供体—受体型共轭聚合物在电致变色器件中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电致变色(Electrochromism, EC)是指材料在外加驱动电压施加下发生了氧化还原反应过程,或者分子结构内有电荷(如电子或离子)发生注入或抽出,物质的光学属性如透过率、吸收率和发射率三者在可见光、红外光谱区域内产生了可逆变换,这个变换的宏观表现是材料的色彩以及透明度发生的可逆性地转变。目前EC的研究重点在于如何提高其变色性能,而性能的提高核心在于新材料的开发。其中,作为电致变色材料的重要组成部分,供体-受体型(Donor-acceptor)共轭聚合物电致变色材料是由供体单元(给电子基团)和受体单元(吸电子基团)所构成,能够通过分子结构的设计来解决材料的变色颜色、光学对比度(△T%)。以及响应时间等问题。此外,这类材料还具有来源广泛、价格低廉、驱动电压低、颜色响应速度快以及工作寿命长等优点而逐渐受到重视,并广泛应用于各种类型的电致变色器件中。
     本文主要围绕供体-受体型聚合物作为电致变色材料,通过改变供体和受体基团和材料的主链结构及侧基基团,研究了材料的合成、表征及性能。通过对电致变色性能的测试,选用电荷相互匹配的对电极组装成为聚合物电致变色器件(PECDs),进而对器件的性能进行表征和优化,以期望得到具备多种颜色显示、光学对比度高、变色响应速度快、工作寿命长的电致变色器件。这篇论文有如下四个部分:
     第一部分:合成单体8,11-二-(4-噻吩-2-基)苊[1,2-b]喹喔啉(DTAQ)经由电化学聚合得到供体-受体型聚合物薄膜(PDTAQ),采用化学表征手段证明其结构。光谱电化学及电致变色性能显示聚合物薄膜具有明显的颜色变换,光学对比度接近50%,而且变色响应速度快。PDTAQ薄膜作为工作电极,对电极分别为普鲁士蓝(PB)和五氧化二钒(V205)薄膜,电解液LiC104/PC组装成不同的三明治的互补型的电致变色器件并进行性能研究,结果表明:PDTAQ/PB器件和PDTAQ/V2O5器件在光学吸收性能、颜色变化、光学对比度(AT%)和响应时间方面都因对电极的不同而表现出较大的电致变色性能差异。因此,通过设计D-A型电致变色材料并利用不同类型的电荷相互匹配的对电极组装成电致变色器件的设计方案为多颜色显示器件提供了一种新的设计思路。
     第二部分:本章利用两种供体单元通过偶联聚合成功合成了聚4-二苯胺苯甲醛-4,8-二乙基己基氧苯[1,2-b;3,4-b]二噻吩(PBDTTPA-CHO),并对其官能团进行修饰合成了PBDTTPA-COOH,得到两种侧基上具有不同吸电子基团的D-π-A型的共轭聚合物。PBDTTPAs都具备优异的热稳定性能,确保了材料在长期工作中的稳定性。此外,聚合物在薄膜和器件状态时在不同电压下的可见光和红外波段均有良好的电致变色性能。因此,通过对D-A型共轭聚合物进行分子结构中吸电子基团的调整可以调节其丰富的颜色变化、对比度及变色速度,进而实现显示器件的多样性。
     第三部分:基于本实验室研究的ProDOT作为电致变色基团,利用吸电子基团(1,3,5-三嗪)和给电子基团(三苯胺)分别作为中心核,通过分子设计来合成星型电致变色材料。合成单体M1和M2并利用电化学聚合得到其聚合物(P1、P2)。P1和P2的中心核分别是吸电子基团和供电子基团的差异表现在包括颜色、驱动电压、光学对比度和响应时间在内的不同的电致变色性能。P1由在中性态下的粉红色变成氧化态(1.5V)的浅灰色,P2展现出可逆的电致变色性能并呈现多颜色的显示:在还原状态下为黄绿色,半氧化态为蓝绿色,全氧化态为蓝色。因此,通过分子结构形状的设计拓宽了供体-受体型聚合物电子变色材料的研究领域。
     第四部分:主链结构中的电子供体单元:一维结构的苯并二噻吩(BDT),同时引入两种受体单元:4,7-二噻吩-1,2,3-苯并二噻唑(DTBT)以及噻吩吡咯烷酮(TPD),调节供受体基团上侧基上烷基链的长度,通过Stille偶联聚合反应成功得到了新型的A1-D-A2的聚合物材料。侧基的长度对PBDT系列的热分解温度区别不大,并且具有较好的热稳定性;对系列PTBD材料溶液状态和固体膜进行紫外可见吸收光谱的测试发现:受体单元TPD和供体单元BDT的侧基上取代基的长度对最大吸收波长有明显的影响。A1-D-A2型的聚合物有利于降低材料的能带隙,PTBD聚合物在溶液状态和薄膜状态下的光学能带隙都低于1.75eV,这说明进而可以调节材料在光学范围内对颜色的调节和性能的控制。对系列聚合物进行了电化学测试发现吸电子基团上的给电子能力的强弱对材料的氧化电位有极大的影响。另外,对于主链结构上供电子基团BDT的侧基上烷基链的长度影响着材料的氧化电位,如烷基链长度越长,给电子能力增强,材料容易变成氧化状态,所需的电位较低。因此,采用侧基取代基团的设计进而调节材料的光学及电学性能为新的聚合物电致变色材料的研究拓宽了方向。
Electrochromic (EC) is defined that a material takes place reversible redox reaction or electrical charges (electrons or ions) injected or ejected and its optical properties (transmittance, absorption and reflectivity) exhibit reversible changes in visible light region. The macro performance for molecules display that the reversible changes of the color and transparency of these changes. Being modified by designing molecules structure, donor-acceptor type electrochromic polymers are paid attention for a wealth of sources, low cost, low driving voltage, good optical quality, fast color conversion and long working stability.
     In this article, we studied that the synthesis, characterization and properties of donor-acceptor type electrochromic polymers by modifying the donor units and acceptor units. We measured the properties of the electrochromic polymers and chose the counter electrodes which electrical charges matched with the polymer working electrodes. We characterized and optimized the electrochromic properties of devices, to obtain devices with multi-colours, high optical contrast, fast response switching times. The study work below were undergoing through four parts:
     In the first part,8,11-Di-(4-thiophen-2-yl)acenaphtho [1,2-b]quinoxaline (DTAQ) was successfully synthesized by Stille coupling reaction and the corresponding polymer was prepared electrochemically. Electrochromic properties of the polymer film reveal that PDTAQ film show distinct color states and high optical contrast accompany fast switching times. The complementary ECDs which are based on the PDTAQ film as working electrode, prussian blue (PB) and V2O5as counter electrode respectively. LiClO4/PC solution as electrolyte were assembled and characterizaed. The results illustrate that the properties of PDTAQ/PB device and PDTAQ/V2O5devices (including the absorption, color changes,△T%and response times) can be adjusted by the counter electrodes.
     In the second part, a novel donor-π-bridge-acceptor copolymer, PBDTTPA-CHO, containing4-(Bis(4-bromophenyl)-amino)benzaldehyde and4,8-bis-(2-ethyl-hexyloxy)-oxybenzo-[1,2-b:3,4-b']dithiophene was successfully synthesized using Stille coupling polymerization and the pendant aldehyde group was modified with cyanoacetic acid to synthesize another polymer, PBDTTPA-COOH. Both of polymers are soluble in ordinary organic solvents so that they can be easily made films onto rigid or flexible substrates. The polymers with different electrophilic groups exhibit different electrochromic behaviors, including applied driving voltages, completely different colors and switching transmittances. We fabricated and studied the sandwiched ECDs using a PBDTTPA layer as the working electrode and vanadium pentoxide film acted as the counter electrode. Upon the contribution of counter electrodes, devices of both polymers show similar color changes but higher transmittance than their films.
