含N化合物、聚合物及CdS纳米材料的合成及自组装研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文合成了一系列含氮两性分子化合物、配位聚合物、导电聚合物和CdS纳米材料,并研究了某些两性分子和纳米材料自组装过程,具体研究内容如下:
     (1)合成了一个新的二吡啶配体2,2,2,7-二溴-9,9-二(4-吡啶甲基)芴[DBPMF],在此基础上,得到了一个超分子化合物{[DBPMF H2]2+·2[ClO4]-}和三个配位聚合物,分别为[Cd4(DBPMF)6(SCN)8]n(1),[Cu2(DBPMF)2(CH3COO)5·2DMF]n(2)和[Cd(DBPMF)(acac)2]n(3)。在超分子{[DBPMF H2]2+·2[ClO4]-}中,存在N-H···O氢键、C-H···O潜在氢键、C-H···π作用力和π···π堆积作用力。这些作用力中,两种类型的N-H···O氢键连接两个[DBPMFH2]2+阳离子和两个[ClO4]-阴离子,形成了一维链。配合物1中,每个配体均和两个金属Cd2+离子相连,形成了一个既相互交叉,又具有螺旋链状结构的配位聚合物,这个聚合物在沿b轴方向最终形成了一个花形的三维孔洞结构;配合物2中,每个配体也和两个金属Cu2+离子相连,使得配合物单元之间两两相连,形成了以Cu(1)单元与Cu(2)单元分别相连的2种1D链结构;配合物3中,乙酰丙酮镉单元在二吡啶配体的连接下,形成了无限一维链状结构。
     (2)研究了所合成的两性分子(E)-3-(4-二甲胺苯基)-1-(4-硝基苯基)丙酮(DMAPNPP)的溶液自组装过程。随着DMAPNPP饱和溶液的温度降低和溶剂挥发,DMAPNPP分子首先从晶核中向外自组装成较薄的带,这些卷曲的带在随后的自组装过程中,不仅充当直接的模板,而且被伸直。这个结果很好的表明,最终所得产物形貌的尺寸能够通过调节两性分子饱和溶液的自组装速度和温度来得到控制。这个过程也为相似两性分子的自组装过程开辟了一个很好的途径。
     (3)合成了1-(N-丁基-1,8-萘酰亚胺基-4-yl)-3-(4-甲氧苯基)-5-苯基—吡唑啉(BMPP)分子化合物,并溶液自组装方法得到了BMPP分子的纳米纤维结构,进一步以BMPP分子的纳米纤维为模板通过苯胺原位化学氧化聚合法成功的合成了BMPP/聚苯胺核壳纳米纤维结构,利用乙醇溶液去除BMPP/聚苯胺核壳纳米纤维的BMPP核,得到了具有网状壁结构的聚苯胺纳米管,并研究了所合成BMPP/聚苯胺核壳纳米纤维的光学性能和电化学性能。
     (4)采用化学氧化聚合法,以亚硒酸钠为氧化剂,制备了硒/聚吡咯纳米结构。EDS谱图结果显示,产物中有大量的硒,说明产物为硒/聚吡咯复合结构,研究了表面活性剂、反应温度等反应条件对硒/聚吡咯纳米结构的形貌和尺寸的影响。以十六烷基三甲基溴化铵为结构指导剂,在水热条件下,合成的硒/聚毗咯空心微管,微管的直径约为1μm,厚度约为30nm,长度为2-3μm,随着氧化剂亚硒酸钠浓度的增加,微管的厚度逐渐增加,且体系中游离的硒粒子的数量逐渐增多。在无表面活性剂时,产物为纳米颗粒的团聚体。表面活性剂在指导形成硒/聚吡咯空心微管的过程中起了重要的作用。实验研究了反应温度对产物的形貌,当反应温度为15°C时,产物为纳米颗粒。
     (5)在十二硫醇的存在下通过硫脲和硝酸镉在乙二胺溶液中在180°C进行溶剂热反应制备出了由CdS纳米棒组成的束状纳米结构,其长度约为几十微米。CdS纳米棒直径和长度分别为50-70nm和数微米。实验发现:十二硫醇加入量的不同对束状CdS纳米结构的形成和CdS纳米棒的表面形貌有重要的影响。并研究了束状CdS结构的光致发光性质,当激发波长在405nm处时,在495nm(2.51eV)和522nm(2.38eV)处出现了两个荧光发射峰。
In this dissertation, a research has been made on synthesizing a supermolecular compound, three coordination polymers, microcosmic self-assembly process of the synthesized some amphiphilic molecules, and assembling nanomaterials. The main results are as follows:
     (1) A new bis-pyridine ligand of{2,7-dibromo-9,9-(4-pyridyl-methyl) fluorene [DBPMF]} has been synthesized and characterized. By using this ligand, a supermolecular compound of{[DBPMF H2]2+·2[C1O4]-} and three coordination polymers have been obtained, including [Cd4(DBPMF)6(SCN)8]n(1),[Cu2(DBPMF)2(CH3COO)5·2DMF]n(2) and [Cd(DBPMF)(acac)2]n(3). In the{[DBPMF H2]2+·2[C1O4]-}, four kinds of supermocular interactions of N-H…O hydrogen bond, C-H…O potential hydrogen bond, C-H…π interaction and π…π packing interaction have been found. Among these supermolecular interactions, two types of N-H…O hydrogen bonds join two [DBPMFH2]2+cations and two [ClO4]-anions together to form an one-dimensional chain. In the complex1, each ligand coordinates with two Cd2+ions to construct a coordination polymer with intersectant and helix configuration, which finally presents a flower-like hollow structure along the b axis. In the complex2, each ligand also links with two metal ions of Cu2+which results in the interlinkage of two complex units. Ultimately, two kinds of1D chains have been found, one is based on Cu(1) unit and another is based on Cu(2) unit. In the complex3, each of acetylacetone cadmium(II) unit is combined by the bis-pyridine ligand of [DBPMF] to build an infinite1D chain.
