多功能高层建筑火灾安全评价系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
火灾安全的根本出发点就是尽量减少火灾中所造成的人员伤亡和财产损失。当一幢建筑发生火灾时,火灾产生的热烟气和热量便会在整个建筑物内迅速扩散,严重危及室内人员生命和财产的安全。因此,如何及时控制火灾,使人员能安全疏散,避免或减少建筑物内的生命和财产损失,便成为建筑物火灾安全研究的一个重要内容。
     而基于烟流理论的建筑火灾安全疏散动态模拟研究正是评价建筑物安全性能的一种方法,目的是判断火灾时室内人员是否能够安全疏散,如不满足,则应对建筑设计及其防火设计加以修改,从而达到对建筑物安全疏散的性能化设计。
     场模拟、区域模拟和网络模拟是建筑火灾烟流特性预测常用的模拟方法。对于需要了解整个燃烧细节及宏观过程的建筑火灾尤其是高层建筑火灾中的烟气运动,显然只利用上述三种模型的任何一种模型都无法完成,而必须构建复合模型。本文所提出的场-网复合模拟的思想是:先对整栋建筑进行网络模拟,求得各个开口的参数状态和流量作为对特定房间进行场模拟的边界条件,然后以场模拟所提供参数作为边界条件,对其它房间再进行网络模拟。由于场-网复合模拟是在网络模拟假设的前提下进行,因而其理论可行性尚需要进一步的分析论证。
     人员疏散模型的研究建立在人员正常情况和紧急情况下运动的量化研究的基础上,其理论模型包括三部分,即火灾探测系统的报警时间模型、人员疏散的预动作时间模型和人员疏散行动时间模型。
     借助基于场-网复合模型的多功能高层建筑火灾烟流运动特性预测软件,模拟出火灾烟流运动特性,在确定危险状态的标准后,既可据此计算得出可用安全疏散时间ASET,同时根据疏散模型运用软件计算得到所需安全疏散时间(Required Safety Egress Time,RSET),对比这两个时间便可评价人员是否安全疏散。通过将多功能高层建筑火灾烟流运动特性预测软件与人员疏散行动时间预测软件的结合,在解决好两种软件的接口技术后,即可完成多功能高层建筑火灾安全性能评价系统。
The roof of the fire security is to reduce the property loss and to save life. When a building suffers fire, the hot smoke and heat would diffuse to the whole building, which will take much dangerous for the life and property. So, how to control the building fire on time and reduce the loss of life and property is a much important content of the building fire security research.
     A common method for appraising the building safety is the dynamic simulation research on the building fire security evacuation which based on the smoke theoretical. Its aim is to estimate the occupants whether can be safety evacuation when suffering building fire. If not be safe, the building design and the fire protection design should be modified.
     The general simulation methods on building fire smoke property prediction are the field model, zone model and network model. But as to know the entire burning detail and the macroscopic procedural of building fire smoke movement, the three models are not suitable. So, it is necessary to develop hybrid model. This paper establishes a hybrid field-network model which based on a connecting platform between the field model and network model, with the field model and network model results as the interface boundary condition for each other. For the hybrid field-network model is under the hypothetical of the network simulation, thus the theory feasibility needs further demonstration.
     The research on evacuation prediction model is based on the quantify investigation of the occupants movement in normal and emergency condition. The theoretical model consists of three parts, the simulation of fire detection and alarm time, the simulation of the response time and the travel time.
     By using the high-rise building fire smoke prediction software which is based on the hybrid field-network model, we can simulate the fire smoke property. When confirming the quicksand standard of fire emergency, the available safe egress time can be calculated. What’s more, the required safe egress time can be calculated by the evacuation simulate software. Comparing the RSET with the ASET, an evaluation can be taken out for the occupant safety evacuation in building fire. By combining the Fire smoke flow software with the evacuation software, the Safety Performance Evaluation system is established.
引文
[1]王学谦.建筑消防安全问答[M].北京:化学工业出版社, 2006.
