund Derek, Freeston. World-wide Direct Uses of Geothermal Energy[J]. Geothermics,2001,30(1):29-68
    [41]李志茂,朱彤.世界地热发电现状[J].太阳能,2007(8):10-14
    [42]S. F. Hodgson. History of Geysers Geothermal Field[J]. Geotermia, Rev Mex de Geoenergfa, 1992,8(2):183
    [43]郑克棪,潘小平.中国地热发电开发现状与前景[J].中外能源,2009,14(2):45-48
    [44]王绍亭,陈新民.西藏地热资源及地热发电的现状与发展[J].中国电力,1999(10):23-25
    [45]戴春山,龚建明.海洋能源的种类[J].辽宁科技参考,2002,7(4):20-22
    [46]Heydt, G.T. An assessment of ocean thermal energy conversion as advanced electric generation methodology[J]. Proceedings of the IEEE,1993(81):409-418
    [47]李赫.两种混合式海洋温差能发电系统的研究与对比分析[D]:[硕士论文].天津:天津大学,2006
    [48]Trimble, L C & Owens, W.L. Review of Mini-OTEC performance[J].15th IECEC,1980:159-165
    [49]Luis A, PICHTR. The 210 KW open cycle OTEC experimental apparatus:status report[J]. Challenges of Our Changing Global Environment Conference Proceedings,1995(2):1110-1115
    [50]Mitsui, T. Ito, F. Seya, Y & Nakamoto. Outline of 100kW OTEC pilot plant in the republic of Nauru[J]. IEEE/PES Winter Meeting,1983:1156-1161
    [51]Haruo Uehara. The Present Status and Future of Ocean Thermal Energy Conversion [J], Solar Energy.1995(16):217-231
    [52]李伟,赵镇南,王迅,等.海洋温差能发电技术的现状与前景[J].海洋工程,2004(5):105-108
    [53]刘奕晴.混合式海洋温差能利用系统的理论研究[D]:[硕士论文].天津:天津大学,2004
    [54]周乃君,柯文,王志奇.铝电解槽低温烟气余热发电技术探讨[J].轻金属,2009(1):60-64
    [55]柯文.基于有机朗肯循环的铝电解槽低温烟气余热发电技术研究[D].长沙:中南大学能源科学与工程学院,2009
    [56]Takahisa Yamamoto, Tomohiko Furuhata, et al.Design and testing of the Organic Rankine Cycle[J].Energy,2001,26(3):239-251
    [57]郑宗合,葛昕,高金水等.利用低温余热的低沸点介质发电系统[J].煤气与热力,2006(4):74-76
    [58]Maizza V, Maizza A. Working fluids in non-steady flows for waste energy recovery syste-ms[J]. Applied Thermal Engineering,1996,16(7):579-590
    [59]Badr, O'Callaghan. Thermodynamic and thermophysical properties of organic working fluids for Rankine cycle engines [J]. Applied Energy,1985,19(1):1-40
    [60]Badr, Probert.S.D. Selecting a working fluid for a rankine cycle engine[J]. Applied Energy,1985,21(1):1-42
    [61]Wei Donghong, Lu Xuesheng. Performance analysis and optimization of organic Rankine cycle(ORC)for waste heat recovery[J]. Energy Conversion and Management,2007,48(4): 1110-1121
    [62]Andersen. W.C, Brtmo.T.J. Rapid screening of fluids for chemical stability in organic rankine cycle applications[J]. Industrial and Engineering Chemistry Research,1985,44(15):5560-5566
    [63]Liu Bo Tau, Chien Kuo Hsiang, Wang Chi Chuan. Effect of working fluids on Organic Rankine Cycle for waste heat recovery[J]. Energy,2004,29(8):1207-1217
    [64]Ronald Dipippo. Second law assessment of binary plants generating power from low temperature geothermal fluids[J]. Geothermic,2004,33(5):565-586