     (2) We present investigations on microcosmic self-assembly process of the synthesized amphiphilic molecules (DMAPNPP). During the temperature of the amphiphilic molecules' saturated solution drop and the solvent evaporation, the amphiphilic molecules were firstly assembled into thinner belt-like arms which extending from a core. Secondly, the curled belts did not only served as a template, but also were straight as the subsequently assembly. This conclusion can best illuminate why the size can be controlled by adjust amphiphilic molecules deposition velocity in their saturated solution. And which opens a new venue for conveniently adjusting the self assembly dimension of the similar amphiphilic molecules.
     (3)1-(N-butyl-1,8-naphthalimide-4'-yl)-3-(4-methoxyl-phenyl)-5-phenyl-pyrazoline (BMPP)/polyaniline core-shell nanofibers were synthesized by in situ chemical oxidative polymerization of aniline using BMPP nanofibers as template. BMPP/polyaniline core-shell nanofibers exhibited uniform fibrilliar morphology and possessed BMPP nanofiber core and polyaniline shell, which existed in the form of nanoparticles. BMPP nanofibers were fabricated by the modified reprecipitation method with water as poor solvent. After BMPP/polyaniline core-shell nanofibers were washed with ethanol as good solvent to remove BMPP cores, polyaniline nanotubes with netlike structures were obtained. The molecular structures of BMPP/polyaniline nanocables were characterized by Fourier transform infrared spectroscopy and UV-vis spectroscopy, respectively. The core/shell structures of BMPP and polyaniline endowed BMPP/polyaniline core-shell nanofibers good electrochemical properties in comparison with BMPP nanofibers.
     (4) Se/polypyrrole nanostructures were successfully synthesized using sodium selenite as initiator by chemical polymerization of pyrrole. EDS spectrum shows that the resulting products is consist of selenium, carbon, and nitrogen, which further conforms the Se/polypyrrole composite structure. The influences of synthetic parameters, such as surfactants, and reaction temperature, on the morphologies and sizes of Se/polypyrrole nanostructures were investigated. Se/polypyrrole hollow microtubes have been obtained using cetyltrimethylammonium bromide (CTAB) as surfactant under hydrothermal conditions. The hollow microtube is about800nm in diameter,30nm in the thickness, and the lengths of2-3um. With the concentration of sodium selenite increased, the thickness of Se/polypyrrole hollow microtubes is gradually increasing, and the separated selenium particles in the system are obtained. However, only Se/polypyrrole nanoparticles are obtained in the absence of CTAB, which shows that CTAB plays an important role in the formation of Se/polypyrrole hollow microtubes. When the reaction is taken at150℃, Se/polypyrrole nanoparticles are obtained.
     (5) Bundle-like cadmium sulfide (CdS) nanostructures assembled by high-quality nanorods have been successfully synthesized on a large scale via a facile solvothermal route in a mixed solvent of ethylenediamine and dodecanethiol. The typical lengths of bundle-like CdS nanostructures are several tens of micrometers, and the diameters and lengths of CdS nanorods are about50-70nm and several micrometers, respectively. The influence of the concentration of dodecanethiol on the morphologies of CdS nanostructures has been investigated carefully. Photoluminescence spectra (PL) of CdS nanostructures reveal that the bundle-like CdS nanostructures exhibited two fluorescence emission peaks centered at495nm (2.51eV) and522nm (2.38eV) as the excitation wavelength is405nm.
