净水厂生产废水回用风险分析及控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
净水厂生产废水的直接排放不仅会造成受纳水体的严重污染,而且还会浪费大量水资源,如何高效处理并回用净水厂产生的生产废水已受到人们的广泛关注。由于生产废水中含有大量来自原水的污染物以及净水过程中投加的化学药剂,部分水质指标的数值是原水的几十倍甚至上百倍,生产废水处理后回用可能存在一定的风险。因此,对净水厂生产废水回用的安全性进行分析、评价与控制具有深远的意义。
     本文以西北某市的A水厂和B水厂为研究对象,对生产废水经处理回用后出厂水中的浊度、氨氮、高锰酸钾指数、铝、丙烯酰胺和细菌总数等水质指标进行检测,并在此基础上,对出厂水水质的安全保障率和健康风险值进行分析和评价,针对健康风险值较高的指标,进一步采用实验模拟的形式进行优化控制,以期为实际生产提供技术依据。主要研究成果和结论如下:
     (1)以A水厂和B水厂为研究对象,对生产废水回用后出厂水中各相关水质指标进行了长期检测。结果表明,两水厂出厂水中的浊度、氨氮、高锰酸钾指数和铝含量均能满足水质标准的要求,但出厂水中的丙烯酰胺偶尔会有超标现象。A水厂2010年8月和10月出厂水的丙烯酰胺超标幅度分别为3.85%和12%;B水厂于2010年10月超标14%。
     (2)在长期出厂水水质检测的基础上,采用Q-Q图和非参数K-S检验方法,确定了出厂水中各指标的分布函数,并依据此分布函数对各指标的安全保障率进行了分析。结果表明,A水厂和B水厂出厂水中的浊度、高锰酸钾指数、铝和丙烯酰胺经检验均服从对数正态分布。A水厂出厂水中的浊度、高锰酸钾指数和铝的安全保障率都为100%,而出厂水中的丙烯酰胺的安全保障率只有94.44%;B水厂出厂水中的浊度安全保障率为100%,而高锰酸钾指数、铝和丙烯酰胺的安全保障率分别只有99.33%、93.50%和96.36%。
     (3)采用美国科学院(NAS)公布的健康风险评价四步法,对A水厂和B水厂出厂水中安全保障率较低的铝和丙烯酰胺进行了健康风险评价。结果表明,A水厂和B水厂铝的个人健康终生风险最大值分别为6.69×10~(-6)和2.90×10~(-5),都低于最大可接受终生风险值7.0×10~(-5),但B水厂有11.05%的风险值和最大可接受终生风险在同一个数量级。目前,两水厂出厂水中的铝含量对人体的健康尚无影响,但B水厂已到了引起重视的地步。A水厂和B水厂出厂水丙烯酰胺的个人健康终生风险最大值分别为1.84×10~(-4)和1.32×10~(-4),分别有4.48%和2.29%的风险值超过最大可接受终生风险7.0×10~(-5),都存在一定的健康风险,必须立即采取控制措施加以遏制。
     (4)针对两水厂出厂水中丙烯酰胺超标及存在的健康风险问题,通过污泥脱水性能模拟实验,进行了PAM相关的优化控制研究,使其在满足污泥脱水效果的同时,使回用风险降到最低。结果表明,对不同浓度的浓缩污泥,投加阴离子型和阳离子型PAM均能有效降低污泥比阻值,改善污泥的脱水性能,但使用阴离子型PAM,污泥脱水分离液中的丙烯酰胺残留量更低。在满足脱水效果的同时,并综合考虑脱水分离液中丙烯酰胺残留量和浊度,建议采用阴离子型PAM,A水厂和B水厂的PAM最佳投加量范围分别为0.16g/L-0.25g/L和0.09g/L-0.16g/L。在此条件下,两水厂出厂水中的丙烯酰胺残留量全年都在0.125μg/L以下,有效降低了出厂水中丙烯酰胺含量超标的风险。
The wastewater that the water treatment plants drain off directly not onlyseriously pollute the water environment, but also waste a great deal of water. Therefore,it has aroused wide public concern how to treat the wastewater discharged out of thewater treatment plants effectively and reuse it. Because the wastewater includes plentyof pollutants coming from the raw water and chemical agents added into the watertreatment process, part of water quality indexes’ values are scores or hundreds of timeshigh than those of the raw water and there maybe exist some risk in the reuse ofwastewater after treatment. As a result, it has profound significance to analyze andevaluate the safety of the reusing wastewater in the water treatment plants and thencontrol the pollutants.
