圆孔翅片管式制冷换热器的节能性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源的日渐紧缺,节能措施变得越来越重要。我国换热设备能源利用率较低,有着很大的节能空间,特别是在翅片管式换热器领域,气体侧的强化换热有着广阔的发展前景。干工况下,理论研究与实验结果都表明:在翅片表面穿孔是一种很好的强化传热措施,具有较好的节能效果。在最窄通道截面风速Umax=1~8m/s的范围内,大直径圆孔翅片最优片型的当量换热系数h比平翅片增加了22.6%~30.4%,压降△P最大增幅不超过8%。在风速u=0.5m/s下结霜工况的实验研究结果表明:与平翅片相比圆孔翅片有效制冷量高出6.02%,表面对流换热系数高出18.84%,霜层形成过程中,传热系数比平翅片平均高出11.53%;圆孔翅片管式换热器的实际制冷换热系数比平翅片高出6.83%,节能6.39%。
     圆孔翅片在干工况下强化传热研究只局限于实验,理论分析的深入程度不够。本文利用FLUENT软件的对平翅片、对称圆孔翅片和三对称圆孔翅片管式换热器空气侧的流动和换热进行了数值模拟,分析了不同风速下的速度场、温度场和努谢尔特数分布。模拟结果与已有实验结果吻合较好,平均误差小于10%。模拟结果证实:同等条件下,三对称圆孔翅片平均换热系数比平翅片平均高出25.7%,是其中的最优片型。
     前期结霜工况下的实验研究是在一个冰箱中进行的,只有单风速的情况,实验结果不能全面反应圆孔翅片的强化传热性能。本文利用一个标准的风洞实验台,分别对平翅片、对称圆孔翅片和三对称圆孔翅片管式换热器进行了结霜工况下的换热和制冷性能对比性实验。比较分析了三种翅片管式换热器在实验条件下的有效制冷量、平均换热系数和阻力的大小;比较分析了强化翅片的节能效果。结果表明:实验条件下,三对称圆孔翅片的强化传热效果最好。①与平翅片相比较,三对称圆孔翅片的强化传热效果最显著,制冷量最大提高16.87%,平均提高9.1%。②平均当量换热系数与矩形平翅片相比,最大提高了80.15%,最小提高了49.66%,平均提高了64.29%。③COP值最大提高30.16%,最小提高14.95%,平均提高22.93%。
     文章最后利用对称圆孔翅片做成的三排变间距蒸发器和非变间距蒸发器进行对比性实验,实验结果表明:①变间距翅片管式蒸发器前三个风速下当量换热系数平均比非变间距翅片管式蒸发器提高12.57%,最大提高18.26%,最小提高9.4%。②在满足制冷量的前提下,变间距翅片管式换热器节省材料21.43%,有显著的节能前景。
With the continual decrease in the world’s energy reserves, it has become more and more urgent for us to take effective energy-saving measures. In china, the energy utilization efficiency of the heat-exchanger equipments is relatively than of the advanced level. So, there are more potential in energy conservation of the heat exchange facilities, especially in the realm of the finned-tube, the enhancement of heat transfer on air-side has a long way to go. Ti has been proved, theoretically and experimentally, that perforating on the fin surface is a good way to enhance the heat transfer in the finned-tube with a perfect of energy conservation under dry condition. At the range of air flow velocity in the narrowest cross section from1 to 8 meter per second, the equivalent coefficient of heat transfer of the optimal holes finned-tube is higher by 22.6~30.4 percent than the plane finned-tube and, while the increase of pressure drop is under 8 percent. When the velocity is 0.5 meter per second, the experiment research show the cooling capacity of the holes finned-tube is higher by 6.02 percent, the heat convection coefficient of the surface is higher by 18.84 percent, and the heat transfer coefficient is higher by 11.53 percent in average during the frosting process than the plane finned-tube. The COP (coefficient of performance) of circle holes fin-tube heat exchanger is higher by 6.83 percent than the plane finned-tube, and saving energy is 6.39 percent.