    [65]A. Borsukiewicz-Gozdur, W. Nowak. Comparative analysis of natural and synthetic refrige-rants in application to low temperature Clausius-Rankine cycle[J]. Energy,2007,(32):344-352
    [66].苏华.扰流孔型翅片管传热与流阻性能实验研究和翅片效率的数值计[D]:[硕士论文].重庆:重庆建筑大学,1999
    [67]方赵嵩.圆孔翅片管式制冷换热器的节能性能研究[D]:[硕士论文].重庆:重庆大学,2004
    [68]Eastman J A, Choi US. Novel thermal properties of nanostructured materials. Materrials Science Forum,1999,313:629-634
    [69]CENGIZ YILDIZ, YASAR BICER, DURSUN PEHLIVAN. Heat transfer and pressure drop in a heat exchanger with a helical pipe containing inside springs[J]. Energy Conversion and Management,1997,38(6):619-624
    [70]. Shyy Woei Chang, Yih Jena Jan, Jin Shuen Liou. Turbulent heat transfer and pressure drop in tube fitted with serrated twisted tape[J]. International Journal of Thermal Science,2007, 46:506-518
    [71]邱远仁,思勤.聚合物添加剂对流动沸腾传热与减阻的研究[J].化学工程,2001,29(5):22-26
    [72]程林,冷学礼,杜文静.基于降低污垢热阻的复合强化传热研究[J].工程热物理报,2003,24(3):502-504
    [73]曹玉荣,殷录民,公维平.花丝多孔体内插元件强化管内流动传热研究[J].山东电力技术,2003(3),1-5.
    [74]廖丽华,董清波,申传文,等.铝多孔表面换热管强化沸腾换热的研究及应用[J].石化技术与应用,2003,21(3):179-180
    [75]Madi M A, John R A, Heikal M R. Performance characteristics correlation for round tube and plate finned heat exchangers[J]. International Journal of Refrigeration.1998,21(7):507-517
    [76]J. Wanga, G. G. Hirasa, P. Rollmann. The performance of a new gas heat exchanger with strip
    fin[J]. Energy Conversion & Management,1999(40):1743-1745
    [77]Fethi Halici, Imdat Taymaz, Mehmet Gindllz. The effect of the number of tube rows on heat mass and momentum transfer in flat-plate finned tube heat exchangers[J]. Energy, 2001,26(11):963-972
    [78]Lozza, Giovanni Merlo, Umberto. An experimental investigation of heat transfer and friction losses of interrupted and wavy fins for fin-and-tuhe heat exchangers[J].International Journal of Refrigeration,2001,24(5):409-416
    [79]C.J. Meyer, D. G. Kroger. Plenum chamber flow losses in forced draught air-cooled heat exchangers [J].Applied Thermal Engineering,1998,18(9):875-893
    [80]C.J. Meyer, D. G. Kroger. Air-cooled heat exchanger inlet flow losses [J].Applied Thermal Engineering,2001,21 (9):771-786
    [81]Roman Kxupiezka, Adam Rotegel, Honorata Walczyk, ect. An experimental study of convective heat transfer from extruded type helical finned tubes[J]. Chemical Engineering and Processing,2003(42):29-38
    [82]Somchai Wongwises, Yutasak Chokeman. Effect of fin pitch and number of tube rows on the air side performance of herringbone wavy fin and tube heat exchangers[J]. Energy conversion& management.2005 (46):2216-2231
    [83]Yonghan Kim, Yongchan Kim. Heat transfer characteristics of flat plate finned-tube heat exchangers with large fin pitch [J]. International Journal of Refrigeration,2005 (28):851-858