     In the paper, the relative water quality indexes of turbidity, ammonia nitrogen,permanganate index, aluminium and acrylamide in the produced water were testedafter the reuse of the treated wastewater in two surface water treatment plants of acertain city in northwest China. Based on it, the security probability and health riskvalue of the produced water quality were analyzed and evaluated. What’s more, inview of the water quality indexes which had high security probability values, they wereoptimized and controlled using model experiments, in order to provide the technicalbases for practical production. The main research results and conclusions are asfollows:
     (1) In both water treatment plant A and B, the relative water quality indexes in theproduced water after the reuse of the treated wastewater were under long-term test. Theresults showed that the contents of turbidity, ammonia nitrogen, permanganate indexand aluminium in the produced water of the two water treatment plants could meet theStandards for Drinking Water Quality. However, acrylamide in the produced wateroccasionally exceeded the Standards for Drinking Water Quality. In August and October,2010, acrylamide in the produced water of water treatment plant A exceededthe Standards for Drinking Water Quality by3.85%and12%, repectively, which ofwater treatment plant B was beyond the Standards for Drinking Water Quality by14%.
     (2) On the basis of long-term test on the produced water quality, using Q-Qfigures and K-S non-reference test method, the distribution functions of each producedwater quality were determined. According to the distribution functions, the securityprobabilities of each produced water quality were analyzed. The results showed thatthe turbidity, permanganate index, aluminium and acrylamide of the produced water inboth water treatment plant A and B obeyed logarithmic normal distribution after test. Inwater treatment plant A, the security probabilities of turbidity, permanganate index andaluminium in the produced water were all100%, while the security probabilityacrylamide was only94.44%. In water treatment plant B, the security probability ofturbidity in the produced water was100%, while permanganate index, aluminium andacrylamide were99.33%,93.50%and96.36%, repectively.
     (3) Using the Health Risk Assessment Four-step Method promulgated by NationalAcademy of Sciences, the low security probabilities of aluminium and acrylamide inthe produced water of both water treatment plant A and B were under health riskassessment. The results showed that the maximum personal lifetime health and safetyrisk values of aluminium in both water treatment plant A and B were6.69×10~(-6)and2.90×10~(-5), repectively, which were all under the maximum lifetime acceptable riskvalue of7.0×10~(-5). However, there were11.05%of risk value and the maximumlifetime acceptable risk value at the same order of magnitude in water treatment plantB. At present, the content of aluminium in the produced water of both water treatmentplant A and B had no effect on public health, but it had been paid enough attention inwater treatment plant B. The maximum personal lifetime health and safety risk valuesof acrylamide in both water treatment plant A and B were1.84×10~(-4)and1.32×10~(-4),repectively,4.48%and2.29%of risk value were beyond the maximum lifetimeacceptable risk value of7.0×10~(-5), respectively. Therefore, acrylamide had higher riskand control measures must be adopted immediately to prevent the risk.
     (4) On the overstandard of acrylamide in the reused wastewater and its existinghealth risk problem, a series of relative studies on the optimization and control of PAMwere carried out, using sludge dewatering performance Simulation Experiment, tomake the sludge dewater effectively and minimize the reuse risk. The results showedthat to different concentrations of concentrated sludge, PAM added of both anion andcation could reduce sludge specific resistance and improve the sludge dewatering performance. However, the residual acrylamide in the sludge dewatering separatedwater was lower when anion PAM was used. To meet the purposes of sludgedewatering performance, and make low turbidity and residual acrylamide in the sludgedewatering separated water, anion PAM is a better choice. The optimum PAM dosageswere0.16g/L~0.25g/L for water plant A and0.09g/L~0.16g/L for water plant B, underwhich the residual acrylamide concentration in the produced water of two watertreatment plants was under0.125μg/L throughout the year and the overstandard risk ofacrylamide concentration in the produced water was decreased effectively.
引文
[1]郑晓郁,姜东旭.论述我国水资源紧缺及治理措施[J].价值工程,2010,(21):190.
    [2]葛宇.生活饮用水卫生标准的提升解读国家标准《GB5749—2006》[J].上海计量测试,2007,(201):27-30.
    [3]刘辉,许建华.自来水厂排泥水处理的国内外发展概况[J].中国给水排水,2001,17(8):26-28.
