SK型制冷换热器样机试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于冷风机蒸发器、无霜冰箱蒸发器等“空气—制冷剂”型制冷换热器,由于管内制冷剂相变换热,表面传热系数远高于管外空气强迫对流换热表面传热系数,因此多采用矩形平翅片来作为扩展表面,目的是增加空气侧换热面积,有效地降低传热总热阻,提高传热系数和传热量。平翅片具有结构简单、紧凑、利于除霜、容易加工等优点。但其对流换热效果差,翅片效率低,由其组合而成的翅片管式制冷换热器体积大,耗材耗电。因此,对平翅片的表面结构进行深入研究,采用换热和流阻性能优异且在积霜状况下仍能维持较好换热特征的高效翅片,对更新及改造该类换热器具有重要意义。
     在翅片表面换热薄弱的部位开孔可使流动边界层分段发展并增加气流扰动,达到强化传热的效果。圆孔翅片和三对称大直径圆孔翅片(以下简称SK型翅片)就是以此为原理发展起来的。计算机模拟和实验研究均表明:实验条件下,与平翅片及圆孔翅片相比,三对称圆孔翅片的强化传热效果最好。①与平翅片相比较,SK型翅片的强化传热效果最显著,制冷量最大提高16.87%,平均提高9.1%。②平均当量表面传热系数与矩形平翅片相比,最大提高了80.15%,最小提高了49.66%,平均提高了64.29%。③COP值最大提高30.16%,最小提高14.95%,平均提高22.93%。
     前期实验证实,SK型翅片具有最优的强化传热效果。然而,所有实验均在实验台上完成,并未将该新型翅片运用在现有“空气—制冷剂”型制冷换热器上进行测试。为进一步说明SK型翅片优越的强化传热效果,将科学研究成果转化为生产力。本文分别制作了平翅片冷风机及SK型翅片冷风机各一台,并将已有的按冷库标准建造的人工气候室进行改造,对两台冷风机的节能性能进行对比性工业样机试验。试验结果证实:在制冷剂充入量相等、迎面风速u=3.75m/s时,SK型样机的制冷量比平翅片样机的制冷量平均提高了7.7%~10%;耗电量平均降低了12.1%~10.4%;压缩机能效比平均提高了22.5%以上。研究结果同时证实:对于工作于潮湿环境下的速冷式冷风机,其除霜周期不宜太长,否则将导致运行能耗大幅度上升。
For the cooling fan evaporator, frost-free refrigerator evaporator "air - refrigerant" type refrigeration heat exchanger,As the tube refrigerant phase change heat, the surface heat transfer coefficient is much higher than the air outside tube surface heat transfer coefficient of forced convection heat transfer,Therefore, multi-level rectangular fin as the extension surface, the aim is increasing the air-side heat transfer area, effectively reducing the overall heat transfer thermal resistance, improve heat transfer coefficient and heat transfer. Flat fin with a simple and compact structure, which will help defrost, easy processing advantages and so on . However, the convective heat transfer effects of poor fin efficiency is low, by a combination of fin-tube refrigerating heat exchanger bulky power supplies. Therefore, the surface structure of the flat fin-depth study, using high performance heat transfer and flow resistance and frost conditions in the plot better able to maintain efficient heat transfer characteristics of fin, to update and transformation of such heat exchanger with a significance.
     The fin heat transfer surface area with weak openings allow air flow and increase the sub-boundary layer disturbances to achieve enhanced heat transfer effect. Hole, and three symmetric fin fin large diameter hole (hereinafter referred to as SK-fin) is this as a principle to develop. Computer simulation and experimental studies show that:in the experimental conditions, the three symmetric hole enhanced heat transfer fins the best results than the flat fin and fin hole.①compared with the flat fin, SK-type fin is the most significant effect of enhancing heat transfer, refrigeration largest increase 16.87%, an average increase of 9.1%.②the average equivalent heat transfer coefficient compared with the rectangular flat fin, the largest increase 80.15 percent, the smallest increase of 49.66%, with an average increase of 64.29%.③COP values increase 30.16 percent the largest, the smallest increase 14.95 percent, an average increase of 22.93%.
     Preliminary experiments confirmed that, SK-type fin has the best heat transfer effects. However, all experiments were completed in the experimental stage, the new type of fin is not used in the existing "air - cooling agent" type refrigeration heat exchangers to be tested. To further illustrate the superiority of SK-type finned heat transfer enhancement effect ,the scientific research achievements into productive forces. In this paper, a flat fin air cooler, and SK-Fin Cooler is produced each one, and according to existing standards for the construction of cold storage to transform the artificial climate chamber for two energy-saving air cooler compare the performance of industrial prototype test .Experimental results show that: when charged into the head-wind speed u = 3.75m / s in the same amount of refrigerant, SK-type prototype prototype refrigeration cooling fins is increased by an average of 7.7% -10% than flat; power consumption reduced by an average 12.1% -10.4%; compressor energy efficiency increased by an average of 22.5% or more. The results also confirmed that:for the speed cooling fan working in wet environments, its defrost cycle should not be too long, otherwise, substantial increase of energy consumption would come into being.