     At present because the enhancement heat transfer researches of holes fins are only used the experiment under dry condition, the air-sides flowing and heat transfer of the plane finned-tube heat exchanger, the symmetrical holes finned-tube heat exchanger and the three symmetrical holes finned-tube heat exchanger in the paper. The distributions of the velocity, the temperature and the Nu(number of Nuselt) are analyzed. The modeling result is high agree with the experiment bates, the average error is less 10% with obtaining the best optimal kind of fin named three symmetrical holes’fin. Its average heat transfer coefficient is higher by 25.7% in average than the plane fin.
     Because experiment research is used the refrigerator with only the velocity value under frosting condition, so the experiment result can’t reflect the enhancement heat transfer performance of the circle holes fin. A wind-tunnel system is built for testing the heat transfer and cooling performance of the plane finned-tube heat exchanger, the symmetrical holes finned-tube heat exchanger and the three symmetrical holes finned-tube heat exchanger. The cooling capacity, the average heat transfer coefficient and the resistance of the three kinds of finned-tube heat exchangers are compared and analyzed. The energy conservation effect of the heat enhancement fin is analyzed. The experiment results compared with the plane fins show①the heat enhancement effect of the fin of three symmetrical holes is the best, the max value of cooling capacity is higher by 16.7% and average value is higher by 9.1%.②the max average equivalent heat transfer coefficient is higher by 80.15%, the min value increases by 49.66%, and the average is higher by 64.29%.③the max value of COP is higher by 30.16%, the min value is higher by 14.95% and the average is higher 22.93%.
     In the end of the paper the comparative experiments between the variational space and the constant space of evaporator made of fins with perforating symmetrical holes are done. The experiment bates show①the average equivalent heat transfer coefficient of the variational space evaporator is higher 12.57%, the max value is higher by 18.26% and the min value is higher 9.4%.②with meeting the cooling capacity, the variational space finned-tube heat exchanger can saving materials by 21.43%, having the bright future in the energy conservation.
引文
[1]曹玉荣,殷录民,公维平.花丝多孔体内插元件强化管内流动传热研究[J].山东电力技术, 2003,第3期, 1~5.
    [2]乔梁,刘东亮,史晓平等.管内插入螺旋线的降膜蒸发传热性能研究[J].河北工业大学学报, 2003.8,第32期第4期, 30~34.
    [3]陈玉阳,苑中显,马重芳等.旋转射流冲击换热液晶显示实验研究[J].工程热物理学报, 2003. 7,第24卷第4期, 646~648.
    [4]田茂诚,林颐清,程林等.汽-水换热器内流体诱导振动强化传热试验[J].化工学报, 2001. 3,第52卷第3期, 257~261.
    [5]程林,冷学礼,杜文静.基于降低污垢热阻的复合强化传热研究[J].工程热物理学报, 2003. 5,第24卷第3期, 502~504.
    [6]安恩科,陈之航.电流体力学强化水平管内凝结传热试验研究[J].暖通空调, 2003,第33卷第1期, 1~4.
    [7]邱远仁,思勤.聚合物添加剂对流动沸腾传热与减阻的研究[J].化学工程, 2001,第29卷第5期, 22~26.
    [8]催海亭,袁修干,姚仲鹏.异性凹槽螺旋槽管传热及流动阻力的实验研究.中国电机工程学报, 2003. 6,第23卷第6期, 217~220.
    [9]王泽武,喻九阳,冯兴奎.扁管管内传热性能实验研究[J].武汉化工学院学报, 2003. 12,第25卷第4期, 71~74.
    [10]廖丽华,董清波,申传文等.铝多孔表面换热管强化沸腾换热的研究及应用[J].石化技术与应用, 2003. 5,第21卷第3期, 179~180.
    [11]汪琳,马学虎,陈嘉宾.烧结多孔表面强化冷凝传热的实验研究[J].工程热物理学报, 2003.9,第24卷第5期840~842.
    [12]马学虎,陈嘉宾,徐敦欣等,聚合物表面性能对强化冷凝传热的影响[J].化工学报, 2002, 12,第53卷第12期, 1221~1226.
    [13]王松汉等.板翅式换热器[M]北京:化学工业出版社, 1984.
    [14] J.Y.Jun. Investigation of heat transfer characteristics on Variation kinds of fin-and-tube heat exchangers with interrupted surfaces[J]. Heat and mass transfer,42(1999),2375~2385.