    [4]上海市政工程设计研究院.室外给水设计规范(GB50013—2006)[M],北京:中国计划工业出版社,2006.
    [5]陶辉,王毅,韩伟等.城镇给水厂节水策略及效益分析[J].给水排水,2007,33(12):9-12.
    [6]陈静,许建华.自来水厂污泥性质[J].净水技术,2003,22(6):27-30.
    [7] Russelmann, H. B. Characteristics of Water Treatment Plant Wastes, Proc.10th San. Eng.Conf., U. of Ill. Urbana Ill.(1968).
    [8] Neubauer, W.K. Waste Alum Sludge Characteristics and Treatment, Study by O’Brien&Gere,Engrs for N.Y. State Dept. of Health, Research Report No.15.(1966).
    [9] Neubauer, W.K. Waste Alum Sludge Treatment[J]. Jour. AWWA,1968,60(7):819.
    [10] Almquist, F.O.A. Problems in Disposal of Sludge and Wash Water for Connecticut WaterFiltration Plants [J]. Jour. NEWWA,1946,60:344.
    [11]叶辉,乐林生,许建华.自来水厂排泥水处理技术[J].净水技术,2001,20(4):23-25.
    [12]程曦.福州西区水厂污泥处理干化床工艺研究[D].上海:同济大学,1992.
    [13]陈有军,梁再辉,王玥.北方某自来水厂生产废水的水质特性研究[J].中国给水排水,2007,23(11):90-93.
    [14]许嘉炯,郑志民,许建华.关于自来水厂生产废水的回用[J].净水技术,2003,22(1):32-34.
    [15]许嘉炯,张晔明,郑国兴.自来水厂生产废水处理工艺流程的优化及运行控制要求[J].净水技术,2004,23(4):36-38.
    [16] Tobiason, J.E, B.R. Levesque, J.K.Edzwald, G.S. Kaminski, H.J. Dunn, and P.B.Galant.. WaterQuality Impacts of Filter Backwash Recycle Proceedings from AWWA.1999. Water QualityTechnology Conference. Tampa, FL
    [17] Kawamura, S.2000. Integrated Design and Operation of Water Treatment Facilities.SecondEdition. John Wiley&Sons, Inc. New York, NY
    [18]邝璐.超滤技术回收滤池反冲洗废水的试验研究[D].湖南:湖南大学,2007.
    [19]李探微,单晓勇.净水厂排泥水的过滤特性研究[J].浙江工业大学学报,2004,32(5):12-15.
    [20]黄卓.城市净水厂生产废水回用安全性研究[D].陕西:西安建筑科技大学,2011.
    [21]何纯提.净水厂排泥水处理[M].中国建筑工业出版社,2006.
    [22]谢志平.给水厂的污水及污泥处理[M].合肥:安徽科技出版社,1982.
    [23]王磊波.自来水厂生产废水处理研究[D].西安:西安建筑科技大学,2009.
    [24]向平,蒋绍阶.给水厂排泥水处理回用的若干问题[J].重庆建筑大学学报,2004,26(4):70-72.
    [25]许嘉炯.净水厂生产排泥水处理工艺研究与设计[J].给水排水,2011,37(1):34-38.
    [26]徐正.天津新开河水厂排泥水处理设施技术改造研究[D].哈尔滨:哈尔滨工业大学,2008.
    [27]叶辉.自来水厂排泥水处理技术及其生产性应用研究[D].上海:同济大学,2000.
    [28] Gebaner, G.&Janerus I. Cravity Thickening of water-Treatment-Plant Sludges[J]. AWWA,1978.
    [29] Cleseeri L S,Greenberg A E, Eaton A D. Standard Methods for the Examination of water andWastewater[M]. Washington D C: American Public Health Association(APHA),1998.
    [30]陈艳萍.石家庄市第八水厂污泥浓缩脱水絮凝剂的选择[J].净水技术,2000,18(2):24-27.
    [31]高廷耀.水污染控制工程(下册)[M].北京:高等教育出版社,1990.
    [32]郭宁.水厂排泥水高效处理技术研究[D].陕西:西安建筑科技大学,2008.
    [33]刘小东,戴少艾,姚纵为.梅林水厂污泥处理系统工艺优化探讨[J].给水排水,2003,29(6):11-14.
    [34]张旭.自来水厂污泥脱水实验研究[D].天津:天津大学,2006.