引文
[1]Arai N S, Yasuoka K J., Zeng X C. Self-Assembly of Surfactants and Polymorphic Transition in Nanotubes. J. Am. Chem.Soc.,2008, 130(25):7916-7920
    [2]Song W J, Du J Z, Liu N J, et al. Functionalized Diblock Copolymer of Poly(ε-caprolactone) and Polyphosphoester Bearing Hydroxyl Pendant Groups: Synthesis, Characterization, and Self-Assembly. Macromolecules,2008,41(19): 6935-6941
    [3]Angelov B, Angelova A, Garamus V M, et al. Small-Angle Neutron and X-ray Scattering from Amphiphilic Stimuli-Responsive Diamond-Type Bicontinuous Cubic Phase. J. Am. Chem. Soc.,2007,129 (44):13474-13479
    [4]Lan D, Wang Y, Du X L, et al. Large Scale Fabrication of Periodical Bowl-like Micropatterns of Single Crystal ZnO. Cryst. Growth Des.,2008,8 (8): 2912-2916
    [5]Biswas S, Drzal L T. A Novel Approach to Create a Highly Ordered Monolayer Film of Graphene Nanosheets at the Liquid-Liquid Interface. Nano Lett.,2009, 9(1):167-172
    [6]Lulgor L H, Randjelovic, Capek R, et al. Controlled Fabrication of Gold-Coated 3D Ordered Colloidal Crystal Films and Their Application in Surface-Enhanced Raman Spectroscopy. Chem. Mater.,2005,17 (23):5731-5736
    [7]Tsoi S, Griva I, Trammell S A, et al. Electrochemically Controlled Conductance Switching in a Single Molecule:Quinone-Modified Oligo(phenylene vinylene), ACS Nano,2008,2 (6):1289-1295
    [8]Ko Y G., Shin D H. Effects of Liquid Bridge between Colloidal Spheres and Evaporation Temperature on Fabrication of Colloidal Multilayers. J. Phys. Chem. B,2007,111 (7):1545-1551
    [9]Hou K, Song Q H, Nie D, et al. Synthesis of Amphiphilic Dye-Self-Assembled Mesostructured Powder Silica with Enhanced Emission for Directional Random Laser. Chem. Mater.,2008,20 (12):3814-3820
    [10]Benkoski J J., Bowles S E, Korth B D, et al. Field Induced Formation of Mesoscopic Polymer Chains from Functional Ferromagnetic Colloids. J. Am. Chem. Soc.,2007,129 (19):6291-6297
    [11]Huang Y, Duma X F, Wei Q Q, et al. Directed Assembly of One-Dimensional Nanostructures into Functional Networks. Science,2001,291:630-633
    [12]Thompson R B, G-inzburg V V, Matsen M W, et al. Block Copolymer-Directed Assembly of Nanoparticles:Forming Mesoscopically Ordered Hybrid Materials. Macromolecules.2002.35:1060-1071
    [13]Lin Y, Boker A, He J B, et al. Self-directed self-assembly of nanoparticle/ copolymer mixtures. Nature,2005,434:55-59
    [14]Long D P, Lazorcik J L, Shashidhar R. Magnetically Directed Self-Assembly of Carbon Nanotube Devices, Adv. Mater.,2004,16:814-819
    [15]Kim H J, Zin W C, Lee M. Anion-Directed Self-Assembly of Coordination Polymer into Tunable Secondary Structure. J. Am. Chem. Soc.,2004,126: 7009-7014
    [16]Fox O D, Drew M G B, Beer P D. Resorcarene-Based Nanoarchitectures: Metal-Directed Assembly of a Molecular Loop and Tetrahedron. Angew. Chem. Int. Ed.,2000,39:135-140
    [17]Albrecht M, Blau O, Frohlich R. For helicates with 8-hydroxyquinoline ligands see, Proc. Natl. Acad. Sci. USA,2002.99:4867-4872
    [18]Datta B, SchusterG B, McCook A, et al. DNA-Directed Assembly of Polyanilines: Modified Cytosine Nucleotides Transfer Sequence Programmability to a Conjoined Polymer. J. Am. Chem. Soc.,2006.128: 14428-14429
    [19]Moon S I, McCarthy T J. Template Synthesis and Self-Assembly of Nanoscopic Polymer "Pencils". Macromol.,2003,36:4253-4255
    [20]Zubarev E R, Pralle M U, Sone E D, et al. Self-Assembly of Dendron Rodcoil Molecules into Nanoribbons, J. Am. Chem. Soc.,2001,123:4105-4106
    [21]Yma H, Park S H, Finkelstein G, et al. DNA-Templated Self-Assembly of Protein Arrays and Highly Conductive Nanowires, Science,2003,301: 1882-1884
    [22]Berry V, Saraf R F. Self-Assembly of Nanoparticles on Live Bacterium:An Avenue to Fabricate Electronic Devices. Angew. Chem. Int. Ed.,2005,44: 6668-6673.
    [23]Hulvat J F, Stupp S I. Liquid-Crystal Templating of Conducting Polymers. Angew. Chem. Int. Ed. Engl.,2003,42:778-781
    [24]Tadokoro M, Kmano H, Kitajima T, et al. Self-organizing super-structures formed from hydrogen-bonded biimidazolate metal complexes. Proc. Natl. Acad. Sci. USA,2002,99:4950-4955.