    [15]周启瑾等.不同型式翅片空冷器的比较研究.西安交通大学.
    [16] H.Y.Kang. Effect of strip location on the air-side pressure drop and heat transfer in strip fin-and-tube heat exchanger[J]. Refrigeration,22(1999),302~312.
    [17] C.C.Wang. An investigation of the airside performance of the slit fin-and tube heat exchangers[J]. Int.J.of Refrig,1999,22(8),595~603.
    [18] Y.J.Du. An experimental study of the airside performance of the super slit fin-and-tube heat exchangers[J]. Int.J.heat and mass transfer,2000,43(24):4475~4482.
    [19]李惠珍,屈治国,程永攀,陶文铨.开缝翅片流动和传热性能的实验研究及数值模拟[J].西安交通大学学报, 2005, 3.第39卷第3期.
    [20]张慕瑾等.翅片管换热器的翅片效率与传热性能[J],东南大学报, 1994, 24(suppl.):44~49.
    [21] C.C.Wang. An experimental study of heat transfer and friction characteristics of typical louver fin-and-tube heat exchangers[J]. Int.J.Heat and mass transfer,1998,41(4),817~822.
    [22] C.C.Wang. Some aspects of the fin-and-tube heat exchangers: with and without louver. Enhanced heat transfer[J]. Int.J.Heat and mass transfer 1999,6(5),375~386.
    [23]漆波,李隆键,崔文智,陈清华.百叶窗式翅片换热器中的耦合传热[J].重庆大学学报, Vol. 28, No. 10, Oct, 2005.
    [24]懂军启,陈江平,袁庆丰等.百叶窗翅片的传热和阻力性能试验研究[J].动力工程, Vol, 26. No. 6 Dec. 2006.
    [25]王厚华等.矩形平翅片变形片的换热与阻力实验研究[J].重庆建筑大学学报, Aug, 1999, Vol.21, No.4.
    [26]王厚华,苏华.矩形平翅片变形片翅片效率的数值解与性能分析[J].重庆建筑大学学报, Vol. 12, 1999.
    [27]苏华.扰流孔型翅片管传热与流阻性能实验研究和翅片的数值计算[D].重庆建筑大学硕士论文, 1999.
    [28]范亚明.双侧开非对称圆孔-半圆孔翅片管的传热与流阻性能试验研究及翅片效率的数值计算[D].重庆建筑大学硕士论文, 2000.
    [29]王厚华,罗庆等.大直径圆孔翅片管的换热与流阻性能实验研究[J].制冷学报, 2002, No.2
    [30]张来等.开孔矩形翅片椭圆管流动与换热特性的数值研究[J].工程热物理学报, Vol. 27, No.6. Nov, 2006.
    [31] C.C.Wang. Performance of plate finned tube heat exchanger under dehumidifying conditions[J]. Heat transfer, Feb 1997, Vol.119.
    [32] C.C.Wang. Heat and momentum transfer for compact louvered fin-and-tube heat exchangers in wet conditions[J]. Int.J. Heat and mass transfer, 2000, 43(18), 3443~3452.
    [33]马小魁,丁国良等.湿工况下翅片管换热器空气侧特性研究进展[J]. FLUID MACHINERY, Vol, 34. No.6, 2006.
    [34]夏清等.霜形成对翅片管式蒸发器性能影响的研究[J].工程热物理学报, Vo1. 18, No.6, 1999.
    [35]陈丽萍.结霜工况下风冷热泵翅片管蒸发器传热特性分析[J]. FLUID MACHINERY, Vol. 30, No.7, 2002.
    [36] R.J.Watters. Effect of fin staging on frost/defrost performance of a two heat pump evaporator at standard test conditions[C]. ASHRAE transactions, vo1.107, part, 2001.
    [37]刘凤珍.低温工况下结霜对翅片管蒸发器性能影响研究[J].制冷与空调, Dec, 2002,Vo1.2, No.6.
    [38] Sung-Jhee, Kwan-SooLee, Woo-Seung. Effect of surface treatments on the frosting/desfrosting behavior of a fin-tube heat exchanger[J]. International Journal of Refrigeration. 25(2002), 1047-1053.
