量子多体系统中的相变及其调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一直以来,凝聚态物质的研究始终围绕着两个主题:一是与Landau费米液体理论相关的能带理论和微扰理论,该理论体系是半导体理论的基础,支撑了目前各种电子器件的研究;一是Landau对称破缺理论和重正化群理论,该理论体系是我们研究大部分物质态及物质不同态之间相变的框架,是当前诸如液晶显示、磁性材料记录、合金材料及高分子材料性能等研究领域的理论基础。这两个主题互相补充,同时又各有交叉。根据Landau对称破缺理论,无论是由热涨落导致的热力学相变,还是由量子涨落导致的量子相变,都意味着系统中有序程度的改变,以及系统对称性的变化。在本文的第二、三章中,我们将在此框架下讨论物理系统的热力学相变和量子相变行为。我们还将在第四章中讨论一种特殊的量子相变:拓扑量子相变,其中不存在描述系统有序程度的局域序参量,而且相变前后系统的对称性也未发生破缺,因而无法将其纳入Landau对称破缺理论的范畴。我们将利用几何相讨论Kitaev模型中的拓扑量子相变,并将这种已成功用于表征量子相变的物理量推广至拓扑量子相变的系统中。
     近年来,冷原子光学系统以其高纯度,高稳定性,特别是系统能级结构的高可操控性,已经成为研究量子多体系统的理想平台。在冷原子系统中实现一些重要物理效应和理论模型成为了实验和理论研究的热点。本文所呈现的研究工作中,第二、三章主要基于著名的Dicke模型,其从正常相到超辐射相的相变已于2010年在腔BEC中被观察到。在第二章中,我们讨论了Dicke模型在自旋相干态表象下的基态行为及量子临界现象。区别于传统的Holstein-Primakoff变换的方法,我们得到了无需热力学极限条件下的基态能量、原子占据率和系统基态几何相等物理量的解析表达式;同时以扩展的Dicke模型为基础研究了纳米机械振子腔系统中的量子相变问题。在第三章中,我们主要研究了2011年在超冷中性原子中实现的Rashba和Dresselhaus自旋轨道耦合BEC系统的热力学行为,包括比热和熵等热力学量在该系统中的临界行为以及有效Rabi频率、自旋轨道耦合强度、原子间的有效相互作用强度和温度等对热力学相变的影响。最后,我们还提出了自旋轨道耦合BEC系统在量子信息领域的一个应用。根据我们的理论,在当前实验条件下可以得到最大压缩因子超过-30dB的自旋压缩,并且通过控制所制备的系统初始态相位,还可以极大地提高该最大压缩因子。在第四章中,我们证明了在Kitaev模型中,引入关联转动得到的系统基态几何相可以作为表征其拓扑相变的工具。我们还研究了基态几何相对耦合参数的二阶导及其标度率。
There have always been two topics in the research of condensed matter. The first one is the topic of energy band theory and perturbation theory, which are closely related to the Landau theory of Fermi liquid. This theoretical system is the cornerstone of the semiconductor theory, which has supported the current research of various kinds of electronic devices. The other one is the Landau theory of symmetry breaking and the renormalization group theory. This theoretical system provide us a frame to study the state of matter and its phase transitions between different states, and it is also the cornerstone of many fields of technology, such as the liquid-crystal displays, the magnetic record materiel, the alloy material as well as the polymers and so on. The two topics are usually complementary and overlapping sometimes. According to Landau's symmetry-breaking theory, both the thermal phase transition induced by the thermal fluctuation and the quantum phase transition (QPT) induced by the quantum fluctuation would give rise to changes of the system's order parameters as well as the symmetry. In Chapters2and3of the present thesis, we would discuss the thermal phase transitions and quantum phase transitions behaviors of some systems under this frame. In Chapter4, we would discuss another type of QPT without local order parameter and thus no symmetry breaking was realized. This new type of QPT is named as topological QPT for the topological behavior of its ground state. We would employ the geometric phase to discuss the topological critical behaviors in the Kitaev honeycomb model. Furthermore, we finally generalize the geometric phase, which has been successfully used to characterize the QPTs in general system, into the topological QPT system.
     In the last decade, due to the quantum many-body systems of ultracold atoms can be precisely controlled experimentally, and therefore seem to provide an ideal platform on which to study the properties of the quantum many-body systems, it has become a research hotspot to realize and even control these physical effects and theoretical models experimentally. In Chapters2and3, our work is mainly based on the famous Dicke model, whose phase transition from a normal phase to a superradiant phase has been observed experimentally in2010. Particularly, we in Chapter2discuss the ground state behaviors and the quantum criticality of Dicke model in the representation of spin coherent state. We in this Chapter obtained the ground-state energy and the occupation-number difference between the two levels of the atoms; as well as the quantum phase transition in a cavity optomechanics with a Bose-Einstein condensate based on an extended Dicke model is also been discussed. In Chapter3, we mainly study the thermal behaviors in an equal Rashba and Dresslhaus spin-orbit coupled Bose-Einstein condensate, which has been realized in an ultracold neutral atomic system. Properties of the specific heat and the entropy are obtained as well. Finally, we propose a scheme to apply this system into the field of quantum information. According to our theory, we can obtain a giant spin squeezing with factor over-30dB, and furthermore, to choose a proper phase factor of the prepared initial state can also enhance the squeezing factor. In Chapter4, we demonstrate that the ground state geometric phase obtained via the correlated rotation can be used to characterize the topological QPT in the Kitaev honeycomb model.