引文
[1]王厚华主编.传热学[M].重庆大学出版社.重庆.2006. 11.第1版.
    [2] W.M.l罗森诺主编.传热学应用手册(上)[M].科学出版社.北京. 1992.
    [3]王厚华等.大直径圆孔翅片管的传热与流阻性能实验研究[J],制冷学报. 2002, 6.No.2.总第92期: 25-2.
    [4]王厚华等.圆孔翅片管积霜工况下的传热与制冷性能实验[J].重庆大学学报(自然科学版). 2007. 28(5): 4-10.
    [5]潘秋生主编.中国制冷史[M].中国科学技术出版社.北京. 2008, 5.
    [6]苏华.扰流孔型翅片管传热与流阻性能实验研究和翅片效率的数值计算[D].重庆建筑大学硕士学位论文, 1999.
    [7]简弃非,甘庆军,许石嵩.换热器翅片表面空气流动热力过程的数值模拟[J].华南理工大学学报(自然科学版), 2004, 32(9): 67-71.
    [8]陶文铨.数值传热学[M].西安交通大学出版社, 1998.264-289.
    [9]韩占忠. FLUENT流体工程仿真计算的实例与应用[M].北京:北京理工大学出社. 2004. 3.
    [10]邓东泉等结霜工况下的冷风机传热性能试验研究[J].低温与超导2002年5月.
    [11]刘恩海,南晓红低温冷风机结霜特性的研究及其融霜方法的改进[J].西安建筑科技大学2007年8月.
    [12]夏清等.霜形成对翅片管式蒸发器性能影响的研究[J].工程热物理学报, Vo1. 18, No.6, 1999.
    [13] R.J.Watters. Effect of fin staging on frost/defrost performance of a two heat pump evaporator at standard test conditions[C]. ASHRAE transactions, vo1.107, part, 2001.
    [14]刘凤珍.低温工况下结霜对翅片管蒸发器性能影响研究[J].制冷与空调, Dec, 2002, Vo1.2, No.6.
    [15] R.W.Rite,R.R.Crawford.A parametric study of the factors governing the rate of frost accumulation on domestic refrigeratorfreezer finned-tube evaporator coils, Part 2[J].ASHRAE Transactions, 1991(97):438-444.
    [16]罗超等.不同环境参数对间冷式冰箱蒸发器结霜换热性能的影响[J].制冷学报, Vol.29, No.1, 2008.
    [17]王厚华,高建卫,彭宣伟.圆孔翅片积霜工况下的制冷性能实验[J].重庆大学学报, Vol.30, No, 5. May, 2007.
    [18]方赵嵩.圆孔翅片管式制冷换热器的节能性能研究[D].重庆大学硕士论文, 2008.
    [19]许东晟,陈汝东.除霜和除霜控制研究[J].流体机械, 2006.
    [20]阎勤劳,朱琳,张密娥,阎宁霞,惠学英.冷风机超声波除霜技术试验研究[J], 2003.
    [21]程建杰,陈汝东.制冷装置的除霜研究[J], FULD MACHINERY,2007.
    [22]庄有明.冷库除霜方法及除霜能耗分析比较.第七届海峡两岸制冷空调技术交流会.
    [23]庄有明.制冷装置设计[M].厦门大学出版社,1999.
    [24]阚杰、郝亮、李涛、李强、袁秀玲.间接制冷系统中除霜、能耗及温室效应的比较[J].制冷与空调, Vol.5, No, 3. June, 2005.
    [25]苏生.制冷装置除霜研究[D].同济大学硕士学位论文, 2001.
    [26]杨自强.冷风机结霜特性的试验研究[J].哈尔滨建筑大学学报, 1997(1).
    [27]童军茂.冷风机自动除霜控制方法分析.制冷技术, 1994.
    [28]朱瑞棋.制冷装置自动化[M].西安交通大学出版社, 1995.
    [29]周启瑾等.不同型式翅片空冷器的比较研究.西安交通大学.
    [30]曹玉荣,殷录民,公维平.花丝多孔体内插元件强化管内流动传热研究[J].山东电力技术, 2003,第3期, 1~5.
    [31]乔梁,刘东亮,史晓平等.管内插入螺旋线的降膜蒸发传热性能研究[J].河北工业大学学报, 2003.8,第32期第4期, 30~34.