     In the third part, star branched monomers2,4,6-tris(4-(3,3-dimethyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepin-6-yl)-phenyl)-1,3,5-triazine (M1) and tris(4-(3,3-dimethyl-3,4-dihydro-2H-thieno[3,4-b][1,4]-dioxepin-6-yl)-phenyl)amine (M2) were designed and successfully synthesized via Stille coupling reaction and the corresponding polymers (PI, P2) were synthesized using electrochemical polymerization. Structures of both of the monomers were certified by NMR and FT-IR. p1and P2, having electron-withdrawing and electron-donating core respectively, display various electrochromic behaviors, including distinguished colors, applied driving voltages and switching transmittances. Therefore, this part provided a new method for electrochromic molecules design.
     In the fourth part, a series different side chains of donor-acceptor (A1-D-A2) conjugated copolymers with a donor unit (benzo[1,2-b:4,5-b']dithiophene (BDT)) and two different electron-accepting untis (N-alkylthieno[3,4-c]pyrrole-4,6-dione (TPD) and dithiophenebenzothiadiazole (DTBT)) is designed and prepared. The series of polymers display two intense absorptions in the wavelength range of600-900nm, and the band gaps (Eg) are lower than1.70eV. The optical and electrochemical properties of these polymers show that the copolymers have the low band gaps and the HOMO and LUMO energy levels are different. The results indicate that different soluble alkyl chain can optimize the properties of the copolymers, which are potential in conjugated polymer electrochromic materials and devices.
引文
[1]Oi, T. Electrochromic Materials. Annu. Rev. Mater. Sci.1986,16,185-201.
    [2]He, T.; Yao, J. N. Photochromism of Molybdenum Oxide. J. Photochem. Photobiol. C-Photochem. Rev.2003,4,125-143.
    [3]Minkin, V. I. Photo-, Thermo-, Solvato-, and Electrochromic Spiroheterocyclic Compounds. Chem. Rev.2004,104,2751-2776.
    [4]Greenberg, C. B. Optically Switchable Thin-Films-a Review. Thin Solid Films.1994,251, 81-93.
    [5]Volke, J.; Volkeova, V. Electrochromy and Introduction of Electrochromic Techniques. Chem. Listy.1996,90,137-146.
    [6]Goldenberg, L. M. Electrochemical Properties of Langmuir-Blodgett-Films. J. Electroanal. Chem.1994,379,3-19.
    [7]Mulkidjanian, A. Y.; Cherepanov, D. A.; Haumann, M.; Junge, W. Photosystem Ii of Green Plants:Topology of Core Pigments and Redox Cofactors as Inferred from Electrochromic Difference Spectra. Biochemistry.1996,35,3093-3107.
    [8]Searson, P. C. Electrochemical Deposition of Novel Materials and Structures. Sol. Energy Mater. Sol. Cells.1992,27,377-388.
    [9]Kreuer, K. D. Proton Conductivity:Materials and Applications. Chem. Mat.1996,8, 610-641.
    [10]Mortimer, R. J. In Annual Review of Materials Research, Vol 41; Clarke, D. R., Fratzl, P., Eds.; Annual Reviews:Palo Alto,2011; Vol.41, p 241-268.
    [11]Gomathi, H.; Jayalakshmi, M.; Joseph, J.; Vittal, R. Electrochemistry in Electrochromism-Manifestation by Transition Metal Oxides. Bull. Electrochem.2003,19, 9-16.
    [12]Bange, K. Colouration of Tungsten Oxide Films:A Model for Optically Active Coatings. Sol. Energy Mater. Sol. Cells.1999,58,1-131.
    [13]Monk, P. M. S. Charge Movement through Electrochromic Thin-Film Tungsten Trioxide. Crit. Rev. Solid State Mat. Sci.1999,24,193-226.
    [14]Henningsson, A.; Stashans, A.; Sandell, A.; Rensmo, H.; Sodergren, S.; Lindstrom, H.; Vayssieres, L.; Hagfeldt, A.; Lunell, S.; Siegbahn, H. Proton Insertion in Polycrystalline Wo3 Studied with Electron Spectroscopy and Semi-Empirical Calculations. Advances in Quantum Chemistry, Vol 47.2004,47,23-36.
    [15]Granqvist, C. G. Electrochromic Tungsten Oxide Films:Review of Progress 1993-1998. Sol. Energy Mater. Sol. Cells.2000,60,201-262.
    [16]Santato, C.; Odziemkowski, M.; Ulmann, M.; Augustynski, J. Crystallographically Oriented Mesoporous Wo3 Films:Synthesis, Characterization, and Applications. J. Am. Chem. Soc. 2001,123,10639-10649.
    [17]Livage, J. Vanadium Pentoxide Gels. Chem. Mat.1991,3,578-593.
    [18]Talledo, A.; Granqvist, C. G. Electrochromic Vanadium-Pentoxide-Based Films-Structural, Electrochemical, and Optical-Properties. J. Appl. Phys.1995,77,4655-4666.
    [19]Lev, O.; Wu, Z.; Bharathi, S.; Glezer, V.; Modestov, A.; Gun, J.; Rabinovich, L.; Sampath, S. Sol-Gel Materials in Electrochemistry. Chem. Mat.1997,9,2354-2375.
    [20]Beke, S. A Review of the Growth of V2o5 Films from 1885 to 2010. Thin Solid Films.2011, 519,1761-1771.
    [21]Korosec, R. C.; Bukovec, P. Sol-Gel Prepared Nio Thin Films for Electrochromic Applications. Acta Chim. Slov.2006,53,136-147.
    [22]Lou, X. C.; Zhao, X. J.; Feng, J. M.; Zhou, X. D. Electrochromic Properties of A1 Doped B-Subsituted Nio Films Prepared by Sol-Gel. Prog. Org. Coat.2009,64,300-303.
    [23]Macak, J. M.; Tsuchiya, H.; Ghicov, A.; Yasuda, K.; Hahn, R.; Bauer, S.; Schmuki, P. Tio2 Nanotubes:Self-Organized Electrochemical Formation, Properties and Applications. Curr. Opin. Solid State Mat. Sci.2007,11,3-18.
    [24]Berger, T.; Monllor-Satoca, D.; Jankulovska, M.; Lana-Villarreal, T.; Gomez, R. The Electrochemistry of Nanostructured Titanium Dioxide Electrodes. ChemPhysChem.2012, 13,2824-2875.
    [25]Kullman, L.; Azens, A.; Granqvist, C. G. Decreased Electrochromism in Li-Intercalated Ti Oxide Films Containing La, Ce, and Pr. J. Appl. Phys.1997,81,8002-8010.
    [26]Hussain, Z. Optical and Electrochromic Properties of Heated and Annealed Moo3 Thin Films. J. Mater. Res.2001,16,2695-2708.
    [27]Hussain, Z. Optical and Electrochromic Properties of Annealed Lithium-Molybdenum-Bronze Thin Films. J. Electron. Mater.2002,31,615-630.
    [28]Bar, G.; Larina, N.; Grinis, L.; Lokshin, V.; Gvishi, R.; Kiryuschev, I.; Zaban, A.; Khodorkovsky, V. Rgb Organic Electrochromic Cells. Sol. Energy Mater. Sol. Cells.2012, 99,123-128.
    [29]Kakibe, T.; Ohno, H. Quasi-Reversible Electrochromic Behavior of Alkyl Viologens Dispersed Mono-Molecularly in Double-Stranded DNA Chains. J. Mater. Chem.2009,19, 4960-4964.
    [30]Remhof, A.; Borgschulte, A. Thin-Film Metal Hydrides. ChemPhysChem.2008,9, 2440-2455.
    [31]Gomez-Romero, P. Hybrid Organic-Inorganic Materials-in Search of Synergic Activity. Adv. Mater.2001,13,163-174.