引文
[1]汪志诚.热力学·统计物理(第三版).北京,高等教育出版社,2003.
    [2]L. D. Landau, E. M. Lifshitz. Statistical physics. Pt.1. Course of theoretical physics,2nd rev.-enlarg. ed., Singapore, Elsevier,2007.
    [3]V. L. Ginzburg and L. D. Landau. On the theory of superconductivity. Zh. Ekaper. Teoret. Fiz.,1950,20,1064.
    [4]S. Blundell. Magnetism in condensed matter. New York, Oxford University Press, 2001.
    [5]S. Sachdev. Quantum phase transitions. Cambridge, England, Cambridge University Press,1999.
    [6]M. Vojta. Quantum phase transitions. Rep. Prog. Phys.,2003,66,2069.
    [7]S.-L. Zhu. Geometric phases and quantum phase transitions. Int. J. Mod. Phys. B, 2008,22,561-581.
    [8]M. Greiner, O. Mandel, T. Esslinger, T. W. Hansch, I. Bloch. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature, 2002,415,39.
    [9]M. J. Bhaseen, M. Hohenadler, A. O. Silver, and B. D. Simons. Polaritons and pairing phenomena in Bose-Hubbard mixtures. Phys. Rev. Lett.,2009,102,135301.
    [10]A. O. Silver, M. Hohenadler, M. J. Bhaseen, B. D. Simons. Bose-Hubbard models coupled to cavity light fields. Phys. Rev. A,2010,81,023617.
    [11]R. H. Dicke. Coherence in spontaneous radiation processes. Phys. Rev.,1954,93, 99.
    [12]D. Nagy, G Konya, G. Szirmai, and P. Domokos. Dicke-model phase transition in the quantum motion of a Bose-Einstein condensate in an optical cavity. Phys. Rev. Lett.,2010,104,130401.
    [13]K. Hepp and E. Lieb. On the superradiant phase transition for molecules in a quantized radiation field:The Dicke Maser model. Ann. Phys.,1973,76,360.
    [14]Y. K. Wang and F. T. Hioe. Phase transition in the Dicke model of superradiance. Phys. Rev. A,1973,7,831.
    [15]T. Holstein and H. Primakoff. Field dependence of the intrinsic domain magnetization of a ferromagnet. Phys. Rev.,1940,58,1098.
    [16]C. Emary and T. Brandes. Quantum chaos triggered by precursors of a quantum phase transition:The Dicke model. Phys. Rev. Lett.,2003,90,044101; Chaos and the quantum phase transition in the Dicke model. Phys. Rev. E,2003,67,066203.
    [17]J. Vidal and S. Dusuel. Finite-size scaling exponents in the Dicke model. EPL (Europhysics Letters),2007,74,817.
    [18]F. Dimer, B. Estienne, A. S. Parkins, and H. J. Carmichael. Proposed realization of the Dicke-model quantum phase transition in an optical cavity QED system. Phys. Rev. A,2007,75,013804.
    [19]K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger. Dicke quantum phase transition with a superfluid gas in an optical cavity. Nature (London),2010,464, 1301.
    [20]J. Keeling, M. J. Bhaseen, and B. D. Simons. Collective dynamics of Bose-Einstein condensates in optical cavities. Phys. Rev. Lett.,2010,105,043001.
    [21]M. J. Bhaseen, J. Mayoh, B. D. Simons, J. Keeling. Dynamics of nonequilibrium Dicke models. Phys. Rev. A,2012,85,013817.
    [22]N. Liu, J. Lian, J. Ma, L. Xiao, G. Chen, J.-Q. Liang, and S. Jia. Light-shift-induced quantum phase transitions of a Bose-Einstein condensate in an optical cavity. Phys. Rev. A,2011,83,033601.
    [23]Y. Zhang, J. Lian, J.-Q. Liang, G Chen, C. Zhang, and S. Jia. Finite-temperature Dicke phase transition of a Bose-Einstein condensate in an optical cavity. Phys. Rev. A,2013,87,013616.
    [24]D. C. McKay, B. DeMarco. Cooling in strongly correlated optical lattices: prospects and challenges. Rep. Prog. Phys.,2011,74,054401.
    [25]P. Nataf, C. Ciuti. No-go theorem for superradiant quantum phase transitions in cavity QED and counter-example in circuit QED. Nature Communications,2010,1, 72.
    [26]S. Gopalakrishnan, B. L. Lev, P. M. Goldbart. Atom-light crystallization of Bose-Einstein condensates in multimode cavities:Nonequilibrium classical and quantum phase transitions, emergent lattices, supersolidity, and frustration. Phys. Rev. A,2010,82,043612.
    [27]K Baumann, R Mottl, F Brennecke, T Esslinger. Exploring symmetry breaking at the Dicke quantum phase transition. Phys. Rev. Lett.,2011,107,140402.
    [28]W. Chen, D. S. Goldbaum, M. Bhattacharya, P. Meystre. Classical dynamics of the optomechanical modes of a Bose-Einstein condensate in a ring cavity. Phys. Rev. A,2010,81,053833.