    [2]霍然,胡源,李元洲.建筑火灾安全工程导论[M].合肥:中国科学技术大学出版社, 1999.
    [3]霍然,袁宏勇.性能化建筑防火分析与设计[M].合肥:安徽科学技术出版社, 2003.
    [4]王晔.燃烧之毒性研究走过的道路[J].消防技术与产品信息, 1997, 12.
    [5]施微,高甫生.建筑火灾烟气运动的数值模型综述[J].暖通空调, 2006, 36(5): 26~32.
    [6]邱旭东,高甫生,王砚玲.建筑火灾烟气运动数值模拟方法的回顾与评价[J].自然灾害学报, 2005, 14(1): 132~138.
    [7] McGrattan KB, Baum H R, Rehm R G, et al. Fire Dynamics Simulator Technical Reference Guide [R]. Gaithersburg: Buildingand Fire Research Laboratory, N ISTIR6783, 2003.
    [8] ForneyG P, McGrattanK B. User’s Guide for Smokeview Version 3. 1 - A Tool forVisualizing Fire Dynamics Simulation Data[R]. Gaithersburg: Building and Fire Research Laboratory, NISTIR6980, 2003.
    [9] Rehm R G, PittsW M, Baum H R, et al. InitialModel for Fires in theWorld Trade Center Towers [R]. Gaithersburg: Building and Fire Research Laboratory, NISTIR6879, 2003.
    [10]郑昕,袁宏永.受限空间火灾模型研究进展[J].中国工程科学, 2004, 6(3): 68~74.
    [11]邓玲. FDS场模拟计算中的网格分析[J].建筑防火设计, 2006, 25(2): 207~209.
    [12]李兆文,何嘉鹏,彭红圃.单一空间火灾三维场模拟[J].消防理论研究, 2005, 24(1): 21~24.
    [13]闫幼锋.室内火灾过程的计算机模拟[J].系统仿真学报, 2004, 16(1): 171~174.
    [14]刘方,付祥钊,郑洁等.中庭火灾烟气流动数值模拟[J].安全与环境学报, 2001, 1(5): 33~36.
    [15] J. Zehfussa, D. HosserbA. Parametric natural fire model for the structural fire design of multi-storey buildings [J]. Fire Safety Journal, 2007, 42: 115~126.
    [16]刘浜葭,罗涛,吴敬涛.室内火灾区域数学模型的模拟分析[J].大连大学学报, 2004, 25(2): 56~59.
    [17]陈晓军,杨立中,邓志华等.预测单个火灾房间内温度场分布的多层区域模型[J].燃烧科学与技术, 2004, 10(6): 544~548.
    [18]胡隆华,霍然,李元洲等.大尺度空间中烟气运动工程分析的多单元区域模拟方法[J].中国工程科学, 2003, 5(8): 59~63.
    [19] NadyM, Said A. A review of smoke control models [J]. ASHRAE Journal, 1988, 30 (4):36~40.
    [20] Dols W S, Walton G N. CONTAMW2. 0 User Manual-Multizone Airflow and Contaminant Transport Analysis Software[R]. Gaithersburg: Building and Fire Research Laboratory, NISTIR6921, 2002.
    [21]肖益民,付祥钊,陈金华.地下洞室群自然通风网络计算机分析模型[J].暖通空调, 2004, 34(8): 87~90.
    [22]钟茂华,厉培德,卢兆明等.多层多室建筑火灾烟气运动的网络模拟[J].火灾科学, 2002, 11(2): 103~107.
    [23]鹿院卫,常心坦,周芳德.网络模化在高层建筑火灾通风中的应用[J].煤炭科学技术, 2000, 28(l): 25~31.
    [24]李湖生.由矿井通风系统图自动生成通风网络图[J].西安矿业学院学报, 1997, 17(2).
    [25]谢旭阳,周心权,任爱珠等.高层建筑火灾网络模拟[J].土木工程学报, 2005, 38(9): 68~73.