    [32]陈玉阳,苑中显,马重芳等.旋转射流冲击换热液晶显示实验研究[J].工程热物理学报, 2003. 7,第24卷第4期, 646~648.
    [33]田茂诚,林颐清,程林等.汽-水换热器内流体诱导振动强化传热试验[J].化工学报, 2001. 3,第52卷第3期, 257~261.
    [34]程林,冷学礼,杜文静.基于降低污垢热阻的复合强化传热研究[J].工程热物理学报, 2003. 5,第24卷第3期, 502~504.
    [35]安恩科,陈之航.电流体力学强化水平管内凝结传热试验研究[J].暖通空调, 2003,第33卷第1期, 1~4.
    [36]邱远仁,思勤.聚合物添加剂对流动沸腾传热与减阻的研究[J].化学工程, 2001,第29卷第5期, 22~26.
    [37]催海亭,袁修干,姚仲鹏.异性凹槽螺旋槽管传热及流动阻力的实验研究[J].中国电机工程学报, 2003. 6,第23卷第6期, 217~220.
    [38]王泽武,喻九阳,冯兴奎.扁管管内传热性能实验研究[J].武汉化工学院学报, 2003. 12,第25卷第4期, 71~74.
    [39]廖丽华,董清波,申传文等.铝多孔表面换热管强化沸腾换热的研究及应用[J].石化技术与应用, 2003. 5,第21卷第3期, 179~180.
    [40]汪琳,马学虎,陈嘉宾.烧结多孔表面强化冷凝传热的实验研究[J].工程热物理学报, 2003.9,第24卷第5期840~842.
    [41]马学虎,陈嘉宾,徐敦欣等,聚合物表面性能对强化冷凝传热的影响[J].化工学报, 2002,12,第53卷第12期, 1221~1226.
    [42]王松汉等.板翅式换热器[M]北京:化学工业出版社, 1984.
    [43] J.Y.Jun. Investigation of heat transfer characteristics on Variation kinds of fin-and-tube heat exchangers with interrupted surfaces[J]. Heat and mass transfer,42(1999),2375~2385.
    [44] H.Y.Kang. Effect of strip location on the air-side pressure drop and heat transfer in strip fin-and-tube heat exchanger[J]. Refrigeration,22(1999),302~312.
    [45] C.C.Wang. An investigation of the airside performance of the slit fin-and tube heat exchangers[J]. Int.J.of Refrig,1999,22(8),595~603.
    [46] Y.J.Du. An experimental study of the airside performance of the super slit fin-and-tube heat exchangers[J]. Int.J.heat and mass transfer,2000,43(24):4475~4482.
    [47]李惠珍,屈治国,程永攀,陶文铨.开缝翅片流动和传热性能的实验研究及数值模拟[J].西安交通大学学报, 2005, 3.第39卷第3期.
    [48]张慕瑾等.翅片管换热器的翅片效率与传热性能[J],东南大学报, 1994, 24(suppl.):44~49.
    [49] C.C.Wang. An experimental study of heat transfer and friction characteristics of typical louver fin-and-tube heat exchangers[J]. Int.J.Heat and mass transfer,1998,41(4),817~822.
    [50] C.C.Wang. Some aspects of the fin-and-tube heat exchangers: with and without louver. Enhanced heat transfer[J]. Int.J.Heat and mass transfer 1999,6(5), 375~386.
    [51]漆波,李隆键,崔文智,陈清华.百叶窗式翅片换热器中的耦合传热[J].重庆大学学报, Vol. 28, No. 10, Oct, 2005.
    [52]董军启,陈江平,袁庆丰等.百叶窗翅片的传热和阻力性能试验研究[J].动力工程, Vol, 26. No. 6 Dec. 2006.
    [53]王厚华等.矩形平翅片变形片的换热与阻力实验研究[J].重庆建筑大学学报, Aug, 1999, Vol.21, No.4.
    [54]王厚华,苏华.矩形平翅片变形片翅片效率的数值解与性能分析[J].重庆建筑大学学报, Vol. 12, 1999.
    [55]张来等.开孔矩形翅片椭圆管流动与换热特性的数值研究[J].工程热物理学报, Vol. 27, No.6. Nov, 2006.
    [56]范亚明.双侧开非对称圆孔-半圆孔翅片管的传热与流阻性能试验研究及翅片效率的数值计算[D].重庆建筑大学硕士论文, 2000.
    [57] C.C.Wang. Performance of plate finned tube heat exchanger under dehumidifying conditions [J].Heat transfer, Feb 1997,Vol.119.