    [29]V. M. Bastidas, C. Emary, B. Regler, T. Brandes. Nonequilibrium quantum phase transitions in the dicke model. Phys. Rev. Lett.,2012,108,043003.
    [30]X. Zhang, C. L. Hung, S. K. Tung, C. Chin. Observation of quantum criticality with ultracold atoms in optical lattices. Science,2012,335,1070-1072.
    [31]J. Larson, J. P. Martikainen. Ultracold atoms in a cavity-mediated double-well system. Phys. Rev. A,2010,82,033606.
    [32]Y. Dong, J. Ye, H. Pu. Multistability in an optomechanical system with a two-component Bose-Einstein condensate. Phys. Rev. A,2011,83,031608.
    [33]Y. K. Kato, R. C. Myers, A. C. Gossard, D. D. Awschalom. Observation of the spin Hall effect in semiconductors. Science,2004,306,1910-1913.
    [34]M. Konig, S. Wiedmann, C. Brune, A. Roth, H. Buhmann, L. W. Molenkamp, X.-L. Qi, S.-C. Zhang. Quantum spin Hall insulator state in HgTe quantum wells. Science,2007,318,766-770.
    [35]C. L. Kane, E. J. Mele. Z2 topological order and the quantumspin Hall effect. Phys. Rev. Lett.,2005,95,14680.
    [36]B. A. Bernevig, T. L. Hughes, S.-C. Zhang. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science,2006,314,1757-1761.
    [37]D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, M. Z. Hasan. A topological Dirac insulator in a quantum spin Hall phase. Nature,2008,452,970-974.
    [38]J. D. Koralek, C. P. Weber, J. Orensteinl, B. A. Bemevig, S.-C. Zhang, S. Mack, D. D. Awschalom. Emergence of the persistent spin helix in semiconductor quantum wells. Nature,2009,458,610-613.
    [39]Y. A. Bychkov, E. I. Rashba. Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J. Phys. C,1984,17,6039.
    [40]G Dresselhaus. Spin-orbit coupling effects in zinc blende structures. Phys. Rev., 1955,100,580-586.
    [41]J. Dalibard, F. Gerbier, G Juzeliunas, and P. Ohberg. Colloquium:Artificial gauge potentials for neutral atoms. Rev. Mod. Phys.,2011,83,1523.
    [42]Y.-J. Lin, K. Jimenez-Garcia, and I. B. Spielman. Spin-orbit-coupled Bose-Einstein condensates. Nature (London),2011,471,83-86.
    [43]C. Wang, C. Gao, C.-M. Jian, and H. Zhai. Spin-orbit coupled spinor Bose-Einstein condensates. Phys. Rev. Lett.,2010,105,160403.
    [44]T.-L. Ho, S. Zhang. Bose-Einstein condensates with spin-orbit interaction. Phys. Rev. Lett.,2011,107,150403.
    [45]Y. Zhang, G Chen, and C. Zhang. Tunable spin-orbit coupling and quantum phase transition in a trapped Bose-Einstein condensate. arXiv:1111.4778,2011.
    [46]Y. Li, L. P. Pitaevskii, and S. Stringari. Quantum tricriticality and phase transitions in spin-orbit coupled Bose-Einstein condensates. Phys. Rev. Lett.,2012, 108,225301.
    [47]T. D. Stanescu, B. Anderson, and V. Galitski. Spin-orbit coupled Bose-Einstein condensates. Phys. Rev. A,2008,78,023616.
    [48]J. Larson and E. Sjoqvist. Jahn-Teller-induced Berry phase in spin-orbit-coupled Bose-Einstein condensates. Phys. Rev. A,2009,79,043627.
    [49]C. Wu, I. Mondragon-Shem, and X.-F. Zhou. Unconventional Bose-Einstein Condensations from spin-orbit coupling. Chin. Phys. Lett.,2011,28,097102.
    [50]S.-K. Yip. Bose-Einstein condensation in the presence of artificial spin-orbit interaction. Phys. Rev. A,2011,83,043616.
    [51]Y. Zhang, L. Mao, and C. Zhang. Mean-field dynamics of spin-orbit coupled Bose-Einstein condensates. Phys. Rev. Lett.,2012,108,035302.
    [52]Y. Zhang and C. Zhang. Bose-Einstein condensates in spin-orbit-coupled optical lattices:Flat bands and superfluidity. Phys. Rev. A,2013,87,023611.
    [53]S. Sinha, R. Nath, and L. Santos. Trapped two-dimensional condensates with synthetic spin-orbit coupling. Phys. Rev. Lett.,2011,107,270401.
    [54]X.-Q. Xu and J. H. Han. Spin-orbit coupled Bose-Einstein condensate under rotation. Phys. Rev. Lett.,2011,107,200401; Emergence of chiral magnetism in spinor Bose-Einstein condensates with Rashba coupling. Phys. Rev. Lett.,2012,108, 185301.
    [55]Q. Zhu, C. Zhang, and B. Wu. Exotic superfluidity in spin-orbit coupled Bose-Einstein condensates. EPL,2012,100,50003.
    [56]H. Hu, H. Pu, and X.-J. Liu. Spin-orbit coupled weakly interacting Bose-Einstein condensates in harmonic traps. Phys. Rev. Lett.,2012,108,010402.