    [25]Radzilowski L H. Stupp S I. Nanophase Separation in Monodisperse Rodcoil Diblock Polymers, Macromol.,1994,27:7747-7753
    [26]Messmore B W, Hulvat J F, Sone E D, et al. Synthesis, Self-Assembly, and Characterization of Supramolecular Polymers from Electroactive Dendron Rodcoil Molecules. J. Am. Chem. Soc.,2004,126:14452-14458
    [27]Stupp S I, Son S, Lin H C, et al. Synthesis of Two-Dimensional Polymers, Science,1993,259:59-63
    [28]Hof F, Julius R J. Supramolecular Chemistry And Self-assembly Special Feature Molecules within molecules:Recognition through self-assembly. Proc. Natl. Acad. Sci. USA,2002,99:4775-4777
    [29]Zeng F W, Zimmermma S C. Dendrimers in Supramolecular Chemistry:From Molecular Recognition to Self-Assembly. Chem. Rev.,1997,97:1681-1712
    [30]Zhang L F, Eisenberg A. Thermodynamic vs Kinetic Aspects in the Formation and Morphological Transitions of Crew-Cut Aggregates Produced by Self-Assembly of Polystyrene-b-poly(acrylic acid) Block Copolymers in Dilute Solution. Macromol.,1999,32:2239-2249
    [31]Kaneko T, Higashi M, Matsusaki M, et al. Self-assembled Soft Nanofibrils of Amphipathic Polypeptides and Their Morphological Transformation. Chem. Mater.,2005,17:2484-2486
    [32]Choucair A, Eisenberg A. Control of amphiphilic block copolymer morphologies using solution conditions. Eur. Phys. J. E,2003,10:37-44
    [33]Whitesides G M. Grzybowski B. Self-Assembly at All Scales. Science,2002, 295:2418-2421
    [34]施维林,马锡英.应用DNA模版自组装CdS纳米线.材料科学与工程学报,2007,25:875~877
    [35]Lee M, Jang C J, Ryu J H. Supramolecular Reactor from Self-Assembly of Rod-Coil Molecule in Aqueous Environment. J. Am. Chem. Soc.,2004,126: 8082-8083
    [36]Jin LY, Bae J, Ryn J H, et al. Ordered Nanostructures from the Self-Assembly of Reactive Coil-Rod-Coil Molecules. Angew. Chem. Int. Ed. Engl.,2006,45: 650-653
    [37]Vriezema D M, Aragones M C, Elemans J A A W, et al. Self-Assembled Nanoreactors. Chem. Rev.,2005,105:1445-1489
    [38]Cameron N S, Eisenberg A, Brown G R. Amphiphilic Block Copolymers as Bile Acid Sorbents:2. Polystyrene-b-poly(N,N,N-trimethylammoniumethylene acrylamide chloride):Self-Assembly and Application to Serum Cholesterol Reduction. Biomacromolecules,2002,3:124-132
    [39]Gooding J J, Hibbert D B. The application of alkanethiol self- assembled monolayers to enzyme electrodes. Trac-Trends in Analytical Chemistry,1999, 18:525-533
    [40]Gooding J J, Mearns F, Yang W R, et al. Self-assembled monolayers into the 21st century:recent advances and applications. Electroanalysis,2003,15:81-96
    [41]Jiang L, Huang G F, Li H X. Self-Assembled Molecular Electronic Devices. Progress in Chemistry,2005,17:172-179
    [42]Bissell R A, Cordova E, Kaifer A E, et al. A chemically and electrochemically switchable molecular shuttle. Nature,1994,369:133-137
    [43]Chen J, Reed M A, Rawlett A M, et al. Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device. Science,1999,286: 1550-1552
    [44]Genson K L, Holzmueller J, Ornatska M, et al. Assembling of Dense Fluorescent Supramolecular Webs via Self-Propelled Star-Shaped Aggregates, NANO LETTERS,2006,6:435-440
    [45]Tian Y, He Q, Tao C, et al. Fabrication of Fluorescent Nanotubes Based on Layer-by-Layer Assembly via Covalent Bond, Langmuir 2006,22:360-362
    [46]Zhang X, Shi F, Yu X, et al. Polyelectrolyte Multilayer as Matrix for Electrochemical Deposition of Gold Clusters: Toward Super-Hydrophobic Surface. J. Am. Chem. Soc.,2004,126,3064-3065
    [47]Zhang X, Shen J. Self-Assembled Ultrathin Films:From Layered Nanoarchitectures to Functional Assemblies. Adv. Mater.,1999,11:1139-1143
    [48]Xiong H, Cheng M, Zhou Z, et al. A New Approach to the Fabrication of a Self-Organizing Film of Heterostructured Polymer/Cu2S Nanoparticles. Adv. Mater.,1998,10:529-532
    [49]Shi F, Dong B, Qiu D,.hingi Son, et al. Layer-by-Layer self-assembly. Adv. Mater.,2002,14:805-809
    [50]Seo M, Seo G, Kim S Y. Molecular Self-Assembly of Macroporous Parallelogrammatic Pipes. Angew. Chem. Int. Ed.,2006,45:6306-6310
    [51]Hui J K -H, Yu Z, MacLachlan M J. Supramolecular Assembly of Zinc Salphen Complexes:Access to Metal-Containing Gels and Nanofibers. Angew. Chem. Int. Ed.2007,46:7980-7983
    [52]WANG C, WANG Z, ZHANG A X, Amphiphilic Building Blocks for Self-Assembly:From Amphiphiles to Supra-amphiphiles, ACCOUNTS OF CHEMICAL RESEARCH,2012,45(4):608-618
    [53]Wang C, Yin S C, Chen S L, et al. Controlled self-assembly manipulated by charge-transfer interactions:Fromtubes to vesicles. Angew. Chem. Int. Ed.2008, 47,9049-9052
    [54]Liu K, Wang C, Li Z B, Zhang X, Superamphiphiles based on directional chargetransfer interactions:From supramolecular engineering to well-defined nanostructures. Angew. Chem. Int. Ed.2011,50:4952-4956.