    [26]范维澄,王清安,周建军等.火灾学简明教程[M].合肥:中国科学技术大学出版社, 1995.
    [27]姚建达,范维澄,佐藤晃由等.建筑火灾中场区网数值模型的应用[J].中国科学技术大学学报. 1997, 27(3): 304~308.
    [28]邱旭东.高层建筑火灾过程的数值模拟[D].哈尔滨:哈尔滨工业大学, 2004.
    [29] Stahl. F. B FIRES II: A Behavior Based Computer Simulation of Emergency Egress During fires Fire Technology[R], 1982.
    [30] Fahy. R. F. EXIT89:“An Evacuation Model for High-rise Building”. Inter flam Inter science Communication Ltd., London[R], 1993.
    [31] Francis. R. L, Saunders P. B. EVACNET: Prototype Network Optimization Models for Building Evacuation[R]. NBSIR. Operation Research Division Center for Applied Mathematics U. S. Department of Commerce Washington D. C. , NBS, 1979.
    [32]袁理明.建筑火灾危险性评估的一种方法[J].中国安全科学学报1997, 7(5): 25~28.
    [33]袁理明,范维澄.建筑火灾中人员安全疏散时间的预测[J].自然灾害学报, 1997, 6(2): 28~33.
    [34]温丽敏,陈全,陈宝智.火灾中群集疏散的设计方法及计算机仿真[J].东北大学学报(自然科学版), 1998, 19(5): 445~447.
    [35]刘文利,熊洪.地下商业街人员疏散预测[J].火灾科学1999, 8(3): 72~79.
    [36]公安部天津消防科研.所地下大型商场火灾特性专题研究报告[R].天津:公安部天津消防研究所, 2000.
    [37]谢旭阳,任爱珠,周心权.高层建筑火灾最佳疏散路线的确定[J].自然灾害学报, 2003,12(3): 75~80.
    [38]李健,杨立中,赵道亮等.基于信息传播系统的人员疏散模型探讨[J].中国安全科学学报, 2006, 16(12): 35~39.
    [39]王厚华,罗嘉陵,罗庆等.建筑物火灾烟气流动网络模型的线性化求解方法[J].暖通空调, 2003, 33(5): 100~103.
    [40]严治军.火灾建筑的室温预测法[J].重庆建筑大学学报, 1996, 18(3): 1~7.
    [41]严治军.建筑物火灾烟气流动性状解析[J].重庆建筑大学学报, 1995, 17(2): 23~30.
    [42]严治军.火灾建筑的热传导解析[J].重庆建筑大学学报, 1997, 19(5): 107~111.
    [43]罗嘉陵.建筑物火灾烟气流动性状预测及其应用软件开发[D].重庆:重庆大学, 2001.
    [44]罗庆.建筑物烟气流动性状实验研究及其预测软件的完善[D].重庆:重庆大学, 2002.
    [45]何春霞.公共通道网络模型方法及最佳机械排烟量分析[D].重庆:重庆大学, 2003.
    [46]谢元一.建筑物公共通道的火灾网络模型方法及最佳机械送风排烟系统分析[D].重庆:重庆大学, 2004.
    [47]彭宣伟.传热子模型在火灾网络模型中的应用及求解收敛性研究[D].重庆:重庆大学, 2005.
    [48]汪鹏.多室建筑火灾烟流性状预测的场-网络模型结合研究[D].重庆:重庆大学, 2005.
    [49]何晟.非稳态火源在火灾网络模型中的应用及其烟控系统的性能化设计研究[D].重庆:重庆大学, 2006.
    [50]郭丹.基于烟流理论的建筑火灾安全疏散动态模拟研究[D].重庆:重庆大学, 2006.
    [51]韩武松.建筑物换气树声生成技术研究及烟流预测软件的完善[D].重庆:重庆大学, 2007.
    [52]胡洋.多功能高层建筑火灾烟流运动特性预测研究[D].重庆:重庆大学, 2007.