    [57]D.-W. Zhang, Z.-Y. Xue, H. Yan, Z. D. Wang, and S.-L. Zhu. Macroscopic Klein tunneling in spin-orbit-coupled Bose-Einstein condensates. Phys. Rev. A,2012,85, 013628.
    [58]D.-W. Zhang, L.-B. Fu, Z. D. Wang, and S.-L. Zhu. Josephson dynamics of a spin-orbit-coupled Bose-Einstein condensate in a double-well potential. Phys. Rev. A, 2012,85,043609.
    [59]T. Ozawa and G. Baym. Ground-state phases of ultracold bosons with Rashba-Dresselhaus spin-orbit coupling. Phys. Rev. A,2012,85,013612; Stability of ultracold atomic Bose condensates with Rashba spin-orbit coupling against quantum and thermal fluctuations. Phys. Rev. Lett.,2012,109,025301.
    [60]Y. Deng, J. Cheng, H. Jing, C.-P. Sun, and S. Yi. Spin-orbit-coupled dipolar Bose-Einstein condensates. Phys. Rev. Lett.,2012,108,125301.
    [61]W. Zheng and Z. Li. Collective modes of a spin-orbit-coupled Bose-Einstein condensate:A hydrodynamic approach. Phys. Rev. A,2012,85,053607.
    [62]H. Zhai. Spin-orbit coupled quantum gases. Int. J. Mod. Phys. B,2012,26, 1230001.
    [63]J. P. Vyasanakere and V. B. Shenoy. Collective excitations, emergent Galilean invariance, and boson-boson interactions across the BCS-BEC crossover induced by a synthetic Rashba spin-orbit coupling. Phys. Rev. A,2012,86,053617.
    [64]Z. F. Xu, Y. Kawaguchi, L. You, and M. Ueda. Symmetry classification of spin-orbit-coupled spinor Bose-Einstein condensates. Phys. Rev. A,2012,86,033628.
    [65]O. Fialko, J. Brand, and U. Zulicke. Soliton magnetization dynamics in spin-orbit-coupled Bose-Einstein condensates. Phys. Rev. A,2012,85,051605(R).
    [66]J. Radic, A. D. Ciolo, K. Sun, and V. Galitski. Exotic quantum spin models in spin-orbit-coupled Mott insulators. Phys. Rev. Lett.,2012,109,085303.
    [67]J. Lian, Y. Zhang, J.-Q. Liang, J. Ma, G Chen, S. Jia. Thermodynamics of spin-orbit-coupled Bose-Einstein condensates. Phys. Rev. A,2012,86,063620.
    [68]D. C. Tsui, H. L. Stormer, and A. C. Gossard. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett.,1982,48,1559-1562.
    [69]R. B. Laughlin. Anomalous quantum Hall effect:an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett.,1983,50,1395-1398.
    [70]X. G Wen. Topological orders in rigid states. International Journal of Modern Physics B,1990,4,239-271.
    [71]X. G. Wen. Topological orders and edge excitations in fractional quantum Hall states. Advances in Physics,1995,44,405-473.
    [72]X. G. Wen. Quantum field theory of many-body systems. Oxford, Oxford University Press,2004.
    [1]R. H. Dicke. Coherence in spontaneous radiation processes. Phys. Rev.,1954,93, 99.
    [2]S. Sachdev. Quantum phase transitions. Cambridge, England, Cambridge University Press,1999.
    [3]P. Zanardi, M. G A. Paris, and L. C. Venuti. Quantum criticality as a resource for quantum estimation. Phys. Rev. A,2008,78,042105.
    [4]K. Hepp and E. Lieb. On the superradiant phase transition for molecules in a quantized radiation field:The Dicke Maser model. Ann. Phys.,1973,76,360.
    [5]Y. K. Wang and F. T. Hioe. Phase transition in the Dicke model of superradiance. Phys. Rev. A,1973,7,831.
    [6]T. Holstein and H. Primakoff. Field dependence of the intrinsic domain magnetization of a ferromagnet. Phys. Rev.,1940,58,1098.
    [7]C. Emary and T. Brandes. Quantum chaos triggered by precursors of a quantum phase transition:The Dicke model. Phys. Rev. Lett.,2003,90,044101; Chaos and the quantum phase transition in the Dicke model. Phys. Rev. E,2003,67,066203.
    [8]J. Vidal and S. Dusuel. Finite-size scaling exponents in the Dicke model. EPL (Europhysics Letters),2007,74,817.
    [9]F. Dimer, B. Estienne, A. S. Parkins, and H. J. Carmichael. Proposed realization of the Dicke-model quantum phase transition in an optical cavity QED system. Phys. Rev. A,2007,75,013804.
    [10]K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger. Dicke quantum phase transition with a superfluid gas in an optical cavity. Nature (London),2010,464, 1301.
    [11]J. Keeling, M. J. Bhaseen, and B. D. Simons. Collective dynamics of Bose-Einstein condensates in optical cavities. Phys. Rev. Lett.,2010,105,043001.
    [12]N. Liu, J. Lian, J. Ma, L. Xiao, G Chen, J.-Q. Liang, and S. Jia. Light-shift-induced quantum phase transitions of a Bose-Einstein condensate in an optical cavity. Phys. Rev. A,2011,83,033601.