    [32]Haghi, A. K. Conducting Polymers. J. Balk. Tribol. Assoc.2009,15,141-155.
    [33]Mortimer, R. J.; Dyer, A. L.; Reynolds, J. R. Electrochromic Organic and Polymeric Materials for Display Applications. Displays.2006,27,2-18.
    [34]Stenger-Smith, J. D. Intrinsically Electrically Conducting Polymers. Synthesis, Characterization, and Their Applications. Prog. Polym. Sci.1998,23,57-79.
    [35]Jagur-Grodzinski, J. Electronically Conductive Polymers. Polym. Adv. Technol.2002,13, 615-625.
    [36]Granqvist, C. G. Solar Energy Materials. Adv. Mater.2003,15,1789-1803.
    [37]Anand, J.; Palaniappan, S.; Sathyanarayana, D. N. Conducting Polyaniline Blends and Composites. Prog. Polym. Sci.1998,23,993-1018.
    [38]Gospodinova, N.; Terlemezyan, L. Conducting Polymers Prepared by Oxidative Polymerization:Polyaniline. Prog. Polym. Sci.1998,23,1443-1484.
    [39]Prokes, J.; Stejskal, J.; Omastova, M. Polyaniline and Polypyrrole-Two Representatives of Conducting Polymers. Chem. Listy.2001,95,484-492.
    [40]Patra, A.; Bendikov, M. Polyselenophenes. J. Mater. Chem.2010,20,422-433.
    [41]Groenendaal, B. L.; Jonas, R; Freitag, D.; Pielartzik, H.; Reynolds, J. R. Poly(3,4-Ethylenedioxythiophene) and Its Derivatives:Past, Present, and Future. Adv. Mater.2000,12,481-494.
    [42]Gurunathan, K.; Murugan, A. V.; Marimuthu, R.; Mulik, U. P.; Amalnerkar, D. P. Electrochemically Synthesised Conducting Polymeric Materials for Applications Towards Technology in Electronics, Optoelectronics and Energy Storage Devices. Mater. Chem. Phys.1999,61,173-191.
    [43]Thompson, B. C.; Kim, Y. G; McCarley, T. D.; Reynolds, J. R. Soluble Narrow Band Gap and Blue Propylenedioxythiophene-Cyanovinylene Polymers as Multifunctional Materials for Photovoltaic and Electrochromic Applications. J. Am. Chem. Soc.2006,128, 12714-12725.
    [44]Walczak, R. M.; Reynolds, J. R. Poly (3,4-Alkylenedioxypyrroles):The Pxdops as Versatile yet Underutilized Electroactive and Conducting Polymers. Adv. Mater.2006,18, 1121-1131.
    [45]Granqvist, C. G. Transparent Conductors as Solar Energy Materials:A Panoramic Review. Sol. Energy Mater. Sol. Cells.2007,91,1529-1598.
    [46]Mart, H. Oxidative Polycondensation Reaction. Des. Monomers Polym.2006,9,551-588.
    [47]Cho, S. I.; Lee, S. B. Fast Electrochemistry of Conductive Polymer Nanotubes:Synthesis, Mechanism, and Application. Accounts Chem. Res.2008,41,699-707.
    [48]Liu, H. T.; Li, Y. Z.; Xu, J. K.; Le, Z. G.; Luo, M. B.; Wang, B. S.; Pu, S. Z.; Shen, L. A. Electrosyntheses and Characterization of Polyalkylenedioxybenzenes. Eur. Polym. J.2008, 44,171-188.
    [49]Amb, C. M.; Dyer, A. L.; Reynolds, J. R. Navigating the Color Palette of Solution-Processable Electrochromic Polymers. Chem. Mat.2011,23,397-415.
    [50]Yen, H. J.; Liou, G. S. Solution-Processable Triarylamine-Based Electroactive High Performance Polymers for Anodically Electrochromic Applications. Polym. Chem.2012,3, 255-264.
    [51]Deng, J.; Fu, X. K.; Wang, G.; Huang, J.; Wu, L.; Zou, X. C. Progress in Synthesis and Application of 2,5-Dithienylpyrrole Derivatives. Chin. J. Org. Chem.2012,32,1051-1059.
    [52]Bisquert, J. Physical Electrochemistry of Nanostructured Devices. Phys. Chem. Chem. Phys. 2008,10,49-72.
    [53]Vidotti, M.; de Torresi, S. I. C. Nanochromics:Old Materials, New Structures and Architectures for High Performance Devices. J. Braz. Chem. Soc.2008,19,1248-1257.
    [54]Thakur, V. K.; Ding, G. Q.; Ma, J.; Lee, P. S.; Lu, X. H. Hybrid Materials and Polymer Electrolytes for Electrochromic Device Applications. Adv. Mater.2012,24,4071-4096.
    [55]Ng, D. K. P.; Jiang, J. Z. Sandwich-Type Heteroleptic Phthalocyaninato and Porphyrinato Metal Complexes. Chem. Soc. Rev.1997,26,433-442.
    [56]Shirota, Y. Organic Materials for Electronic and Optoelectronic Devices. J. Mater. Chem. 2000,10,1-25.
    [57]Chen, K. C.; Hsu, C. Y.; Hu, C. W.; Ho, K. C. A Complementary Electrochromic Device Based on Prussian Blue and Poly(Prodot-Et-2) with High Contrast and High Coloration Efficiency. Sol. Energy Mater. Sol. Cells.2011,95,2238-2245.
    [58]Ikeda, T.; Stoddart, J. F. Electrochromic Materials Using Mechanically Interlocked Molecules. Sci. Technol. Adv. Mater.2008,9,7.
    [59]Gomar-Nadal, E.; Mugica, L.; Vidal-Gancedo, J.; Casado, J.; Navarrete, J. T. L.; Veciana, J.; Rovira, C.; Amabilino, D. B. Synthesis and Doping of a Multifunctional Tetrathiafulvalene-Substituted Poly (Isocyanide). Macromolecules.2007,40,7521-7531.
    [60]Credi, A.; Semeraro, M.; Silvi, S.; Venturi, M. Redox Control of Molecular Motion in Switchable Artificial Nanoscale Devices. Antioxid. Redox Signal.2011,14,1119-1165.
    [61]Bailleul, B.; Cardol, P.; Breyton, C.; Finazzi, G. Electrochromism:A Useful Probe to Study Algal Photosynthesis. Photosynth. Res.2010,106,179-189.
    [62]Gesheva, K. A.; Ivanova, T. M.; Bodurov, G. Transition Metal Oxide Films:Technology and "Smart Windows" Electrochromic Device Performance. Prog. Org. Coat.2012,74,635-639.
    [63]Kamalisarvestani, M.; Saidur, R.; Mekhilef, S.; Javadi, F. S. Performance, Materials and Coating Technologies of Thermochromic Thin Films on Smart Windows. Renew. Sust. Energ. Rev.2013,26,353-364.
    [64]Bowonder, B.; Sarnot, S. L.; Rao, M. S.; Rao, D. P. Electronic Display Technologies State-of-the-Art. Electron. Inf. Plan.1994,21,683-746.
    [65]Audebert, P.; Miomandre, F. Electrofluorochromism:From Molecular Systems to Set-up and Display. Chem. Sci.2013,4,575-584.
    [66]Rodriguez-Mendez, M. L.; de Saja, J. A. Nanostructured Thin Films Based on Phthalocyanines: Electrochromic Displays and Sensors. J. Porphyr. Phthalocyanines.2009, 13,606-615.
    [67]Meng, X. W.; Qiang, L.; Wei, J. F.; Shi, H. T. Preparation of Electrophoretic anoparticles for Electronic Paper. J. Nanosci. Nanotechnol.2014,14,1617-1630.
    [68]Heikenfeld, J.; Drzaic, P.; Yeo, J. S.; Koch, T. A Critical Review of the Present and Future Prospects for Electronic Paper. J. Soc. Inf. Disp.2011,19,129-156.