    [35]马建立,赵由才,张华等.城市污水处理厂不同性状污泥填埋工艺的试验研究[J].给水排水,2007,33(10):20-22.
    [36] Tsushima S, Ikeda T, Koido T, et al. Investigation of Water Distribution in a Membrane in anOperating PEMFC by Environmental MRI[J]. Journal of The Electrochemical Society,2010,157(12): B1814-B1818.
    [37] Zheng Z R, Gu Z Y, Huo R T, et al. Fabrication of Self-Cleaning Poly(vinylidene fluoride)Membrane with Micro/Nanoscaled Two-Tier Roughness[J]. Journal Of Applied PolymerScience,2011,122(2):1268-1274.
    [38] Zhao L, Xia W S, Zhao H H, et al. Study and modeling of the separation characteristics of anovel alkali-stable NF membrane[J]. Desalination and Water Treatment,2010,20(1-3):253-263.
    [39] Damodar R A, You S J, Chou H H. Study the self cleaning, antibacterial and photocatalyticproperties of TiO(2) entrapped PVDF membranes[J]. Journal of Hazardous Materials,2009,172(2-3):1321-1328.
    [40] Puro L, Kallioinen M, Manttari M, et al. Performance of RC and PES ultrafiltrationmembranes in filtration of pulp mill process waters[J]. Desalination,2010,264(3):249-255.
    [41] Melita L, Gumrah F. Studies on Transport of Vanadium (V) and Nickel (II) from WastewaterUsing Activated Composite Membranes[J]. Waste and Biomass Valorization,2010,1(4):461-465.
    [42] Afrasiabi N, Ehteshami M, Optimum design of an RO membrane by using simulationtechniques[J]. Desalination and Water Treatment,2009,9(1-3):189-194.
    [43] Alturki A A, Tadkaew N, McDonald J A, et al. Combining MBR and NF/RO membranefiltration for the removal of trace organics in indirect potable water reuse applications[J].Journal of Membrane Science,2010,365(1-2):206-215.
    [44] Katsoufidou I S. Sioutopoulos D C, Yiantsios S G, et al. UF membrane fouling by mixtures ofhumic acids and sodium alginate Fouling mechanisms and reversibility[J]. Desalination,2010,264(3):220-227.
    [45] Madaeni S S, Moradi P. Preparation and Characterization of Asymmetric PolysulfoneMembrane for Separation of Oxygen and Nitrogen Gases[J]. Journal Of Applied PolymerScience,2011,121(4):2157-2167.
    [46] Simone S, Figoli A, Criscuoli A, et al. Preparation of hollow fibre membranes fromPVDF/PVP blends and their application in VMD[J]. Journal of Membrane Science,2010,364(1-2):219-232.
    [47] Chou S, Shi L, Wang R, et al. Characteristics and potential applications of a novel forwardosmosis hollow fiber membrane[J]. Desalination,2010,261(3):365-372.
    [48] AWWA Research Foundation Report. Disposal of wastes from water treatmentplants-Part1[J]. Jour. AWWA,1969,61(10).
    [49] William, W.A. Waste disposal-water treatment plants-joint discussion[J]. Jour. AWWA,1974,66(9).
    [50]谢敏.净水厂排泥水浓缩脱水特性及调质形态学研究[D].湖南:湖南大学,2007.
    [51] Boonthanon S. Declogging of CFMF membranes: Applications in water andwastewater treatment:[dissertation]. Bangkok: Asian Institute of Technology Press,1991,583-596.
    [52] Brekvoort Y. Productions of drinking water from backwash water in one treatmentstep: the breakthrough of membrane filtration[J].H2O,1996,29(12):403-407.
    [53] Willemse R J N, Brekvoort Y, Buys P. Full-scale recycling of backwash water from sandfilters using dead-end membrane filtration[J].Water Research,1999,33(15):3379-3385.
    [54] Wilf M, Allam J, et al. Reclamation of sand filter backwash effluent using capillaryultrafiltration [J]. Membrane Technology,2003,15(3):6-9.
    [55] Taylor M. Reuse of filter backwash water using ultrafiltration technology [J].Filtration and Separation,2000,21(1):22-26.
    [56] Mores W D, Bowman C N. Davis R H. Theoretical and Experimental Fluxmaximaza-tionby Optimization of Backpulsing[J]. Membrane Science,2000,165(10):225-236.