    [13]E. K. Irish. Generalized rotating-wave approximation for arbitrarily large coupling. Phys. Rev. Lett.,2007,99,173601.
    [14]J.-Q. Liang, X.-X. Ding. Dynamics of a neutron in electromagnetic fields and quantum phase interference. Phys. Lett. A,1993,176,165.
    [15]Y. Z. Lai, J.-Q. Liang and H.J.W. Muller-Kirsten. Time-dependent quantum systems and the invariant Hermitian operator. Phys. Rev. A,1996,53,3691.
    [16]Z.-D. Chen, J.-Q. Liang, S.-Q. Shen, W.-F. Xie. Dynamics and Berry phase of two-species Bose-Einstein condensates. Phys. Rev. A,2004,69,023611.
    [17]D. Nagy, G Konya, G Szirmai, and P. Domokos. Dicke-model phase transition in the quantum motion of a Bose-Einstein condensate in an optical cavity. Phys. Rev. Lett.,2010,104,130401.
    [18]O. Castanos, E. Nahmad-Achar, R. Lopez-Pefia, and J. G Hirsch. No singularities in observables at the phase transition in the Dicke model. Phys. Rev. A, 2011,83,051601(R).
    [19]C. Emary and T. Brandes. Phase transitions in generalized spin-boson (Dicke) models. Phys. Rev. A,2004,69,053804.
    [20]G Chen, J. Li, J.-Q. Liang. Critical property of the geometric phase in the Dicke model. Phys. Rev. A,2006,74,054101.
    [21]A. C. M. Carollo, J. K. Pachos. Geometric phases and criticality in spin-chain systems. Phys. Rev. Lett.,2005,95,157203.
    [22]S.-L. Zhu. Scaling of geometric phases close to the quantum phase transition in the XY spin chain. Phys. Rev. Lett.,2006,96,077206.
    [23]Y. Liu, L. F. Wei, W. Z. Jia, and J.-Q. Liang. Vacuum-induced Berry phases in single-mode Jaynes-Cummings models. Phys. Rev. A,2010,82,045801.
    [24]J.-Q. Liang, H. J. W. Muller-Kirsten. Time-dependent gauge transformations and Berry's phase. Ann. Phys.,1992,219,42.
    [25]F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Kohl, and T. Esslinger. Cavity QED with a Bose-Einstein condensate. Nature,2007,450,268.
    [26]G Chen, Y. Zhang, L. Xiao, J.-Q. Liang, S. Jia. Strong nonlinear coupling between an untracold atomic ensemble and a nanomechanical oscillator. Opt. Express, 2010,18,23016.
    [27]S. Bell, J. S. Crighton, R. Fletcher. A new efficient method for locating saddle points. Chem. Phys. Lett.,1981,82,122.
    [28]G. Chen, X. Wang, J.-Q. Liang, and Z. D. Wang. Exotic quantum phase transitions in a Bose-Einstein condensate coupled to an optical cavity. Phys. Rev. A, 2008,78,023634.
    [1]C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys.,2008,80,1083.
    [2]J. Dalibard, F. Gerbier, G. Juzeliunas, and P. Ohberg. Colloquium:Artificial gauge potentials for neutral atoms. Rev. Mod. Phys.,2011,83,1523.
    [3]Y.-J. Lin, K. Jimenez-Garcia, and I. B. Spielman. Spin-orbit-coupled Bose-Einstein condensates. Nature (London),2011,471,83-86.
    [4]T. D. Stanescu, B. Anderson, and V. Galitski. Spin-orbit coupled Bose-Einstein condensates. Phys. Rev. A,2008,78,023616.
    [5]J. Larson and E. Sjoqvist. Jahn-Teller-induced Berry phase in spin-orbit-coupled Bose-Einstein condensates. Phys. Rev. A,2009,79,043627.
    [6]C. Wang, C. Gao, C.-M. Jian, and H. Zhai. Spin-orbit coupled spinor Bose-Einstein condensates. Phys. Rev. Lett.,2010,105,160403.
    [7]C. Wu, I. Mondragon-Shem, and X.-F. Zhou. Unconventional Bose-Einstein Condensations from spin-orbit coupling. Chin. Phys. Lett.,2011,28,097102.
    [8]S.-K. Yip. Bose-Einstein condensation in the presence of artificial spin-orbit interaction. Phys. Rev. A,2011,83,043616.
    [9]Y. Zhang, L. Mao, and C. Zhang. Mean-field dynamics of spin-orbit coupled Bose-Einstein condensates. Phys. Rev. Lett.,2012,108,035302.
    [10]Y. Zhang and C. Zhang. Bose-Einstein condensates in spin-orbit-coupled optical lattices:Flat bands and superfluidity. Phys. Rev. A,2013,87,023611.
    [11]S. Sinha, R. Nath, and L. Santos. Trapped two-dimensional condensates with synthetic spin-orbit coupling. Phys. Rev. Lett.,2011,107,270401.
    [12]X.-Q. Xu and J. H. Han Spin-orbit coupled Bose-Einstein condensate under rotation. Phys. Rev. Lett.,2011,107,200401; Emergence of chiral magnetism in spinor Bose-Einstein condensates with Rashba coupling. Phys. Rev. Lett.,2012,108, 185301.
    [13]Q. Zhu, C. Zhang, and B. Wu. Exotic superfluidity in spin-orbit coupled Bose-Einstein condensates. EPL,2012,100,50003.