    [69]Ochoa, C. E.; Aries, M. B. C.; Hensen, J. L. M. State of the Art in Lighting Simulation for Building Science:A Literature Review. J. Build. Perf. Simul.2012,5,209-233.
    [70]Jelle, B. P.; Hynd, A.; Gustavsen, A.; Arasteh, D.; Goudey, H.; Hart, R. Fenestration of Today and Tomorrow:A State-of-the-Art Review and Future Research Opportunities. Sol. Energy Mater. Sol. Cells.2012,96,1-28.
    [71]Linford, R. G. Exafs Studies of Polymer Electrolytes. Chem. Soc. Rev.1995,24,267.
    [72]Iyoda, M.; Hasegawa, M.; Enozawa, H. Self-Assembly and Nanostructure Formation of Multi-Functional Organic Pi-Donors. Chem. Lett.2007,36,1402-1407.
    [73]Das, T. K.; Prusty, S. Review on Conducting Polymers and Their Applications. Polym.-Plast. Technol. Eng.2012,51,1487-1500.
    [74]Otero, T. F.; Martinez, J. G.; Arias-Pardilla, J. Biomimetic Electrochemistry from Conducting Polymers. A Review Artificial Muscles, Smart Membranes, Smart Drug Delivery and Computer/Neuron Interfaces. Electrochim. Acta.2012,84,112-128.
    [75]Long, Y. Z.; Li, M. M.; Gu, C. Z.; Wan, M. X.; Duvail, J. L.; Liu, Z. W.; Fan, Z. Y. Recent Advances in Synthesis, Physical Properties and Applications of Conducting Polymer Nanotubes and Nanofibers. Prog. Polym. Sci.2011,36,1415-1442.
    [76]Roncali, J. Molecular Engineering of the Band Gap of Pi-Conjugated Systems:Facing Technological Applications. Macromol. Rapid Commun.2007,28,1761-1775.
    [77]Odobel, F.; Le Pleux, L.; Pellegrin, Y.; Blart, E. New Photovoltaic Devices Based on the Sensitization of P-Type Semiconductors:Challenges and Opportunities. Accounts Chem. Res.2010,43,1063-1071.
    [78]Argun, A. A.; Aubert, P. H.; Thompson, B. C.; Schwendeman, I.; Gaupp, C. L.; Hwang, J.; Pinto, N. J.; Tanner, D. B.; MacDiarmid, A. G.; Reynolds, J. R. Multicolored Electrochromism Polymers:Structures and Devices. Chem. Mat.2004,16,4401-4412.
    [79]Wang, J. P.; Zhang, D. H. One-Dimensional Nanostructured Polyaniline:Syntheses, Morphology Controlling, Formation Mechanisms, New Features, and Applications. Adv. Polym. Technol.2013,32, E323-E368.
    [80]Liaw, D. J.; Wang, K. L.; Huang, Y. C.; Lee, K. R.; Lai, J. Y; Ha, C. S. Advanced Polyimide Materials:Syntheses, Physical Properties and Applications. Prog. Polym. Sci.2012,37, 907-974.
    [81]Groenendaal, L.; Zotti, G.; Aubert, P. H.; Waybright, S. M.; Reynolds, J. R. Electrochemistry of Poly(3,4-Alkylenedioxythiophene) Derivatives. Adv. Mater.2003,15, 855-879.
    [82]Nielsen, C. B.; McCulloch, I. Recent Advances in Transistor Performance of Polythiophenes. Prog. Polym. Sci.2013,38,2053-2069.
    [83]Shi, L.; Chew, M. Y. L. A Review on Sustainable Design of Renewable Energy Systems. Renew. Sust. Energ. Rev.2012,16,192-207.
    [84]Inagi, S.; Fuchigami, T. Molecular Conversion of Conjugated Polymers Via Electron-Transfer on Electrode as a Key Step. J. Synth. Org. Chem. Jpn.2012,70,606-614.
    [85]Beaujuge, P. M.; Amb, C. M.; Reynolds, J. R. Spectral Engineering in Pi-Conjugated Polymers with Intramolecular Donor-Acceptor Interactions. Accounts Chem. Res.2010,43, 1396-1407.
    [86]Taskin, A. T.; Balan, A.; Epik, B.; Yildiz, E.; Udum, Y A.; Toppare, L. A Novel Quinoxaline Bearing Electroactive Monomer:Pyrrole as the Donor Moiety. Electrochim. Acta.2009,54, 5449-5453.
    [1]Dong, Y.; Xu, C. Y. Conducting Polymer-Based Patterned Electrochromic Window for Vehicle Sun Strips. Int. J. Nonlinear Sci. Numer. Simul.2010,11,63-70.
    [2]Kaneko, C.; Xu, C. Y.; Liu, L.; Ning, D.; Taya, M. In Smart Structures and Materials 2005: Electroactive Polymer Actuators and Devices(Eapad); Cohen, Y. B., Ed.; Spie-Int Soc Optical Engineering:Bellingham,2005; Vol.5759, p 518-524.
    [3]Kim, S. Y; Taya, M.; Xu, C. Y. Contrast, Switching Speed, and Durability of V2o5-Tio2 Film-Based Electrochromic Windows. J. Electrochem. Soc.2009,156, E40-E45.
    [4]Ma, C.; Taya, M.; Xu, C. Y. Flexible Electrochromic Device Based on Poly (3,4-(2,2-Dimethylpropylenedioxy)Thiophene). Electrochim. Acta.2008,54,598-605.
    [5]Ning, D.; Xu, C. Y.; Liu, L.; Kaneko, C.; Taya, M. In Smart Structures and Materials 2005: Electroactive Polymer Actuators and Devices(Eapad); Cohen, Y. B., Ed.; Spie-Int Soc Optical Engineering:Bellingham,2005; Vol.5759, p 260-267.
    [6]Wei, Y X.; Li, M.; Zheng, J. M.; Xu, C. Y. In Third International Conference on Smart Materials and Nanotechnology in Engineering; Leng, J., BarCohen, Y., Lee, I., Lu, J., Eds.; Spie-Int Soc Optical Engineering:Bellingham,2012; Vol.8409.
    [7]Xu, C. Y.; Liu, L.; Legenski, S. E.; Ning, D.; Taya, M. Switchable Window Based on Electrochromic Polymers. J. Mater. Res.2004,19,2072-2080.
    [8]Yang, S. W.; Zheng, J. M.; Li, M.; Xu, C. Y. A Novel Photoelectrochromic Device Based on Poly(3,4-(2,2-Dimethylpropylenedioxy)Thiophene) Thin Film and Dye-Sensitized Solar Cell. Sol. Energy Mater. Sol. Cells.2012,97,186-190.
    [9]Yen, H. J.; Liou, G. S. Solution-Processable Triarylamine-Based Electroactive High Performance Polymers for Anodically Electrochromic Applications. Polym. Chem.2012,3, 255-264.
    [10]Amb, C. M.; Dyer, A. L.; Reynolds, J. R. Navigating the Color Palette of Solution-Processable Electrochromic Polymers. Chem. Mat.2011,23,397-415.
    [11]Du, Q.; Mi, S.; Zheng, J. M.; Xu, C. Y. A Comparative Study of the Electrochemical Behavior of Complementary Polymer Electrochromic Devices Based on Different Counter-Electrodes. Smart Mater. Struct.2013,22,8.
    [12]Ma, C.; Xu, C. Y. In Active Polymers; Lendlein, A., Shastri, V. P., Gall, K., Eds.; Materials Research Society:Warrendale,2009; Vol.1190, p 155-161.
    [13]Ma, C.; Zheng, J. M.; Yang, S. W.; Zhu, D.; Bin, Y. Z.; Xu, C. Y. Electrochromic Kinetics of Nanostructured Poly(3,4-(2,2-Dimethylpropylenedioxy)Thiophene) Film on Plastic Substrate. Org. Electron.2011,12,980-987.