    [57] Mugnier N, Howell J A, Ruf M. Optimasation of a Back Flush Sequence for ZeoliteMicrofiltration[J]. Membrane Science,2000,175(18):149-161.
    [58]许嘉炯.上海黄浦江水源水厂排泥水浓缩及其后续工艺研究[D].上海:同济大学,2003.
    [59]沈玉琼.上海长江水源水厂排泥水浓缩及其后续工艺研究[D].上海:同济大学,2003.
    [60]邓慧萍,梁超,许建华. PAM在给水厂排泥水处理中的调质作用及机理探讨[J].给水排水,2004,130(16):31-33.
    [61]杨崇豪,赵丽敏,刘秉涛.粉煤灰调理自来水厂排泥水污泥的比阻[J].中国给水排水,2005,21(11):56-58.
    [62]黄廷林,乐文健,何文杰.高效固液分离技术处理给水厂排泥水的中试研究[J].给水排水,2009,35(2):24-27.
    [63]黄廷林,解岳,丛海兵.水厂生产废水结团凝聚处理的中试研究[J].给水排水,2003,29(3):9-12.
    [64]黄廷林,张刚,聂小保等.造粒流化床浓缩技术处理给水厂排泥水的中试研究[J].给水排水,2005,31(11):10-14.
    [65]黄廷林,张刚,聂小保.石灰投加对水厂排泥水造粒流化床处理工艺的影响[J].水处理技术,2006,32(l):44-47.
    [66]陶君.北京市第九水厂污泥处理运行介绍[J].给水排水,2003,29(6):1-5.
    [67]马若云,王金泉,周永毅.给水车间污泥处理工程设计及调试[J].水处理技术,2002,32(8):89-90.
    [68]罗惠云,周健,胡国等.长沙市第八水厂排泥水脱水工艺设计[J].给水排水,2005,31(6):27-31.
    [69]王佐.大连市沙河口净水厂污泥处理工艺及生产运行分析[J].给水排水,2005,31(5):10-13.
    [70]刘小东,戴少艾,姚纵为.梅林水厂污泥处理系统工艺优化探讨[J].给水排水,2003,29(6):11-14.
    [71]郑小明,王海亮,朱斌.排泥水处理技术在闵行一水厂的应用[J].给水排水,2003,29(6):14-17.
    [72]韩宏大,何文杰.滤池反冲洗水回用试验研究[J].工业水处理,2001,21(12):38-39.
    [73]陶辉,王玲,徐勇鹏等.滤池反冲洗废水的直接回流利用研究[J].中国给水排水,2008,24(9):1-4.
    [74]潘名宾,李璐,马军等.超滤处理反冲洗废水的中试研究[J].中国给水排水,2010,26(9):117-119.
    [75]岳军武,田利,韩宏大.膜技术在水厂排泥水处理中的应用[J].中国给水排水,2002,18(9):71-72.
    [76]单文广,姚宏,许兆等.浸入式中空超滤膜在排泥水回收处理中的实验研究[J].北京交通大学学报,2006,30(4):69-72.
    [77]高国伟,何文杰,潘艳秋等.外压浸入式超滤膜处理排泥水上清液的研究[J].供水技术,2009,3(5):1-5.
    [78]曹占平,张景丽.膜技术回收处理水厂生产废水试验研究[J].中国给水排水,2008,24(17):87-91.
    [79] Arora H, Giovanni D, Lechevallier G M. Spent filter backwash water: contaminants andtreatment strategies[J]. AWWA,2001,93(5):100-112.
    [80] Chevallier M L. Giardia and cryptosporidium in filtered drinking water supplies[J]. Applied&Environ Microbiol,1991,57(9):2617-2618.
    [81] W.K.Neubauer. Waste alum sludge treatment[J]. AWWA.1968,60(7):819-820.
    [82] Cornwell, D., MacPhee, M., McTigue, N., Arora, H., DiGiovanni, G., eChevallier, M., Taylor,J.. Treatment options for Giardia, Cryptosporidium and other contaminants in recycledbackwash water[J]. American Water Works Research Foundation(AWWARF), Denver, CO:2001.
    [83] LeChevallier, M., Norton, W., Lee, R., Rose, J.. Giardia and Cryptosporidium in watersupplies[J]. American Water Works Research Foundation(AWWARF), Denver, CO:1991.