    [14]H. Hu, H. Pu, and X.-J. Liu. Spin-orbit coupled weakly interacting Bose-Einstein condensates in harmonic traps. Phys. Rev. Lett.,2012,108,010402.
    [15]D.-W. Zhang, Z.-Y. Xue, H. Yan, Z. D. Wang, and S.-L. Zhu. Macroscopic Klein tunneling in spin-orbit-coupled Bose-Einstein condensates. Phys. Rev. A,2012,85, 013628.
    [16]D.-W. Zhang, L.-B. Fu, Z. D. Wang, and S.-L. Zhu. Josephson dynamics of a spin-orbit-coupled Bose-Einstein condensate in a double-well potential. Phys. Rev. A, 2012,85,043609.
    [17]T. Ozawa and G. Baym. Ground-state phases of ultracold bosons with Rashba-Dresselhaus spin-orbit coupling. Phys. Rev. A,2012,85,013612; Stability of ultracold atomic Bose condensates with Rashba spin-orbit coupling against quantum and thermal fluctuations. Phys. Rev. Lett.,2012,109,025301.
    [18]Y. Deng, J. Cheng, H. Jing, C.-P. Sun, and S. Yi. Spin-orbit-coupled dipolar Bose-Einstein condensates. Phys. Rev. Lett.,2012,108,125301.
    [19]W. Zheng and Z. Li. Collective modes of a spin-orbit-coupled Bose-Einstein condensate:A hydrodynamic approach. Phys. Rev. A,2012,85,053607.
    [20]H. Zhai. Spin-orbit coupled quantum gases. Int. J. Mod. Phys. B,2012,26, 1230001.
    [21]J. P. Vyasanakere and V. B. Shenoy. Collective excitations, emergent Galilean invariance, and boson-boson interactions across the BCS-BEC crossover induced by a synthetic Rashba spin-orbit coupling. Phys. Rev. A,2012,86,053617.
    [22]Z. F. Xu, Y. Kawaguchi, L. You, and M. Ueda. Symmetry classification of spin-orbit-coupled spinor Bose-Einstein condensates. Phys. Rev. A,2012,86,033628.
    [23]O. Fialko, J. Brand, and U. Zulicke. Soliton magnetization dynamics in spin-orbit-coupled Bose-Einstein condensates. Phys. Rev. A,2012,85,051605(R).
    [24]J. Radic, A. D. Ciolo, K. Sun, and V. Galitski. Exotic quantum spin models in spin-orbit-coupled Mott insulators. Phys. Rev. Lett.,2012,109,085303.
    [25]T.-L. Ho and S. Zhang. Bose-Einstein condensates with spin-orbit interaction. Phys. Rev. Lett.,2011,107,150403.
    [26]Y. Zhang, G. Chen, and C. Zhang. Tunable spin-orbit coupling and quantum phase transition in a trapped Bose-Einstein condensate. arXiv:1111.4778,2011.
    [27]Y. Li, L. P. Pitaevskii, and S. Stringari. Quantum tricriticality and phase transitions in spin-orbit coupled Bose-Einstein condensates. Phys. Rev. Lett.,2012, 108,225301.
    [28]J.-Y Zhang, S.-C. Ji, Z. Chen, L. Zhang, Z.-D. Du, B. Yan, G-S. Pan, B. Zhao, Y.-J. Deng, H. Zhai, S. Chen, and J.-W. Pan. Collective dipole oscillations of a spin-orbit coupled Bose-Einstein condensate. Phys. Rev. Lett.,2012,109,115301.
    [29]S. Sachdev. Quantum phase transitions. Cambridge, England, Cambridge University Press,1999.
    [30]N. Nagaosa, Quantum field theory in condensed matter physics. Berlin Heidelberg, Springer-Verlag,1999.
    [31]J. Lian, Y. Zhang, J.-Q. Liang, J. Ma, G Chen, S. Jia. Thermodynamics of spin-orbit-coupled Bose-Einstein condensates. Phys. Rev. A,2012,86,063620.
    [32]Z. Fu, P. Wang, S. Chai, L. Huang, and J. Zhang. Bose-Einstein condensate in a light-induced vector gauge potential using 1064-nm optical-dipole-trap lasers. Phys. Rev. A,2011,84,043609.
    [33]C. Chin, R. Grimm, P. Julienne, and E. Tiesinga. Feshbach resonances in ultracold gases. Rev. Mod. Phys.,2010,82,1225.
    [34]M. A. Alcalde, A. H. Cardenas, N. F. Svaiter, and V. B. Bezerra. Entangled states and superradiant phase transitions. Phys. Rev. A 81,032335 (2010).
    [35]汪志诚.热力学·统计物理(第三版).北京,高等教育出版社,2003.
    [36]L. D. Landau, E. M. Lifshitz. Statistical physics. Pt.1. Course of theoretical physics,2nd rev.-enlarg. ed., Singapore, Elsevier,2007.
    [37]Z. F. Xu, R. Lu, and L. You. Emergent patterns in a spin-orbit-coupled spin-2 Bose-Einstein condensate. Phys. Rev. A,2011,83,053602.
    [38]X.-F. Zhou, J. Zhou, and C. Wu. Vortex structures of rotating spin-orbit-coupled Bose-Einstein condensates. Phys. Rev. A,2011,84,063624.