    [14]Cihaner, A.; Algi, F. A Novel Neutral State Green Polymeric Electrochromic with Superior N-and P-Doping Processes:Closer to Red-Blue-Green (Rgb) Display Realization. Adv. Funct. Mater.2008,18,3583-3589.
    [15]Ak, M.; Ak, M. S.; Gullu, M.; Toppare, L. Optoelectrochemical Properties of Poly(5,12-Dihydrothieno[3',4':2,3][1,4]Dioxocino[6,7-B]Quinoxaline-Co-2,2'Bithiophene) and Its Electrochromic Device Application. Smart Mater. Struct.2007,16,2621-2626.
    [16]Nurioglu, A. G.; Akpinar, H.; Sendur, M.; Toppare, L. Multichromic Benzimidazole-Containing Polymers:Comparison of Donor and Acceptor Unit Effects. Journal of Polymer Science Part A:Polymer Chemistry.2012,50,3499-3506.
    [17]Durmus, A.; Gunbas, G. E.; Camurlu, P.; Toppare, L. A Neutral State Green Polymer with a Superior Transmissive Light Blue Oxidized State. Chem Commun (Camb).2007, 3246-3248.
    [18]Ozkut, M.1.; Algi, M. P.; Oztas, Z.; Algi, F.; Onal, A. M.; Cihaner, A. Members of Cmy Color Space:Cyan and Magenta Colored Polymers Based on Oxadiazole Acceptor Unit. Macromolecules.2012,45,729-734.
    [1]Dautremontsmith, W. C. Transition-Metal Oxide Electrochromic Materials and Displays-a Review.1. Oxides with Cathodic Coloration. Displays.1982,3,3-22.
    [2]Chen, K.-C.; Hsu, C.-Y.; Hu, C.-W.; Ho, K.-C. A Complementary Electrochromic Device Based on Prussian Blue and Poly(Prodot-Et-2) with High Contrast and High Coloration Efficiency. Sol. Energy Mater. Sol. Cells.2011,95,2238-2245.
    [3]Luz Rodriguez-Mendez, M.; Antonio de Saja, J. Nanostructured Thin Films Based on Phthalocyanines:Electrochromic Displays and Sensors. J. Porphyr. Phthalocyanines.2009, 13,606-615.
    [4]Rong, Y.; Kim, S.; Su, F.; Myers, D.; Taya, M. New Effective Process to Fabricate Fast Switching and High Contrast Electrochromic Device Based on Viologen and Prussian Blue/Antimony Tin Oxide Nano-Composites with Dark Colored State. Electrochim. Acta. 2011,56,6230-6236.
    [5]Beaujuge, P. M.; Reynolds, J. R. Color Control in Pi-Conjugated Organic Polymers for Use in Electrochromic Devices. Chem. Rev.2010,110,268-320.
    [6]Xu, C. Y.; Liu, L.; Legenski, S. E.; Ning, D.; Taya, M. Switchable Window Based on Electrochromic Polymers. J. Mater. Res.2004,19,2072-2080.
    [7]Ma, C.; Taya, M.; Xu, C. Smart Sunglasses Based on Electrochromic Polymers. Polym. Eng. Sci.2008,48,2224-2228.
    [8]Ma, C.; Zheng, J.; Yang, S.; Zhu, D.; Bin, Y; Xu, C. Electrochromic Kinetics of Nanostructured Poly(3,4-(2,2-Dimethylpropylenedioxy)Thiophene) Film on Plastic Substrate. Org. Electron.2011,12,980-987.
    [9]Mortimer, R. J.; Dyer, A. L.; Reynolds, J. R. Electrochromic Organic and Polymeric Materials for Display Applications. Displays.2006,27,2-18.
    [10]Monk, P. M. S.; Delage, F.; Vieira, S. M. C. Electrochromic Paper:Utility of Electrochromes Incorporated in Paper. Electrochim. Acta.2001,46,2195-2202.
    [11]Meng, X. W.; Qiang, L.; Wei, J. F.; Shi, H. T. Preparation of Electrophoretic Nanoparticles for Electronic Paper. J. Nanosci. Nanotechnol.2014,14,1617-1630.
    [12]Chandrasekhar, P.; Zay, B. J.; Birur, G. C; Rawal, S.; Pierson, E. A.; Kauder, L.; Swanson, T. Large, Switchable Electrochromism in the Visible through Far-Infrared in Conducting Polymer Devices. Adv. Funct. Mater.2002,12,95-103.
    [13]Icli, M.; Pamuk, M.; Algi, F.; Onal, A. M.; Cihaner, A. Donor-Acceptor Polymer Electrochromes with Tunable Colors and Performance. Chem. Mat.2010,22,4034-4044.
    [14]Bundgaard, E.; Krebs, F. Low Band Gap Polymers for Organic Photovoltaics. Sol. Energy Mater. Sol. Cells.2007,91,954-985.
    [15]Thompson, B. C.; Frechet, J. M. Polymer-Fullerene Composite Solar Cells. Angewandte Chemie.2008,47,58-77.
    [16]Sonmez, G Polymeric Electrochromics. Chem Commun (Camb).2005,5251-5259.
    [17]Kolay, M.; Tarkuc, S.; Udum, Y. A.; Toppare, L. Synthesis and Optical Properties of Fused Aromatic Thienopyrazine Based Pi-Conjugated Polymers. Smart Materials & Structures. 2011,20,
    [18]Sommer, M.; Huettner, S.; Thelakkat, M. Donor-Acceptor Block Copolymers for Photovoltaic Applications. J. Mater. Chem.2010,20,10788.
    [19]Shirota, Y. Organic Materials for Electronic and Optoelectronic Devices. J. Mater. Chem. 2000,10,1-25.
    [20]Jagur-Grodzinski, J. Electronically Conductive Polymers. Polym. Adv. Technol.2002,13, 615-625
    [21]Icli-Ozkut, M.; Mersini, J.; Onal, A. M.; Cihaner, A. Substituent and Heteroatom Effects on the Electrochromic Properties of Similar Systems. Journal of Polymer Science Part a-Polymer Chemistry.2012,50,615-621.
    [22]Argun, A. A.; Aubert, P. H.; Thompson, B. C.; Schwendeman, I.; Gaupp, C. L.; Hwang, J.; Pinto, N. J.; Tanner, D. B.; MacDiarmid, A. G.; Reynolds, J. R. Multicolored Electrochromism Polymers:Structures and Devices. Chem. Mat.2004,16,4401-4412.
    [23]Ma, C.; Taya, M.; Xu, C. Flexible Electrochromic Device Based on Poly (3,4-(2,2-Dimethylpropylenedioxy)Thiophene). Electrochim. Acta.2008,54,598-605.
    [24]Zhang, L.; Xiong, S.; Ma, J.; Lu, X. A Complementary Electrochromic Device Based on Polyaniline-Tethered Polyhedral Oligomeric Silsesquioxane and Tungsten Oxide. Sol. Energy Mater. Sol. Cells.2009,93,625-629.
    [25]Nie, G.; Zhou, L.; Yang, H. Electrosynthesis of a New Polyindole Derivative Obtained from 5-Formylindole and Its Electrochromic Properties. J. Mater. Chem.2011,21,13873.
    [26]Nurulla, I.; Yamaguchi, I.; Yamamoto, T. Preparation and Properties of New Pi-Conjugated Polyquinoxalines with Aromatic Fused Rings in the Side Chain. Polymer Bulletin.2000,44, 231-238.
    [27]Kim, B.; Ma, B.; Donuru, V. R.; Liu, H.; Frechet, J. M. Bodipy-Backboned Polymers as Electron Donor in Bulk Heterojunction Solar Cells. Chem Commun (Camb).2010,46, 4148-4150.