    [84] Cornwell D A, Ramon G L. Recycle stream effects on water treatment[J]. AWWA:Denver, CO:1993:312-328.
    [85] Cornwell, D., Lee, R.. Waste stream recycling: its effects on water quality[J]. Jour,AWWA: American Water Works Association.1994,86(11):50-63.
    [86] States, S., Sykora, J., Stadterman, K., Wright, D., Baldizar, J.andConley, L.. Sources,occurrence and drinking watertreatment removal of Cryptosporidium and Giardia inthe allegheny river[J]. Conference Proceedings, American water worksassociation–water quality and technology conference, Denver, CO:1995.
    [87] Julie C Goldgrabe-Brewen, John Carollo, Walnut California. Impact of recyclestreams on water quality[J]. Conference Proceeding of AWWA,1995:1030-105.
    [88] Cornwell D A, Ramon G L. Recycle stream effects on water treatment[J]. Proceedingof AWWA: Denver,1993:312-328.
    [89] S.Cocchia, K.H.Carlson, F.Marinelli. Use of total suspended solids in characterizingthe impact of spent filter backwash recycling[J]. Environmetal Engineering,2002,128(3):220-227.
    [90] David A Cornwell, Ramon G Lee. Waste stream recycling: Its effect on waterquality[J].AWWA,1994,86(11):50-63.
    [91] Carision K. H.Bellamv W.H. Use of a Mass Balance Model for Developing Guidelines forTreatment Plant Recycle Streams. Water Science and Technology. water Supply,2001,1(4):169-176.
    [92] Edzwald J.K, Tobiason J.E, Udden C.T, et al. Evaluation of the Effect of Recycle ofWaste Filter Backwash Water on Plant Removals of Cryptosporidium.Water Supply.Research and Technolony-AQCA,2003,52(4):243-258.
    [93] David A, Comwell, Michael J, et al. Effects of Spent Filter Backwash Recycle onCryptosporidium Removal. AWWA,2001,93(4):153-162.
    [94] Tobiason J E, Edzwald J K, Gilani V, et al. Effects of Waste Filter Backwash RecycleOperation on Clarification and Filtration. Water Supply: Research andTechnology-AQUA,2003,52(4):259-275.
    [95] Florian G, Reissmanna, Wolfgang U. Ultrafiltration for the Reuse of Spent FilterBackwash Water from Drinking Water Treatment[J]. Desalination,2006,198:225–235.
    [96]柯水洲,袁辉洲.滤池反冲洗废水回用和混凝性能的改善[J].给水排水,2001,16(6):9-12.
    [97]韩宏大,何文杰.滤池反冲洗水回用试验研究[J].工业水处理,2002,21(12):38-39.
    [98]费霞丽,崔福义,吴灿东.九龙江流水厂生产废水回用条件时初步研究[J].给水排水,2005,31(5):6-10.
    [99]费霞丽,崔福义.净水厂滤池反冲洗水回用的贾第鞭毛虫和隐孢子虫的泄漏问题研究[J].环境污染治理技术与设备,2006,7(5):23-26.
    [100]费霞丽.原水浊度对水厂生产废水回用影响的研究[J].哈尔滨商业大学学报,2005,21(2):162-165.
    [101]邝璐,许仕荣,陈益清等.滤池反冲洗水的超滤处[J].中国给水排水,2007,23(14):83-85.
    [102]赵斐然.水厂废水水质特征及污染物在流动水体中迁移规律研究[D].武汉:武汉理工大学,2008.
    [103]高景恒,郑刚,王忠媛.关于丙烯酰胺毒性的研究及相关规定[J].实用美容整形外科杂志,2002,13(3):148-151.
    [104]刘仁平,童建.丙烯酰胺毒性的最新研究进展[J].职业与健康,2006,22(1):12-14.
    [105] Tilson HA. The ncrotoxicity of acrylamide: an overview[J]. Neurobehav Toxicol Teratol,1981,3:445-461.
    [106] Kjuus H, Coffenf LO, Heier MS, et al. Effects on the peripheral nervous system of tunneworkers exposed to acrylamide and N-methylolacrylamide[J]. Scand J Work Environ Health,2004,30:21-29.
    [107] Adler ID, Hgonda, M Hrabe de Angelis, et al. Heritable translocatiobs induced by dernalexposure of male mice aerylamide[J]. Cytogeneti Cand Genome Research,2004,104:1-4.