    [84]李安桂,吴业正.在综合换热作用下矩形直肋散热器换热特性[J].西安冶金建筑学院学报.1994,26(1):48-53
    [85]康海军,李慧珍.平直翅片管换热器传热与阻力特性的实验研究[J].西安交通大学学报.1994,28(1):91-98
    [86]张鹏,史佑吉,高伟桐等.进风角度对钢制椭圆翅片管散热器热力阻力特性的影响[J].热力发电.1997(1):19-21
    [87]冯踏青,穆弗达赫.A.A,捷曼尔.M.G等.三维螺旋翅片管换热特性分析及试验研究[J].化学工程.1998(6):14-17
    [88]屠珊,杨冬,黄锦涛等.椭圆翅片管空冷器流动传热特性的研究[J].热能动力工程.2000,15(89):455-458
    [89]李志敏,刘长振,张凯等.强化传热螺旋翅片管管束的试验研究[J].节能.2004(1):5-8
    [90]李革,于功志,程木军等.提高翅片管式换热器热力性能的方法[J].大连水产学院学报.2006,21(1):68-71
    [91]李志敏,刘长振,张凯等.强化传热螺旋翅片管管束的试验研究[J].节能.2004(1):5-8
    [92]冯金兰,张杰.圆形翅片管束的换热与阻力特性试验研究[J].东北电力技术.2008(8):14-17
    [93]A. Bensafi, S. Borg, D. Parent. CYRANO. A computational model for the detailed design of plate-fin-tube heat exchangers using pure and mixed refrigerants. International Journal of Refrigeration,1997,3(20):218-228
    [94]Senol Bakaya, Mecit Sivriogiu, Murat Ozek. Parametric study of natural convection heat transfer from horizontal rectangular fin arrays[J]. International Journal of Thermal Science, 2000(9):797-805
    [95]Ricardo R M, Sen M, Yan K T, et all. Effect of fin spacing on convection in a plate fin and tube heat exchanger[J]. International Journal of Heat Mass Transfer,2000(43):39-51
    [96]Y. L. He, W. Q. Tao, F. Q. Song et al. Three-dimensional numerical study of heat transfer characteristics of plain fin-and-tube heat exchangers from view point of field synergy principle[J]. International Journal of Heat and Fluid Flow,2005 (26):459-473
    [97]Aytunc Erek, Bails Ozerdem, Levent Bilir, et all. Effect of geometrical parameters on heat transfer and pressure drop characteristics of plate fin and tube heat exchangers[J].Applied Thermal Engineering,2005,25(14):2421-2431
    [98]Haci Mehmet Sahin, Ali Riza Dal, Esref Baysal.3-D Numerical study on the Correlation between variable inclined fin angles and thermal behavior in plate fin-tube heat exchanger[J].Applied Thermal Engineering,2007,27(11):1806-1816
    [99]宋富强,屈治国,何雅玲等.低速下空气横掠翅片管换热规律的数值研究[J].西安交通大学学报.2002,36(9):899-902
    [100]吴峰,王秋旺,罗来勤等.空气横掠波纹管束流动与传热性能的数值模拟[J].工程热物理学报.2003,24(91):109-111
    [101]何法江,曹伟武.空气横掠错列翅片管束流动与传热的数值研究[J].上海工程技术大学学报.2004,18(4):289-292
    [102]简弃非,甘庆军,许石嵩等.换热器翅片表面空气流动热力过程的数值模拟[J].华南理工大学学报(自然科学版).2004,32(9):67-71
    [103]许伟,闵敬春.开缝对波纹翅片流动和换热性能影响的数值分析[J].清华大学学报.2005,45(5):673-676
    [104]杨立军,周军,杜小泽等.扁平管外蛇形翅片空间的流动换热性能数值模拟[J].工程热物理学报.2007,28(1):122-124
    [105]程远达.直接空冷式翅片管及空冷凝汽器单元流动与换热的数值模拟[D].北京:北京交通大学,2008
    [106]王钊,曾旭华.蛇形翅片单排管外侧空气流动与传热特性的数值研究[J].发电设备.2009(4):233-236
    [107]史美中,王中铮.热交换器原理与设计(第4版)[M].南京:东南大学出版社,2009: 7-8
    [108]钱颂文.换热器设计手册[M].北京:化学工业出版社,2002:318-322
    [109]杨世铭,陶文铨.传热学(第三版)[M].北京:高等教育出版社,1998:162-168