    [28]Lin, C.-F.; Hsu, C.-Y.; Lo, H.-C.; Lin, C.-L.; Chen, L.-C.; Ho, K.-C. A Complementary Electrochromic System Based on a Prussian Blue Thin Film and a Heptyl Viologen Solution. Sol. Energy Mater. Sol. Cells.2011,95,3074-3080.
    [29]Wei, Y.; Li, M.; Zheng, J.; Xu, C. Structural Characterization and Electrical and Optical Properties of V2o5 Films Prepared Via Ultrasonic Spraying. Thin Solid Films.2013,534, 446-451.
    [30]Lev, O.; Wu, Z.; Bharathi, S.; Glezer, V.; Modestov, A.; Gun, J.; Rabinovich, L.; Sampath, S. Sol-Gel Materials in Electrochemistry. Chem. Mat.1997,9,2354-2375.
    [31]Beke, S. A Review of the Growth of V2o5 Films from 1885 to 2010. Thin Solid Films.2011, 519,1761-1771.
    [32]Blouin, N.; Michaud, A.; Leclerc, M. A Low-Bandgap Poly(2,7-Carbazole) Derivative for Use in High-Performance Solar Cells. Adv. Mater.2007,19,2295-2300.
    [33]Udum, Y. A.; Durmus, A.; Gunbas, G. E.; Toppare, L. Both P-and N-Type Dopable Polymer toward Electrochromic Applications. Org. Electron.2008,9,501-506.
    [34]Usluer, O.; Koyuncu, S.; Demic, S.; Janssen, R. A. J. A Novel High-Contrast Ratio Electrochromic Material from Spiro[Cyclododecane-1,9'-Fluorene]Bicarbazole. Journal of Polymer Science Part B:Polymer Physics.2011,49,333-341.
    [1]Oi, T. Electrochromic Materials. Annu. Rev. Mater. Sci.1986,16,185-201.
    [2]Volke, J.; Volkeova, V. Electrochromy and Introduction of Electrochromic Techniques. Chem. Listy.1996,90,137-146.
    [3]Mortimer, R. J. Electrochromic Materials. Chem. Soc. Rev.1997,26,147-156.
    [4]Argun, A. A.; Aubert, P. H.; Thompson, B. C.; Schwendeman, I.; Gaupp, C. L.; Hwang, J.; Pinto, N. J.; Tanner, D. B.; MacDiarmid, A. G.; Reynolds, J. R. Multicolored Electrochromism Polymers:Structures and Devices. Chem. Mat.2004,16,4401-4412.
    [5]Granqvist, C. G Transparent Conductors as Solar Energy Materials:A Panoramic Review. Sol. Energy Mater. Sol. Cells.2007,91,1529-1598.
    [6]Bailleul, B.; Cardol, P.; Breyton, C.; Finazzi, G. Electrochromism:A Useful Probe to Study Algal Photosynthesis. Photosynth. Res.2010,106,179-189.
    [7]Mortimer, R. J. In Annual Review of Materials Research, Vol 41; Clarke, D. R., Fratzl, P., Eds.; Annual Reviews:Palo Alto,2011; Vol.41, p 241-268.
    [8]Bar, G.; Larina, N.; Grinis, L.; Lokshin, V.; Gvishi, R.; Kiryuschev, I.; Zaban, A.; Khodorkovsky, V. Rgb Organic Electrochromic Cells. Sol. Energy Mater. Sol. Cells.2012, 99,123-128.
    [9]Shi, L.; Chew, M. Y. L. A Review on Sustainable Design of Renewable Energy Systems. Renew. Sust. Energ. Rev.2012,16,192-207.
    [10]Dautremontsmith, W. C. Transition-Metal Oxide Electrochromic Materials and Displays-a Review.2. Oxides with Anodic Coloration. Displays.1982,3,67-80.
    [11]Santato, C.; Odziemkowski, M.; Ulmann, M.; Augustynski, J. Crystallographically Oriented Mesoporous Wo3 Films:Synthesis, Characterization, and Applications. J. Am. Chem. Soc. 2001,123,10639-10649.
    [12]Henningsson, A.; Stashans, A.; Sandell, A.; Rensmo, H.; Sodergren, S.; Lindstrom, H.; Vayssieres, L.; Hagfeldt, A.; Lunell, S.; Siegbahn, H. Proton Insertion in Polycrystalline Wo3 Studied with Electron Spectroscopy and Semi-Empirical Calculations. Advances in Quantum Chemistry, Vol 47.2004,47,23-36.
    [13]Korosec, R. C.; Bukovec, P. Sol-Gel Prepared Nio Thin Films for Electrochromic Applications. Acta Chim. Slov.2006,53,136-147.
    [14]Lin, C.-F.; Hsu, C.-Y.; Lo, H.-C.; Lin, C.-L.; Chen, L.-C.; Ho, K.-C. A Complementary Electrochromic System Based on a Prussian Blue Thin Film and a Heptyl Viologen Solution. Sol. Energy Mater. Sol. Cells.2011,95,3074-3080.
    [15]Rodriguez-Mendez, M. L.; de Saja, J. A. Nanostructured Thin Films Based on Phthalo-cyanines:Electrochromic Displays and Sensors. J. Porphyr. Phthalocyanines.2009,13, 606-615.
    [16]Rong, Y.; Kim, S.; Su, F. Y.; Myers, D.; Taya, M. New Effective Process to Fabricate Fast Switching and High Contrast Electrochromic Device Based on Viologen and Prussian Blue/Antimony Tin Oxide Nano-Composites with Dark Colored State. Electrochim Acta. 2011,56,6230-6236.
    [17]Oktem, G; Balan, A.; Baran, D.; Toppare, L. Donor-Acceptor Type Random Copolymers for Full Visible Light Absorption. Chem Commun (Camb).2011,47,3933-3935.
    [18]Yang, S.; Zheng, J.; Li, M.; Xu, C. A Novel Photoelectrochromic Device Based on Poly(3,4-(2,2-Dimethylpropylenedioxy)Thiophene) Thin Film and Dye-Sensitized Solar Cell. Solar Energy Materials and Solar Cells.2012,97,186-190.
    [19]Icli-Ozkut, M.; Mersini, J.; Onal, A. M.; Cihaner, A. Substituent and Heteroatom Effects on the Electrochromic Properties of Similar Systems. Journal of Polymer Science Part A: Polymer Chemistry.2012,50,615-621.
    [20]Kumar, A.; Welsh, D. M.; Morvant, M. C.; Piroux, F.; Abboud, K. A.; Reynolds, J. R. Conducting Poly(3,4-Alkylenedioxythiophene) Derivatives as Fast Electrochromics with High-Contrast Ratios. Chemistry of Materials.1998,10,896-902.
    [21]Usluer, O.; Koyuncu, S.; Demic, S.; Janssen, R. A. J. A Novel High-Contrast Ratio Electrochromic Material from Spiro[Cyclododecane-1,9'-Fluorene]Bicarbazole. Journal of Polymer Science Part B:Polymer Physics.2011,49,333-341.
    [22]Osken, I.; Bildirir, H.; Ozturk, T. Electrochromic Behavior of Poly(3,5-Bis(4-Bromophenyl)Dithieno[3,2-B;2',3'-D]Thiophene). Thin Solid Films.2011, 519,7707-7711.
    [23]Sonmez, G.; Schottland, P.; Zong, K.; Reynolds, J. R. Highly Transmissive and Conductive Poly[(3,4-Alkylenedioxy)Pyrrole-2,5-Diyl] (Pxdop) Films Prepared by Air or Transition Metal Catalyzed Chemical Oxidation. Journal of Materials Chemistry.2001,11,289-294.
    [24]Beaujuge, P. M.; Reynolds, J. R. Color Control in Pi-Conjugated Organic Polymers for Use in Electrochromic Devices. Chem. Rev.2010,110,268-320.