    [55]Zhang X, Chen Z, Wurthner F. Morphology Control of Fluorescent Nanoaggregates by Co-Self-Assembly of Wedge- and Dumbbell-Shaped Amphiphilic Perylene Bisimides. J. Am. Chem. Soc.2007,129:4886-4887
    [56]Wang, C, Chen Q S, Wang Z Q, et al. An enzyme-responsive polymeric superamphiphile. Angew. Chem. Int. Ed.2010,49:8612-8615
    [57]Moulton B, Zaworotko M J. From Molecules to Crystal Engineering: Supramolecular Isomerism and Polymorphism in Network Solids. Chem. ReV. 2001,101(6):1629-1658
    [58]Tiekink E R T, Vittal J J. Eds. Frontiers in Crystal Engineering. Wiley: Chichester, U.K.,2006.
    [59]Batten S R, Neville S M, Turner D R. Coordination Polymers:Design, Analysis and Application. Royal Society of Chemistry:Cambridge, U.K.,2009.
    [60]Robson R. Design and its limitations in the construction of bi- and poly-nuclear coordination complexes and coordination polymers (aka MOFs):a personal view. Dalton Trans,2008,5113-5131
    [61]Bailar Jr. In PreparatiVe Inorganic Reactions. Jolly, W. L., Eds., Wiley Interscience:New York,1964,1:1-27
    [62]Biradha K, Sarkar M, Rajput L. Crystal engineering of coordination polymers using 4,4'-bipyridine as a bond between transition metal atoms. Chem. Commun. 2006,4169-4179
    [63]Chen C T, Suslick K S. One-dimensional coordination polymers:applications to material science, Coord. Chem. ReV.1993,93(1),293-322
    [64]Leong W L, Vittal J J. One-Dimensional Coordination Polymers:Complexity and Diversity in Structures, Properties, and Applications. Chem. Rev.,2011, 111(2):688-764
    [65]Wu C D, Ma L, Lin W. Hierarchically Ordered Homochiral Metal-Organic Frameworks Built from Exceptionally Large Rectangles and Squares, Inorg. Chem.2008,47(24):11446-11148
    [66]Liao J H, Juang J S, Lai Y C. Supermolecular Architecture of a Polypseudo-rotaxane:[Cd(BPE)(a-Mo8O26)][Cd(BPE)(DMF)4]-2DMF (BPE= 1,2-Bis(4-pyridyl)ethane, DMF= N,N-Dimethylformamide), Cryst. Growth Des. 2006,6:354-356
    [67]Ohi H, Tachi Y, Itoh S. Supramolecular and Coordination Polymer Complexes Supported by a Tripodal Tripyridine Ligand Containing a 1,3,5-Triethylbenzene Spacer, Inorg. Chem.,2004,43(15):4561-4563
    [68]Zheng S L, Tong M L, Yu X L, et al. Syntheses and structures of six chain-, ladder- and grid-like co-ordination polymers constructed from μ-hexamethylenetetramine and silver salts, Dalton Trans.,2001,586-592
    [69]Seward C, Chan J, Song D, et al. Anion Dependent Structures of Luminescent Silver(I) Complexes. Inorg. Chem.,2003,42(4):1112-1120
    [70]Fromm K M, Doimeadios J L S, Robin A Y. Concomitant crystallization of two polymorphs—a ring and a helix:concentration effect on supramolecular isomerism. Chem. Commun.,2005,4548-4550
    [71]Go Y B, Wang X, Anokhina E V, et al. Influence of the Reaction Temperature and pH on the Coordination Modes of the 1,4-Benzenedicarboxylate (BDC) Ligand: A Case Study of the NiII(BDC)/2,2'-Bipyridine System, Inorg. Chem., 2005,44(23):8265-8271
    [72]Kuroiwa K, Shibata T, Takada A, et al. Heat-Set Gel-like Networks of Lipophilic Co(II) Triazole Complexes in Organic Media and Their Thermochromic Structural Transitions. J. Am. Chem. Soc.2004,126(7): 2016-2021
    [73]Batabyal S K, Peedikakkal A M P, Ramakrishna S, et al. Coordination-Polymeric Nanofibers and their Field-Emission Properties. Macromol. Rapid Commun. 2009,30(15):1356-1361
    [74]Lu W, Chui S S Y, Ng K M, et al. A Submicrometer Wire-to-Wheel Metamorphism of Hybrid Tridentate Cyclometalated Platinum (II) Complexes, Angew. Chem., Int. Ed.,2008,47(24):4568-4572
    [75]Coronado E, Galan-Mascaros J R, Monrabal-Capilla M, et al. Bistable Spin-Crossover Nanoparticles Showing Magnetic Thermal Hysteresis near Room Temperature, AdV. Mater.2007,19(10):1359-1361
    [76]Lin W, Rieter W J, Taylor K M L. Modular Synthesis of Functional Nanoscale Coordination Polymers. Angew. Chem., Int. Ed.2009,48(4):650-658
    [77]Spokoyny A M, Kim D, Sumrein A, et al. Infinite Coordination Polymer nano-and Microparticle Structures. Chem. Soc. ReV.2009,38:1218-1227