    [39] Rin Yun, Yong Chan Kim, Man-Ki Min. Modeling of frost growth and frost properties with airflow over a flat plate[J]. International Journal of Refrigeration. 25(2002), 262-371.
    [40]赖建波等.翅片管式换热器表面结霜特性的数值分析和实验研究[J].制冷学报,第二期, 2003.
    [41]赖建波,车晶等.换热器表面结霜特性的数值分析[J].制冷空调与电力机械,May,2003, Vo1.24, No.2.
    [42]于兵等.翅片管蒸发器结霜厚度图像处理定量化实验分析[J].工程热物理学报, Vo1.19,No.3, may, 1998.
    [43]姚杨等.空气源热泵冷热水机组空气侧换热器结霜模型[J].哈尔滨工业大学学报, 2003,第35卷第7期, 781~783.
    [44]李红兰.热泵蒸发器结霜过程的研究和分析[J].制冷空调与电力机械, 2003,第24卷第3期.
    [45] Kwan-SooLee, Sung-Jhee, Dong-Keum Yang. Prediction of frost formation on a cold flat surface[J]. International Journal of Heat and Mass Transfer. 46(2003), 3789-3796.
    [46] Wei-Mon Yan,Hung-Yi Li,Yeun-Jong Wu ,Jian-Yuan Lin,Wen-Ruey Chang. Preformance of finned tube heat exchangers operating under frosting conditions[J]. International Journal of Heat and Mass Transfer. 46(2003), 871-877.
    [47] Deniz Seker,Hakan Karatas,Nilufer Egrican. Frost formation on fin-and-tube heat exchangers PartⅠModeling of frost formation on fin-and-tube heat exchangers[J]. International Journal of Refrigeration. 27(2004), 367-374.
    [48] Dong-Keun Yang,Kwan-Soo Lee. Dimensionless correlations of frost properties on a cold plate[J]. International Journal of Refrigeration. 27(2004), 89-96.
    [49] Byeongchul Na,Ralph L,Webb. New model for frost growth rate[J]. International Journal of Heat and Mass Transfer. 47(2004), 925-936.
    [50] Wei-Mon Yan,Hung-Yi Li,Yeong-Ley Tsay. Thermo-fluid characteristics of frosted finned-tube heat exchangers[J]. International Journal of Heat and Mass Transfer. 47(2004), 925-936.
    [51] Dong-Keun Yang,Kwan-Soo Lee,Simon Song.Fin spacing optimization of a fin-tube heat exchanger under frosting conditions[J]. International Journal of Heat and Mass Transfer. 49(2006), 2619-2625.
    [52] Dong-Keun Yang,Kwan-Soo Lee,Dong-Jin Cha. Frost formation on a cold surface under turbulent flow[J]. International Journal of Heat and Mass Transfer. 29(2006), 164-169.
    [53] Dong-Keun Yang,Kwan-Soo Lee,Simon Song. Modeling for predicting frosting behavior for a fin-tube heat exchanger[J]. International Journal of Heat and Mass Transfer. 49(2006), 1472-1479.
    [54] H.M.Getu,P.K.Bansal.Modeling and performance analyses of evaporators in frozen-food supermarket display cabinets at low temperatures[J]. International Journal of Refrigeration. 30(2007), 1227-1243.
    [55]刘小川.结霜工况下翅片管换热器传热传质的数值模拟[D].上海交通大学学位论文, 2007.
    [56]高建卫.圆孔翅片管积霜工况下传热与制冷性能研究及矩形整体翅片效率通用程序[D].重庆大学学位论文, 2005.
    [57]简弃非,甘庆军,许石嵩.换热器翅片表面空气流动热力过程的数值模拟[J].华南理工大学学报(自然科学版), 2004, 32(9): 67-71.
    [58]韩占忠. FLUENT流体工程仿真计算的实例与应用[M].北京:北京理工大学出版社. 2004. 3.
    [59]王福军.计算流体力学分析[M].北京:清华大学出版社. 2004.
    [60]李勇,刘志友,安亦然.介绍计算流体力学的通用软件-Fluent[J].水力动学研究与进展, 2001(6). 16(2): 254-258.
    [61]陶文铨.数值传热学[M].西安交通大学出版社. 1995, (4): 264~284.