    [25]Haghi, A. K. Conducting Polymers. J. Balk. Tribol. Assoc.2009,15,141-155.
    [26]Jagur-Grodzinski, J. Electronically Conductive Polymers. Polym. Adv. Technol.2002,13, 615-625.
    [27]Shirota, Y. Organic Materials for Electronic and Optoelectronic Devices. J. Mater. Chem. 2000,10,1-25.
    [28]Das, T. K.; Prusty, S. Review on Conducting Polymers and Their Applications. Polym.-Plast. Technol. Eng.2012,51,1487-1500.
    [29]Thompson, B. C.; Frechet, J. M. Polymer-Fullerene Composite Solar Cells. Angewandte Chemie.2008,47,58-77.
    [30]Ono, R. J.; Kang, S.; Bielawski, C. W. Controlled Chain-Growth Kumada Catalyst Transfer Polycondensation of a Conjugated Alternating Copolymer. Macromolecules.2012,45, 2321-2326.
    [31]Zhang, Z. G.; Wang, J. Structures and Properties of Conjugated Donor-Acceptor Copolymers for Solar Cell Applications. Journal of Materials Chemistry.2012,22,4178.
    [32]Hou, J. H.; Park, M. H.; Zhang, S. Q.; Yao, Y.; Chen, L. M.; Li, J. H.; Yang, Y. Bandgap and Molecular Energy Level Control. Of Conjugated Polymer Photovoltaic Materials Based on Benzo 1,2-B:4,5-B1 Dithiophene. Macromolecules.2008,41,6012-6018.
    [33]Hsiao, S. H.; Liou, G S.; Kung, Y. C.; Yen, H. J. High Contrast Ratio and Rapid Switching Electrochromic Polymeric Films Based on 4-(Dimethylamino)Triphenylamine-Functionalized Aromatic Polyamides. Macromolecules.2008,41,2800-2808.
    [34]Hsiao, S. H.; Liou, G. S.; Wang, H. M. Highly Stable Electrochromic Polyamides Based on N,N-Bis(4-Aminophenyl)-N',N'-Bis(4-Tert-Butylphenyl)-1,4-Phenylenediamine. J. Polym. Sci. Pol. Chem.2009,47,2330-2343.
    [35]Chen, C. J.; Hu, Y. C.; Liou, G. S. Electrically Bistable Memory Devices Based on Poly(Triphenylamine)-Pcbm Hybrids. Chem. Commun.2013,49,2804-2806.
    [36]Yen, H.-J.; Lin, H.-Y; Liou, G.-S. Novel Starburst Triarylamine-Containing Electroactive Aramids with Highly Stable Electrochromism in near-Infrared and Visible Light Regions. Chem. Mat.2011,23,1874-1882.
    [37]Huang, L.-T.; Yen, H.-J.; Wu, J.-H.; Liou, G.-S. Preparation and Characterization of near-Infrared and Multi-Colored Electrochromic Aramids Based on Aniline-Derivatives. Org. Electron.2012,13,840-849.
    [38]Yen, H. J.; Liou, G. S. Solution-Processable Triarylamine-Based Electroactive High Performance Polymers for Anodically Electrochromic Applications. Polym. Chem.2012,3, 255-264.
    [39]Chen, C. J.; Hu, Y. C.; Liou, G. S. Electrically Bistable Memory Devices Based on Poly(Triphenylamine)-Pcbm Hybrids. Chem Commun (Camb).2013,49,2804-2806.
    [40]Coutterez, C.; Gandini, A. Synthesis and Characterization of Oligo(Heteroarylene Vinylene)S Incorporating Furan and Thiophene Moieties. Polymer.1998,39,7009-7014.
    [41]Guiver, M. D.; Zhang, H.; Robertson, G. P.; Dai, Y. Modified Polysulfones. Iii. Synthesis and Characterization of Polysulfone Aldehydes for Reactive Membrane Materials. J. Polym. Sci. Pol. Chem.2001,39,675-682.
    [42]Guirado, G.; Coudret, C.; Hliwa, M.; Launay, J. P. Understanding Electrochromic Processes Initiated by Dithienylcyclopentene Cation-Radicals. J. Phys. Chem. B.2005,109, 17445-17459.
    [43]Nie, G; Zhou, L.; Yang, H. Electrosynthesis of a New Polyindole Derivative Obtained from 5-Formylindole and Its Electrochromic Properties. Journal of Materials Chemistry.2011,21, 13873.
    [44]Zhang, Z. G.; Zhang, K. L.; Liu, G; Zhu, C. X.; Neoh, K. G; Kang, E. T. Triphenylamine-Fluorene Alternating Conjugated Copolymers with Pendant Acceptor Groups:Synthesis, Structure-Property Relationship, and Photovoltaic Application. Macromolecules.2009,42,3104-3111.
    [45]Livage, J. Vanadium Pentoxide Gels. Chem. Mat.1991,3,578-593.
    [46]Talledo, A.; Granqvist, C. G Electrochromic Vanadium-Pentoxide-Based Films-Structural, Electrochemical, and Optical-Properties. J. Appl. Phys.1995,77,4655-4666.
    [47]Lev, O.; Wu, Z.; Bharathi, S.; Glezer, V; Modestov, A.; Gun, J.; Rabinovich, L.; Sampath, S. Sol-Gel Materials in Electrochemistry. Chem. Mat.1997,9,2354-2375.
    [48]Beke, S. A Review of the Growth of V2o5 Films from 1885 to 2010. Thin Solid Films.2011, 519,1761-1771.
    [49]Wei, Y. X.; Li, M.; Zheng, J. M.; Xu, C. Y. In Third International Conference on Smart Materials and Nanotechnology in Engineering; Leng, J., BarCohen, Y., Lee, I., Lu, J., Eds.; Spie-Int Soc Optical Engineering:Bellingham,2012; Vol.8409.
    [50]Du, Q.; Mi, S.; Zheng, J. M.; Xu, C. Y. A Comparative Study of the Electrochemical Behavior of Complementary Polymer Electrochromic Devices Based on Different Counter-Electrodes. Smart Mater. Struct.2013,22,8.
    [1]Beaujuge, P. M.; Reynolds, J. R. Color Control in Π-Conjugated Organic Polymers for Use in Electrochromic Devices. Chemical Reviews.2010,110,268-320.
    [2]Rosseinsky, D. R.; Mortimer, R. J. Electrochromic Systems and the Prospects for Devices. Advanced Materials.2001,13,783.
    [3]Boudreault, P. L. T.; Najari, A.; Leclerc, M. Processable Low-Bandgap Polymers for Photovoltaic Applications. Chemistry of Materials.2011,23,456-469.
    [4]Beaujuge, P. M.; Reynolds, J. R. Color Control in Pi-Conjugated Organic Polymers for Use in Electrochromic Devices. Chem. Rev.2010,110,268-320.
    [5]Haghi, A. K. Conducting Polymers. J. Balk. Tribol. Assoc.2009,15,141-155.
    [6]Mortimer, R. J. Electrochromic Materials. Chem. Soc. Rev.1997,26,147-156.
    [7]Mortimer, R. J. In Annual Review of Materials Research, Vol 41; Clarke, D. R., Fratzl, P., Eds.; Annual Reviews:Palo Alto,2011; Vol.41, p 241-268.
    [8]Jagur-Grodzinski, J. Electronically Conductive Polymers. Polym. Adv. Technol.2002,13, 615-625.
    [9]Das, T. K.; Prusty, S. Review on Conducting Polymers and Their Applications. Polym.-Plast. Technol. Eng.2012,51,1487-1500.
    [10]Bar, G.; Larina, N.; Grinis, L.; Lokshin, V.; Gvishi, R.; Kiryuschev, I.; Zaban, A.; Khodorkovsky, V. Rgb Organic Electrochromic Cells. Sol. Energy Mater. Sol. Cells.2012, 99,123-128.