    [53]郭勇.高层建筑火灾状况下安全疏散性状研究[D].重庆:重庆大学, 2001.
    [54]范维澄,孙金香,陆守香.火灾风险评估方法学[M].北京:科学出版社, 2004.
    [55] Thomas, P. H. Testing Products and Materials for Their Contribution to Flashover in Rooms[J]. FIRE AND MATERIALS, 1981, 5: 103~111.
    [56]邱旭东,高甫生,王砚玲.高层建筑火灾时烟气危害性及危险度评价[J].哈尔滨工业大学学报, 2006, 38(3): 392~394.
    [57]傅祝满,范维澄.建筑火灾区域模拟竖孔流动的计算[J].火灾科学, 1997, 6(2): 1~7.
    [58]蒋汉文,邱信立.热力学原理及应用[M].上海:同济大学出版社, 1990.
    [59] Patankar, S. V. Numerical Heat Transfer and Fluid Flow. Hemisphere[J], New York, 1980
    [60]陈景仁(美).湍流模型及有限分析法[M].上海:上海交通大学出版社. 1989.
    [61]韩占忠. FLUENT流体工程仿真计算的实例与应用[M].北京:北京理工大学出版社, 2004.
    [62]王厚华,方赵嵩.建筑物火灾烟流特性预测系统的研究进展[J].暖通空调, 2008, 38(5): 1~5.
    [63]姜传胜.高层建筑火灾烟气蔓延计算机模拟技术研究报告[R].北京:北京市科技新星计划项目, 2001.
    [64]中国建筑学会防火综合技术委员会.建筑防火设计与应用[M].北京:海洋出版社, 1991.
    [65]刘方.建筑防火性能化设计[M].重庆:重庆大学出版社, 2007.
    [66]徐亮,张和平,杨昀等.性能化防火设计中火灾场景设计初步研究[J].中国工程科学, 2004, 6(1): 64~67.
    [67] Fang, J. B. and Breese, J. N. , Fire Development in Residential Basement Rooms[R], NBSIR, 80~2120.
    [68]杨立中,方伟蜂,邓志华等.火灾烟气的毒性研究[J].火灾科学, 2001, 10(1).
    [69] A. Regev, S. Hassid, M. Poreh. Density jumps in smoke flow along horizontal ceilings [J]. Fire Safety Journal, 2004, 39(6) : 465–479.
    [70]谢晓刚,胡忠日.高层办公楼火灾风险性能化评估[J].消防科学与技术, 2003, 23(1): 30~34.
    [71]张培红,陈宝智,卢兆明.人员应急疏散行动开始前的决策行为[J].东北大学学报, 2005, 26(2): 179~182.
    [72]汪金辉,陆守香.建筑火灾中人员安全疏散的可靠概率分析模型[J].中国科学技术大学学报, 2006. 36(1): 116~118.
    [73] A. M. Hasofer, I. Thomas. Analysis of fatalities and injuries in building fire statistics [J]. Fire Safety Journal, 2006, 41: 2~14.
    [74] Di Guiseppi C, Roberts I, Wade A, Sculpher M, Edwards P, Godward C, Pan H, Slater S. Incidence of fires and related injuries after giving out free smoke alarms[J]: cluster randomised controlled trial. Br Med J 2002, 32(5): 995~997.
    [75] Xiaoshan Pan a, Charles S. Han b, Ken Dauber c, Kincho H. Law d. Human and social behavior in computational modeling and analysis of egress [J], Automation in Construction, 2006, 15: 448~461.
    [76] A. K. Gupta, P. K. Yadav. SAFE-R: a new model to study the evacuation profile of a building [J]. Fire Safety Journal, 2004, 39: 539~556.
    [77] L. T. Wong, T. F. Cheung. Evaluating probable risk of evacuees in institutional buildings [J], Safety Science, 2006, 44: 169~181.
    [78]褚冠全,孙金华,王青松等.疏散准备时间及出口宽度对人员疏散影响的模拟[J].科学通报, 2006, 51(6): 738~744.