    [78]Oh M, Mirkin C A. Chemically tailorable colloidal particles from in- finite coordination polymers. Nature 2005,438(7068):651-654
    [79]Mas-Balleste R, Castillo O, Miguel P J S, et al. owards Molecular Wires Based on Metal-Organic Frameworks. Eur. J. Inorg. Chem.2009, (20):2885-2896
    [80]Olea D, Gonzalez-Prieto R, Priego J L, et al. MMX polymer chains on surfaces. Chem. Commun.2007,1591-1593
    [81]Moon H R, Kim J H, Suh M P. A Controllable Electrochemical Fabrication of Metallic Electrodes with a Nanometer/Angstrom-Sized Gap Using an Electric Double Layer as Feedback. Angew. Chem., Int. Ed.,2005,44(8):1261-1265
    [82]Jung S, Cho W, Lee H J, et al. Self-Template-Directed Formation of Coordination-Polymer Hexagonal Tubes and Rings, and their Calcination to ZnO Rings. Angew. Chem., Int. Ed.2009,48(8):1459-1462
    [83]Liu X. Zinc Oxide Nano- and Microfabrication from Coordination-Polymer Templates. Angew. Chem., Int. Ed.,2009,48(17):3018-3021
    [84]张宇,张俊祥.用硫脲分子表面修饰的CdS纳米粒子的合成和表征.无机化学学报,1999,15(5):595~600
    [85]钟淮真,李国强,何晓云,等.有机溶剂热生长技术制备CdS及其与聚苯胺复合膜的光学性质.发光学报,2004,25(5):585~590
    [86]Qian X M, Qin D G, Bai Y B, et al.Photosensitization of TiO2 nanoparticulate thin-film electrodes by cds nanoparticles. J Solid State Electrochem,2001,5: 562-567
    [87]Vered P Y, Eugenii K, Julian W, et al. Acetylcholine esterase-labeld CdS nanoparticles on electrodes:photoelectrochemical sensing of the enzyme inhibitors. Chem Soc Rev,2003,125:622-623
    [88]Chen M, Xie Y, Lu J, et al. Synthesis of rod-, twinrod-, and tetrapod-shaped CdS nanocrystals using a highly oriented solvothermal recrystallizatiion technique. J Mater Chem,2002,12:748-753
    [89]Pan D C, Jiang S C, An L J, et al. Controlable synthesis of Highly Luminescent and Monodisperse CdS Nanocrystals by a Two-Phase Approach under Mild Conditions. Adv Mater,2004,16:982-985
    [90]Zheng Y, Liu K, Qiao H, et al. Facile synthesis and catalytic properties of CeO2 with tunable morphologies from thermal transformation of cerium benzendicarboxylate complexes, CrystEngComm,2011,13:1786-1788
    [91]Sheldrick GM. (1997) SHELXTL, v5 Reference Manual. Siemens Analytical X-Ray Systems, Madison:WI
    [92]Wilson AJ.(1992) International Table for X-Ray Crystallography. Kluwer Academic, Dordrecht, The Netherlands. Vol. C:Tables 6.1.1.4 (pp.500-502) and 4.2.6.8 (pp.219-222).
    [93]Meerssche M, Germain G, Declercq J P, et al.2-(Acetylamino)fluorene, C15H13NO Acta Crystallogr. Cryst Struct.Commun 1980,9:515-518
    [94]Meerssche M, Germain G, Declercq J P, Touillaux R 4- Acetyl- aminofluorene, C15H13NO. Cryst Struct Commun,1979(8):119-122
    [95]Jian FF, Qin Y Q, Zhang J, et al. Synthesis, Crystal Structure and Property Studies on a Tetrachlorocuprate Salt of an Organic Cation. Bull Korean Chem Soc,2008,29(7):1412-1414
    [96]Steiner T. Crystallogr Rev,1996,6:1.
    [97]Glusker J P, Lewis M, Rossi M. Crystal Structure Analysis for Chemists and Biologists. VCH Publishers Inc.1994, New York
    [98]Hunter R, Haueisen R H, Irving A. The First Water-Dependent Liquid Clathrate:X-RayEvidence in the Solid for a C-Hπ(Heteroarene)H-CInteraction. Angew Chem Int Ed.,1994,33(5):566-568
    [99]Fettouhi M, Ali B E, Ei-Ghanam A M, et al. Temperature Dependence of the Crystal Lattice Organization of Coordination Compounds Involving Nitronyl Nitroxide Radicals:A Magnetic and Structural Investigation. Inorg. Chem., 2002,41(14):3705-3712
    [100]Sharma R P, Singh A, Saini A, et al. (1Z,3Z)-3-[Quinolin-2(1H)-ylidene]-1-(quinolin-2-yl)prop-1-en-2-ol:An unexpected most stable tautomer of 1,3-bis(quinolin-2-yl)acetone. J. Mol Struc.2009,923,78-82
    [101]Marandi F, Soudi A A, Morsali A, et al. CdⅡ 4,4,4-trifluoro-1-phenyl-1,3-butandione complexes of 1,10-phenanthroline and 4,4'-bipyridine. J. Coord. Chem.,2007,60(19):2107-2114
    [102]Wu P C, Su C H, Cheng F Y, et al. Modularly Assembled Magnetite Nanoparticles Enhance in Vivo Target -ing for Magnetic Resonance Cancer Imaging. Bioconjugate Chem.,2008,19(10):1972-1979