    [39]T. Kawakami, T. Mizushima, and K. Machida. Textures of F=2 spinor Bose-Einstein condensates with spin-orbit coupling. Phys. Rev. A,2011,84,011607.
    [40]Z. Fu, P. Wang, S. Chai, L. Huang, and J. Zhang. Bose-Einstein condensate in a light-induced vector gauge potential using 1064-nm optical-dipole-trap lasers. Phys. Rev. A,2011,84,043609.
    [41]T. Kawakami, T. Mizushima, M. Nitta, and K. Machida. Stable Skyrmions in SU(2) gauged Bose-Einstein condensates. Phys. Rev. Lett.,2012,109,015301.
    [42]W. S. Cole, S. Zhang, A. Paramekanti, and N. Trivedi. Bose-Hubbard models with synthetic spin-orbit coupling:Mott insulators, spin textures, and superfluidity. Phys. Rev. Lett.,2012,109,085302.
    [43]G. Chen, J. Ma, and S. Jia. Long-range superfluid order in trapped Bose-Einstein condensates with spin-orbit coupling. Phys. Rev. A,2012,86,045601.
    [44]M. Kitagawa and M. Ueda. Squeezed spin states. Phys. Rev. A,1993,47,5138.
    [45]A. S(?)rensen, L.-M. Duan, J. I. Cirac, and P. Zoller. Many-particle entanglement with Bose--Einstein condensates. Nature (London),2001,409,63.
    [46]J. Ma, X. Wang, C. P. Sun, and F. Nori. Quantum spin squeezing. Phys. Rep., 2011,509,89.
    [47]K. Helmerson and L. You. Creating massive entanglement of Bose-Einstein condensed atoms. Phys. Rev. Lett.,2001,87,170402.
    [48]M. Zhang, K. Helmerson, and L. You. Entanglement and spin squeezing of Bose-Einstein-condensed atoms. Phys. Rev. A,2003,68,043622.
    [49]H. T. Ng, C. K. Law, and P. T. Leung. Quantum-correlated double-well tunneling of two-component Bose-Einstein condensates. Phys. Rev. A,2003,68,013604.
    [50]G-R. Jin and S. W. Kim. Storage of spin squeezing in a two-component Bose-Einstein condensate. Phys. Rev. Lett.,2007,99,170405.
    [51]J. Esteve, C. Gross, A. Weller, S. Giovanazzi, and M. K. Oberthaler. Squeezing and entanglement in a Bose-Einstein condensate. Nature (London),2008,455,1216.
    [52]C. Gross, T. Zibold, E. Nicklas, J. Esteve, and M. K. Oberthaler. Nonlinear atom interferometer surpasses classical precision limit. Nature (London),2010,464,1165.
    [53]M. F. Riedel, P. Bohi, Y. Li, T. W. Hansch, A. Sinatra, and P. Treutlein. Atom-chip-based generation of entanglement for quantum metrology. Nature (London),2010,464,1170.
    [54]E. M. Bookjans, C. D. Hamley, and M. S. Chapman. Strong quantum spin correlations observed in atomic spin mixing. Phys. Rev. Lett.,2011,107,210406.
    [55]Y. C. Liu, Z. F. Xu, G. R. Jin, and L. You. Spin squeezing:transforming one-axis twisting into two-axis twisting. Phys. Rev. Lett.,2011,107,013601.
    [56]Y. Li, Y. Castin, and A. Sinatra. Optimum spin squeezing in Bose-Einstein condensates with particle losses. Phys. Rev. Lett.,2008,100,210401.
    [57]N. Bar-Gill, D. D. Bhaktavatsala Rao, and G Kurizki. Creating nonclassical states of Bose-Einstein condensates by dephasing collisions. Phys. Rev. Lett.,2011, 107,010404.
    [58]G. Santarelli, P. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N. Luiten, and C. Salomon. Quantum projection noise in an atomic fountain:A high stability cesium frequency standard. Phys. Rev. Lett.,1999,82,4619.
    [59]C. Emary and T. Brandes. Chaos and the quantum phase transition in the Dicke model. Phys. Rev. E,2003,67,066203.
    [1]S. Sachdev. Quantum phase transitions. Cambridge, England, Cambridge University Press,1999.
    [2]R. B. Landau and E. M. Lifschitz. Statistical physics-Course of theoretical physics, Vol 5. Singapore, Elsevier,2007.
    [3]V. L. Ginzburg and L. D. Landau. On the theory of superconductivity. Zh. Ekaper. Teoret. Fiz.,1950,20,1064.
    [4]D. C. Tsui, H. L. Stormer, and A. C. Gossard. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett.,1982,48,1559-1562.
    [5]R. B. Laughlin. Anomalous quantum Hall effect:an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett.,1983,50,1395-1398.
    [6]X. G Wen. Topological orders in rigid states. International Journal of Modern Physics B,1990,4,239-271.
    [7]X. G. Wen. Topological orders and edge excitations in fractional quantum Hall states. Advances in Physics,1995,44,405-473.
    [8]X. G. Wen. Quantum field theory of many-body systems. Oxford, Oxford University Press,2004.
    [9]A. Kitaev. Fault-tolerant quantum computation by anyons. Annals of Physics,2003, 303,2-30.