    [108] Schettgen T, Kutting B, Horing M, et al. Trans0placental exposure of neollales toacrylanide-a pilot study[J]. Int Arch Environ Health,2004,77:213-216.
    [109]孟付明.大庆市中饮水厂排泥水污泥浓缩性能试验研究[D].哈尔滨:哈尔滨工业大学,2007.
    [110]仇付国,王晓昌.污水再生利用的健康风险评价方法[J].环境污染与防治,2003,25(1):49-51.
    [111] Ott, W. A physical explanation of the log-normality of pollutant concentrations. Journal ofAir and Waste Management Association,1990,14:1378-1383.
    [112] Dean R. B. Estimating the Reliability of Advanced Waste Treatment. Water and SewageWorks,1976,6:87.
    [113]段跟定.西安市饮用水安全性分析与评价[D].陕西:西安建筑科技大学,2006.
    [114]田裘学.健康风险评价的基本内容与方法[J].甘肃环境研究与监测,1997,10(4):32-36.
    [115]钱家忠,李如忠,汪家权等.城市供水水源地水质健康风险评价[J].水利学报,2004,(8):90-93.
    [116] Zhou Nianqing, Zhu Xueyu, Qian Jiazhong. The status of water resource exploitation andutilization and the environmentl problems in China[C]. Chinese Environmental Science Press,2000:488-493.
    [117] Pruppers M J M, Janssen M P M, Ale B J M, et al. Accumulation of environmental risks tohuman health: geographicl differences in the Netherlands[J]. Journal of Hazardous Materials,1998,61(1):187-196.
    [118]张江山,许丽忠.环境公众健康危害评价方法与应用[J].上海环境科学,1995,14(8):1-3.
    [119] EPA. Unfinished Business. A comparative Assessment of Environmental Problems AppendixReport of Cancer Risk Work Group. EPA/230/2/87/025b,1987.
    [120] EPA. Superfund Public Health Evaluation Manual. EPA/540/1-86-060,1986.
    [121]梁爽,李维青.乌鲁木齐市饮用水源地水环境健康风险评价[J].新疆农业科学,2010,47(8):1660-1664.
    [122]段跟定,吴奇,雒新峰.西安市自来水中铝离子的安全性分析[J].西安航空技术高等专科学校学报,2007,25(1):36-37.
    [123] World Health Organization. Guideline For Drinking Water Quality third edition[M].2004,1:155-158.
    [124] Norval J. C. Strachan, Geoffey M. Dunn, Iain D. Ogden. Quantitative risk assessment ofhuman infection from Escherichia associated with recreational use of animal pasture[J].International Journal of Food Microbiology,2002,75:39-51.
    [125]段跟定,吴奇,王晓昌.自来水中残余铝的健康危害风险评价方法[J].华北水利水电学院学报,2007,28(5):74-76.
    [126]丁克颖,应圣洁,张佳维等.上海闵行区城市供水水质健康风险评价[J].环境与职业医学,2010,27(6):349-352.
    [127]陈炼钢,陈敏建,丰华丽.基于健康风险的水源地水质安全评价[J].水利学报,2008,39(2):235-238.
    [128] U. S. EPA. Risk assessment guidance for superfund volume I human health evaluationmanual (Part A)[R]. EPA/541/1-89/002, December1989:193-198.
    [129]王大坤,李新建.健康危害评价在环境质量评价中的应用[J].1995,17(6):9-12.
    [130]曾光明,桌利,钟政林.水环境健康风险评价模型[J].水科学进展,1998,9(3):212-216.
    [131] David J Severn. Exposure assessment. Environ. Sci Technol,1987,21(12):1159-1163.
    [132] Richard Cothern C, et al. Estimating risk to human health. Environ. Sci Technol,1986,20(2):111-113.
    [133] Paul J. Lioy. Assessing total human an exposure to contaminants. Environ. Sci Technol,1990,24(7):939-945.
    [134]曾光明,卓利,钟政林等.水环境健康风险评价模型及其应用[J].水电能源科学,1997,15(4):28-32.
    [135]王秋莲,张震,刘伟.天津市饮用水源地水环境健康风险评价[J].环境科学与技术,2009,32(5):187-190.
    [136]胡二邦.环境风险度评价实用技术和方法[M].北京:中国环境科学出版社,2000.
    [137]张可,胡志锋,张勇等.重庆市城区饮用水源健康风险评价[J].四川环境,2007,26(2):71-74.