    [103]Cai J F, Erik M S, Andrew D H. Self-Assembling DNA Quadruplex Conjugated to MRI Contrast Agents. Bioconjugate Chem.,2009,20(2):205-208
    [104]Hsu M H, Josephrajan T S, Yeh C S, et al. Novel Arylhydrazone-Conjugated Gold Nanoparticles with DNA-Cleaving Ability:The First DNA-Nicking Nanomaterial. Bioconjugate Chem.,2007,18(6):1709-1712
    [105]Saga Y, Akai S, Miyatake T, et al. Self-Assembly of Natural Light-Harvesting Bacteriochlorophylls of Green Sulfur Photosynthetic Bacteria in Silicate Capsules as Stable Models of Chlorosomes. Bioconjugate Chem.,2006,17 (4): 988-994
    [106]Nielsen M, Dauksaite V, Kjems J, et al. DNA-Directed Coupling of Organic Modules by Multiple Parallel Reductive Aminations and Subsequent Cleavage of Selected DNA Sequences. Bioconjugate Chem.,2005,16 (4):981-985
    [107]Warnement M R, Tomlinson I D, Chang J C, et al. Controlling the Reactivity of Ampiphilic Quantum Dots in Biological Assays through Hydrophobic Assembly of Custom PEG Derivatives. Bioconjugate Chem.,2008,19(7): 1404-1413
    [108]Arai N S, Yasuoka K J, Zeng X C. Self-Assembly of Surfactants and Polymorphic Transition in Nanotubes. J. Am. Chem.Soc.,2008,130(25): 7916-7920
    [109]Song W J, Du J Z, Liu N J, et al. Functionalized Diblock Copolymer of Poly(s-caprolactone) and Polyphosphoester Bearing Hydroxyl Pendant Groups: Synthesis, Characterization, and Self-Assembly. Macromolecules,2008,41(19): 6935-6941
    [110]Angelov B, Angelova A, Garamus V M, et al. Small-Angle Neutron and X-ray Scattering from Amphiphilic Stimuli-Responsive Diamond-Type Bicontinuous Cubic Phase. J. Am. Chem. Soc.,2007,129(44):13474-13479
    [111]Lan D, Wang Y, Du X L, et al. Large Scale Fabrication of Periodical Bowl-like Micropatterns of Single Crystal ZnO. Cryst. Growth Des.,2008,8 (8): 2912-2916
    [112]Biswas S, Drzal L T. A Novel Approach to Create a Highly Ordered Monolayer Film of Graphene Nanosheets at the Liquid-Liquid Interface. Nano Lett.,2009,9(1):167-172
    [113]Lulgor L H, Randjelovic, Capek R, et al. Controlled Fabrication of Gold-Coated 3D Ordered Colloidal Crystal Films and Their Application in Surface-Enhanced Raman Spectroscopy. Chem. Mater.,2005,17 (23): 5731-5736
    [114]Tsoi S, Griva I, Trammell S A, et al. Electrochemically Controlled Conductance Switching in a Single Molecule:Quinone-Modified Oligo(phenylene vinylene). ACS Nano,2008,2(6):1289-1295
    [115]Ko Y G, Shin D H. Effects of Liquid Bridge between Colloidal Spheres and Evaporation Temperature on Fabrication of Colloidal Multilayers. J. Phys. Chem. B,2007,111(7):1545-1551
    [116]Hou K, Song Q H, Nie D, et al. Synthesis of Amphiphilic Dye-Self-Assembled Mesostructured Powder Silica with Enhanced Emission for Directional Random Laser. Chem. Mater.,2008,20(12):3814-3820
    [117]Xu X D, Jin Y, Liu Y, et al. Self-assembly behavior of peptide amphiphiles (PAs) with different length of hydrophobic alkyl tails, Colloids and Surfaces B: Biointerfaces,2010,81(1):329-335
    [118]Tao X T, Watanabe T, Kono K, et al. Synthesis and Characterization of Poly(aryl ether chalcone)s for Second Harmonic Generation. Chem. Mater.,1996, 8(6):1326-1332
    [119]Genson K L, Holzmueller J, Ornatska M, et al. Assembling of Dense Fluorescent Supramolecular Webs via Self-Propelled Star-Shaped Aggregates. Nano Letters,2006,6(3):435-440
    [120]Imae T, Ikeda Y, Iida M, et al. Self-Organization of a Dinuclear Metal Complex in Lyotropic Liquid Crystal:Ribbonlike Supramolecular Assemblies. Langmuir,1998,14(19):5631-5635
    [121]Holzmueller J, Genson K L, Park Y, et al. Amphiphilic Treelike Rods at Interfaces:Layered Stems and Circular Aggregation. Langmuir,2005,21(14): 6392-6398
    [122]Fu H, Loo B H, Xiao D, et al. Multiple Emissions from 1,3-Diphenyl-5-pyrenyl-2-pyrazoline Nanoparticles:Evolution from Molecular to Nanoscale to Bulk Materials (pages 962-965. Angew Chem Int Ed,2002,41(6):962-965
    [123]Xiao D, Xi L, Yang W, et al. Size-Tunable Emission from 1,3-Diphenyl-5-(2-anthryl)-2-pyrazoline Nanoparticles. J Am Chem Soc,2003; 125(22): 6740-6745