    [10]X. G Wen. Quantum orders in an exact soluble model. Phys. Rev. Lett.,2003,90, 016803.
    [11]J. Yu, S. P. Kou, X. G Wen. Topological quantum phase transition in the transverse Wen-plaquette model. Europhys. Lett.,2008,84,17004.
    [12]A. Kitaev. Anyons in an exactly solved model and beyond. Annals of Physics, 2006,321,2-111.
    [13]X.-Y. Feng, G-M. Zhang, T. Xiang. Topological characterization of quantum phase transitions in a spin-1/2 model. Phys. Rev. Lett.,2007,98,087204.
    [14]H. C. Jiang, Z. Y. Weng, T. Xiang. Accurate determination of tensor network state of quantum lattice models in two dimensions. Phys. Rev. Lett.,2008,101,090603.
    [15]H.-D. Chen, J. Hu. Exact mapping between classical and topological orders in two-dimensional spin systems. Phys. Rev. B,2007,76,193101.
    [16]H.-D. Chen, Z. Nussinov. Exact results of the Kitaev model on a hexagonal lattice:spin states, string and brane correlators, and anyonic excitations. Journal of Physics A:Mathematical and Theoretical,2008,41,075001.
    [17]S. Yang, S.-J. Gu, C.-P. Sun, H.-Q. Lin. Fidelity susceptibility and long-range correlation in the Kitaev honeycomb model. Phys. Rev. A,2008,78,012304.
    [18]S.-J. Gu. Fidelity approach to quantum phase transitions.Int. J. Mod. Phys. B, 2010,24,4371-4458.
    [19]M. V. Berry. Quantal phase factors accompanying adiabatic changes. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences,1984,392, 45-57.
    [20]M. V. Berry. Anticipations of the geometric phase. Phys. Today,1990,43,34-40.
    [21]A. Shapere, F Wilczek F (Eds.). Geometric phases in physics. Singapore, World Scientific,1989.
    [22]A. Bohm, A. Mostafazadeh, H. Koizumi, Q. Niu, J. Zwanziger. The geometric phase in quantum systems. New York, Springer,2003.
    [23]A. C. M. Carollo, J. K. Pachos. Geometric phases and criticality in spin-chain systems. Phys. Rev. Lett.,2005,95,157203.
    [24]S.-L. Zhu. Scaling of geometric phases close to the quantum phase transition in the XY spin chain. Phys. Rev. Lett.,2006,96,077206.
    [25]A. Hamma. Berry phases and quantum phase transitions. arXiv:quant-ph/0602091v1,2006.
    [26]S.-L. Zhu. Geometric phases and quantum phase transitions.Int. J. Mod. Phys. B, 2008,22,561-581.
    [27]G. Chen, J. Li, J.-Q. Liang. Critical property of the geometric phase in the Dicke model. Phys. Rev. A,2006,74,054101.
    [28]Y.-Q. Ma, S. Chen. Geometric phase and quantum phase transition in an inhomogeneous periodic XY spin-1/2 model. Phys. Rev. A,2009,79,022116.
    [29]T. Hirano, H. Katsura, Y. Hatsugai. Topological classification of gapped spin chains:Quantized Berry phase as a local order parameter. Phys. Rev. B,2008,77, 094431.
    [30]J. Richert. The Berry phase:A topological test for the spectrum structure of frustrated quantum spin systems. Phys. Lett. A,2008,372,5352-5355.
    [31]A. I. Nesterov, S. G. Ovchinnikov. Geometric phases and quantum phase transitions in open systems. Phys. Rev. E,2008,78,015202(R).
    [32]B. Basu. Dynamics of the geometric phase in the adiabatic limit of a quench induced quantum phase transition. Phys. Lett. A,2010,374,1205-1208.
    [33]S. L. Sondhi, S. M. Girvin, J. P. Carini, D. Shahar. Continuous quantum phase transitionss. Rev. Mod. Phys.,1997,69,315.
    [34]J. Lian, J.-Q. Liang, G. Chen. Geometric phase in the Kitaev honeycomb model and scaling behaviour at critical points. Eur. Phys. J. B,2012,85,207.
    [35]K. P. Schmidt, S. Dusuel, J. Vidal. Emergent fermions and anyons in the Kitaev model. Phys. Rev. Lett.,2008,100,057208.
    [36]J. Vidal, K. P. Schmidt, S. Dusuel. Self-duality and bound states of the toric code model in a transverse field. Phys. Rev. B,2009,80,081104.
    [37]G Kells, J. K. Slingerland, J. Vala. Description of Kitaev's honeycomb model with toric-code stabilizers. Phys. Rev. B,2009,80,125415.
    [38]J.-Q. Liang, H. J. W. Muller-Kirsten. Time-dependent gauge transformations and Berry's phase. Ann. Phys. (N.Y.),1992,219,42-54.
    [39]M. N. Barber. Finite-size scaling. in Phase transition and critical phenomena, Vol. 8, edited by C. Domb, J. L. Lebowitz. New York, Academic,1983,145-266.
    [40]S.-J. Gu, H.-M. Kwok, W.-Q. Ning, H.-Q. Lin. Fidelity susceptibility, scaling, and universality in quantum critical phenomena. Phys. Rev. B,2008,77,245109.