    [58] C.C.Wang. Heat and momentum transfer for compact louvered fin-and-tube heat exchangers in wet conditions[J]. Int.J. Heat and mass transfer, 2000, 43(18), 3443~3452.
    [59]马小魁,丁国良等.湿工况下翅片管换热器空气侧特性研究进展[J]. Fluid Machinery, Vol, 34. No.6, 2006.
    [60]夏清等.霜形成对翅片管式蒸发器性能影响的研究[J].工程热物理学报, Vo1. 18, No.6, 1999.
    [61]陈丽萍.结霜工况下风冷热泵翅片管蒸发器传热特性分析[J]. FLUID MACHINERY, Vol. 30, No.7, 2002.
    [62] Rin Yun, Yong Chan Kim, Man-Ki Min. Modeling of frost growth and frost properties with airflow over a flat plate[J]. International Journal of Refrigeration. 25(2002), 262-371.
    [63] Sung-Jhee, Kwan-SooLee, Woo-Seung. Effect of surface treatments on the frosting/ desfrosting behavior of a fin-tube heat exchanger[J]. International Journal of Refrigeration. 25 (2002), 1047-1053.
    [64]赖建波等.翅片管式换热器表面结霜特性的数值分析和实验研究[J].制冷学报,第二期, 2003.
    [65]赖建波,车晶等.换热器表面结霜特性的数值分析[J].制冷空调与电力机械,May, 2003, Vo1.24, No.2.
    [66]于兵等.翅片管蒸发器结霜厚度图像处理定量化实验分析[J].工程热物理学报, Vo1.19, No.3, may,1998.
    [67]姚杨等.空气源热泵冷热水机组空气侧换热器结霜模型[J].哈尔滨工业大学学报, 2003,第35卷第7期, 781~783.
    [68]李红兰.热泵蒸发器结霜过程的研究和分析[J].制冷空调与电力机械, 2003,第24卷第3期.
    [69] Kwan-SooLee, Sung-Jhee, Dong-Keum Yang. Prediction of frost formation on a cold flat surface[J]. International Journal of Heat and Mass Transfer. 46(2003), 3789-3796.
    [70] Wei-Mon Yan, Hung-Yi Li, Yeun-Jong Wu, Jian-Yuan Lin, Wen-Ruey Chang. Preformance of finned tube heat exchangers operating under frosting conditions[J]. International Journal of Heat and Mass Transfer. 46(2003), 871-877.
    [71] Deniz Seker, Hakan Karatas, Nilufer Egrican. Frost formation on fin-and-tube heat exchangers Part I Modeling of frost formation on fin-and-tube heat exchangers[J]. International Journal of Refrigeration. 27(2004), 367-374.
    [72] Dong-Keun Yang,Kwan-Soo Lee. Dimensionless correlations of frost properties on a cold plate[J]. International Journal of Refrigeration. 27(2004), 89-96.
    [73] Byeongchul Na, Ralph L, Webb. New model for frost growth rate[J]. International Journal of Heat and Mass Transfer. 47(2004), 925-936.
    [74] Wei-Mon Yan, Hung-Yi Li, Yeong-Ley Tsay. Thermo-fluid characteristics of frosted finned-tube heat exchangers[J]. International Journal of Heat and Mass Transfer. 47(2004), 925-936.
    [75] Dong-Keun Yang,Kwan-Soo Lee,Simon Song.Fin spacing optimization of a fin-tube heat exchanger under frosting conditions[J]. International Journal of Heat and Mass Transfer. 49(2006), 2619-2625.
    [76] Dong-Keun Yang,Kwan-Soo Lee, Dong-Jin Cha. Frost formation on a cold surface under turbulent flow[J]. International Journal of Heat and Mass Transfer. 29(2006), 164-169.
    [77] Dong-Keun Yang,Kwan-Soo Lee, Simon Song. Modeling for predicting frosting behavior for a fin-tube heat exchanger[J]. International Journal of Heat and Mass Transfer. 49(2006), 1472-1479.
    [78] H.M.Getu, P. K. Bansal.Modeling and performance analyses of evaporators in frozen-food supermarket display cabinets at low temperatures[J]. International Journal of Refrigeration. 30(2007), 1227-1243.
    [79]刘小川.结霜工况下翅片管换热器传热传质的数值模拟[D].上海交通大学学位论文, 2007.
    [80]高建卫.圆孔翅片管积霜工况下传热与制冷性能研究及矩形整体翅片效率通用程序[D].重庆大学学位论文, 2005.
    [81]郭宪民,杨宾等.翅片形式对空气源热泵机组结霜特性的影响[J].西安交通大学学报, 2009,第一期.
    [82]董军启等.锯齿翅片的传热与阻力性能试验[J].化工学报, 2007,第2期.