    [138]耿福明,薛联青,陆桂华等.饮用水源水质健康危害的风险度评价[J].水利学报,2006,37(10):1242-1245.
    [139]王玉军,李光德,刘桂华.泰安市区地下水水质评价[J].山东农业大学学报,1999,30(3):213-218.
    [140]刘新,王东红,马梅等.中国饮用水中多环芳烃的分布和健康风险评价[J].生态毒理学报,2011,6(2):207-214.
    [141]陈双丽,冷雪,江元汝等.陕西某地区饮用水中低浓度重金属的测定及健康风险评价[J].应用化学,2011,40(1):164-172.
    [142]孙冬,王玉才,谢春梅.垃圾焚烧烟气中污染物对人体健康风险评价[J].环境卫生工程,2004,12(3):144-166.
    [143]郭仲伟.风险分析与决策[M].北京:机械工业出版社,1987.
    [144]张永春,林玉锁.有害废物生态风险评价[M].北京:中国环境科学出版社,2002:188-191.
    [145]陈鸿汉,谌宏伟,何江涛等.污染场地健康风险评价的理论和方法[J].地学前缘,2006,13(1):216-223.
    [146]方静雨,马增益,严建华等.污泥脱水性能指标的比较分析[J].能源工程,2011,(4):51-53.
    [147]戴维良.上海市竹园第二污水处理厂污泥脱水性能的研究[J].中国给水排水,2009,25(21):62-64.
    [148]李佟,李军,刘伟岩等.螺旋压榨式脱水机对污泥脱水的试验研究[J].中国给水排水,2009,25(11):66-68.
    [149]谢小青,黄珍艺,戴兰华等.厦门市污泥深度脱水处理及资源化利用研究[J].中国给水排水,2010,26(5):138-140.
    [150]何文远,杨海真,顾国维.酸处理对活性污泥脱水性能的影响及其作用机理[J].环境污染与防治,2006,28(9):680-682.
    [151] JIN B, WILEN B M, LANT P. Impacts of morphological, physical and chemical propertiesof sludge flocs on dewaterability of activated sludge[J]. Chemical Engineering Journal,2004,98:115-126.
    [152]谢志平.给水厂的污水及污泥处理[M].合肥:安徽科技出版社,1982.
    [153] C H LEE, J C LIU. Enhanced sludge dewatering by dual polyelectrolytes conditioning[J].Wat. Res. Vol.2000,34(18).
    [154] NOVAK J T. Dewatering of sewage sludge[J]. Drying Technol,2006,24:1257-1262.
    [155] LEE D J, HSU Y H. Measurement of boun water in sludges: a comparative study[J]. WaterEnvironment Research,1995,67(3):310-317.
    [156]刘欢,杨家宽,时亚飞等.不同调理方案下污泥脱水性能评价指标的相关性研究[J].环境科学,2011,32(11):3394-3399.
    [157] Zall J, Galil N, Rehbum M. Skeleton builders for conditioning oily sludge[J]. Water PollutionControl Federation,1987,59(7):699-706.
    [158] Thapa K B, Qi Y, Clayton S A, et al. Lignite aided dewatering of digested sewage sludge[J].Water Research,2009,43(3):623-634.
    [159] Tongy M A, Zhao Y Q, Tayeb A M, et al. Exploitation of fenton and Fenton-like reagents asalternative conditioners for alum sludge conditioning[J]. Journal of Environmental Sciences,2009,21(1):101-105.
    [160] Zhang Z Q, Xia S Q, Zhang J. Enhanced dewatering of waste sludge with microbialflocculant TJ-F1as a novel conditioner[J]. Water Research,2010,44(10):3087-3092.
    [161] Lu M C, Lin C J, L iao C H, et al. Dewaterting of activated sludge by Fenton’s reagent[J].Advances in Environmental Research,2003,7(3):667-670.
    [162] Dentel S K, Dursun D. Shear sensitivity of digested sludge: Coparison of methods andapplication in conditioning and dewatering[J]. Water Research,2009,43(18):4617-4625.
    [163] Baskerville R C, Gale R C. A simple automatic instrument for determining the filerability ofsewage sludges[J]. Water Pollution Control,1968,67:233-241.
    [164]杨崇豪,袁孟云,张利伟等.中小型污水处理厂污泥脱水比阻调理剂研究[J].华北水利水电学院学报,2008,28(1):88-90.