    [124]Wei Z, Zhang L, Yu M, et al. Self-Assembling Sub-Micrometer-Sized Tube Junctions and Dendrites of Conducting Polymers. Adv Mater,2003,15(16): 1382-1385
    [125]Li G, Pang S, Xie G, et al. Synthesis of radially aligned polyaniline dendrites. Polymer 2006,47(4):1456-1459
    [126]Wu C G, Bein T. Conducting Polyaniline Filaments in a Mesoporous Channel Host. Science,1994,264(5166):1757-1759
    [127]Guo H M, Wang X, Jian F F, et al. Comparative Studies on Two Fluoro-Substituted 2-Pyrazoline Derivatives with Experimental and Theoretical Methods. Bull Korean Chem Soc,2009,30(5):1061-1066
    [128]Li G, Zhang Z. Synthesis of Dendritic Polyaniline Nanofibers in a Surfactant Gel. Macromolecules,2004,37(8):2683-2685
    [129]Chiou N R, Epstein A J. Polyaniline Nanofibers Prepared by Dilute Polymerization. Adv Mater,2005,17(13):1679-1683
    [130]Ferreira R, Remon P, Pischel U. Multivalued Logic with a Tristable Fluorescent Switch. J Phys Chem C,2009,113(14):5805-5811
    [131]Peng Q, Zhai J, Wang W, et al. Fabrication of Organic/Inorganic Hybrid Nanocomposite of 1,8-Naphthalimide and CdS in Self-Assembly Film. Cryst Growth Des,2003,3(5):623-626
    [132]Zhang X, Goux W J, Manohar S K. Synthesis of Polyaniline Nanofibers by "Nanofiber Seeding". J Am Chem Soc,2004,126(14):4502-4503
    [133]Li G, Jiang L, Peng H. One-Dimensional Polyaniline Nanostructures with Controllable Surfaces and Diameters Using Vanadic Acid as the Oxidant. Macromolecules,2007,40(22):7890-7894
    [134]Sutton S J, Vaughan A S. On the morphology and growth of electrochemically polymerized polypyrrole.Polymer.1995,36(9):1849-1857
    [135]Shirakawa H, Louis E J, MacDiarmid A G, et al. Synthesis of electrically conducting organic polymers:halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc. Chem. Comm.,1977,579-580
    [136]Ikegame M, Tajima K, Aida T. Template synthesis of polypyrrole nanofibers insulated within one-dimensional silicate channels:Hexagonal versus lamellar for recombination of polarons into bipolarons, Angew. Chem. Int. Ed.,2003,42: 2154-2157.
    [137]Yang Y, Liu J, Wan M. Self-assembled conducting polypyrrole micro nanotubes, Nanotechnology,2002,37:771-773
    [138]邓建国,贺传兰,龙新平,等.纳米Fe304-聚吡咯的相互作用.高分子材料科学与工程,2004,20(4):149~150
    [139]Jang J, Oh J H. Fabrication of a highly transparent conductive thin film from polypyrrole/poly(methyl methacrylate) core/shell nanospheres, Adv. Funct. Mater.2005,15:494-502
    [140]Zhu C, Zhai J, Wen D, et al. Graphene oxide/polypyrrole nanocomposites one-step electrochemical doping, coating and synergistic effect for energy storage, J. Mater. Chem.2012,20:6300-6306.
    [141]Han M Y, Gao X H, Nie S M, et al. Quantulm-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol,2001,19(7): 631-635
    [142]Colvin V L, Schlamp M C, Alivisatos A P. Light emitting diodes cadmium selenide nanocrystals and a semiconduting polymer. Nature,1994,370 (6488): 354-357
    [143]Bruchez J M, Moronne M, Alivisatos A P, et al. Semiconductor nanocrystals as fluorescent biological labels. Science,1998,281(5385):2013-2016
    [144]Liu S H, Qian X F, Yin J, et al. Preparation and characterization of polymer-capped CdS nanocrystals. J Phys Chem Solids,2003,64 (3):455-458
    [145]谢海燕,庞代文.Ⅱ-Ⅵ型量子点制备及其在生物检测中应用研究进展.分析化学,2004,32(8):1099~1103
    [146]Yang J, Zeng J H, Yu S H, et al. Formation process of CdS nanorods viaSolvothertrtal route. Chem Mater,2000,12(11):3259-3263
    [147]Dong L F, Gushtyuk T, Jiao J. Synthesis, Characterization and Growth Mechanism of Self-Assembled Dendritic CdS Nanorods, J. Phys. Chem. B 2004, 108:1617-1620
    [148]Zhou Q T, Chen Y Q, Kong W H, et al. Structural and optical properties of the three-dimensional CdS nanocone arrays on the self-assembled Cd/CdS core-shell microspheres, Appl. Phys. Lett.2007,90:203112
    [149]Ghezelbash A, Koo B, Korgel B A. Self-Assembled Stripe Patterns of CdS Nanorods, Nano lett.2006,6:1832-1836
    [150]Li G C, Jiang L, Peng H R, et al. Self-assembled cadmium sulfide microspheres from nanorods and their optical properties, Mater. Lett.2008,62:1881-1883