    [11]Udum, Y. A.; Durmus, A.; Gunbas, G E.; Toppare, L. Both P-and N-Type Dopable Polymer toward Electrochromic Applications. Organic Electronics.2008,9,501-506.
    [12]Celebi, S.; Balan, A.; Epik, B.; Baran, D.; Toppare, L. Donor Acceptor Type Neutral State Green Polymer Bearing Pyrrole as the Donor Unit. Organic Electronics.2009,10,631-636.
    [13]Oktem, G.; Balan, A.; Baran, D.; Toppare, L. Donor-Acceptor Type Random Copolymers for Full Visible Light Absorption. Chem Commun (Camb).2011,47,3933-3935.
    [14]Ozyurt, F.; Durmus, A.; Gorkem Gunbas, E.; Toppare, L. A Low-Band Gap Conductive Copolymer of Bis-3-Hexylthiophene Substituted 4-Tert-Butylphenyl Quinoxaline and 3,4-Ethylenedioxythiophene. Journal of Solid State Electrochemistry.2008,14,279-283.
    [15]Balan, A.; Baran, D.; Toppare, L. Processable Donor-Acceptor Type Electrochromes Switching between Multicolored and Highly Transmissive States Towards Single Component Rgb-Based Display Devices. Journal of Materials Chemistry.2010,20,9861.
    [16]Unver, E. K.; Tarkuc, S.; Baran, D.; Tanyeli, C.; Toppare, L. Synthesis of New Donor-Acceptor Polymers Containing Thiadiazoloquinoxaline and Pyrazinoquinoxaline Moieties:Low-Band Gap, High Optical Contrast, and Almost Black Colored Materials. Tetrahedron Lett.2011,52,2725-2729.
    [17]Tarkuc, S.; Udum, Y. A.; Toppare, L. Tuning of the Neutral State Color of the П-Conjugated Donor-Acceptor-Donor Type Polymer from Blue to Green Via Changing the Donor Strength on the Polymer. Polymer.2009,50,3458-3464.
    [18]Katsuma, K.; Shirota, Y. A Novel Class of Pi-Electron Dendrimers for Thermally and Morphologically Stable Amorphous Molecular Materials. Adv. Mater.1998,10,223-+.
    [19]Ichikawa, M.; Wakabayashi, K.; Hayashi, S.; Yokoyama, N.; Koyama, T.; Taniguchi, Y. Bi-or Ter-Pyridine Tris-Substituted Benzenes as Electron-Transporting Materials for Organic Light-Emitting Devices. Org. Electron.2010,11,1966-1973.
    [20]Danel, K.; Huang, T. H.; Lin, J. T.; Tao, Y. T.; Chuen, C. H. Blue-Emitting Anthracenes with End-Capping Diarylamines. Chem. Mat.2002,14,3860-3865.
    [21]Shirota, Y.; Kageyama, H. Charge Carrier Transporting Molecular Materials and Their Applications in Devices. Chem. Rev.2007,107,953-1010.
    [22]Li, J. Y.; Liu, D. Dendrimers for Organic Light-Emitting Diodes. J. Mater. Chem.2009,19, 7584-7591.
    [23]Bolink, H. J.; Barea, E.; Costa, R. D.; Coronado, E.; Sudhakar, S.; Zhen, C.; Sellinger, A. Efficient Blue Emitting Organic Light Emitting Diodes Based on Fluorescent Solution Processable Cyclic Phosphazenes. Org. Electron.2008,9,155-163.
    [24]Newkome, G. R.; Shreiner, C. D. Poly(Amidoamine), Polypropylenimine, and Related Dendrimers and Dendrons Possessing Different 1-> 2 Branching Motifs:An Overview of the Divergent Procedures. Polymer.2008,49,1-173.
    [25]Yang, Z. F.; Xu, B.; He, J. T.; Xue, L. L.; Guo, Q.; Xia, H. J.; Tian, W. J. Solution-Processable and Thermal-Stable Triphenylamine-Based Dendrimers with Truxene Cores as Hole-Transporting Materials for Organic Light-Emitting Devices. Org. Electron. 2009,10,954-959.
    [26]Sengupta, S.; Sadhukhan, S. K.; Muhuri, S. A Tetraphenylmetharie Based Starburst Triarylamine Cluster:Spectroscopy, Electrochemistry and Morphological Studies. Tetrahedron Lett.2002,43,3521-3524.
    [27]Ichikawa, M.; Hibino, K.; Yokoyama, N.; Miki, T.; Koyama, T; Taniguchi, Y; Sid In 2007 Sid International Symposium, Digest of Technical Papers, Vol Xxxviii, Books Iand Ii; Soc Information Display:Playa Del Rey,2007; Vol.38, p 816-819.
    [28]Hisamatsu, Y.; Aihara, H. Diverse Dimerization of Molecular Tweezers with a 2,4,6-Triphenyl-1,3,5-Triazine Spacer in the Solid State. Chem Commun (Camb).2010,46, 4902-4904.
    [29]Reghu, R. R.; Grazulevicius, J. V.; Simokaitiene, J.; Matulaitis, T.; Miasojedovas, A.; Kazlauskas, K.; Jursenas, S.; Data, P.; Lapkowski, M.; Zassowski, P. Glass Forming Donor-Substituted S-Triazines:Photophysical and Electrochemical Properties. Dyes Pigment.2013,97,412-422.
    [30]Ranganathan, A.; Heisen, B. C.; Dix, I.; Meyer, F. A Triazine-Based Three-Directional Rigid-Rod Tecton Forms a Novel Id Channel Structure. Chem Commun (Camb).2007, 3637-3639.
    [31]Cheng, X.; Zhao, J.; Fu, Y.; Cui, C.; Zhang, X. Electrosynthesis and Characterization of a Multielectrochromic Copolymer of Tris[4-(2-Thienyl)Phenyl]Amine with 3,4-Ethylenedioxythiophene. J. Electrochem. Soc.2012,160, G6-G13.
    [32]Iwan, A.; Sek, D. Polymers with Triphenylamine Units:Photonic and Electroactive Materials. Prog. Polym. Sci.2011,36,1277-1325.
    [33]Cheng, X.; Zhao, J.; Cui, C.; Fu, Y.; Zhang, X. Star-Shaped Conjugated Systems Derived from Thienyl-Derivatized Poly(Triphenylamine)S as Active Materials for Electrochromic Devices. J. Electroanal. Chem.2012,677-680,24-30.
    [34]Cravino, A.; Roquet, S.; Leriche, P.; Aleveque, O.; Frere, P.; Roncali, J. A Star-Shaped Triphenylamine Pi-Conjugated System with Internal Charge-Transfer as Donor Material for Hetero-Junction Solar Cells. Chem Commun (Camb).2006,1416-1418.
    [35]Xu, C.; Zhao, J.; Cui, C.; Wang, M.; Kong, Y.; Zhang, X. Triphenylamine-Based Multielectrochromic Material and Its Neutral Green Electrochromic Devices. J. Electroanal. Chem.2012,682,29-36.
    [36]Chou, M. Y; Leung, M. K.; Su, Y L. O.; Chiang, C. L.; Lin, C. C.; Liu, J. H.; Kuo, C. K.; Mou, C. Y. Electropolymerization of Starburst Triarylamines and Their Application to Electrochromism and Electroluminescence. Chem. Mat.2004,16,654-661.
    [37]Kapoor, N.; Thomas, K. R. J. Fluoranthene-Based Triarylamines as Hole-Transporting and Emitting Materials for Efficient Electroluminescent Devices. New J. Chem.2010,34, 2739-2748.
    [38]Lambert, C.; Noll, G Intervalence Charge-Transfer Bands in Triphenylamine-Based Polymers. Synth. Met.2003,139,57-62.
    [39]Thelakkat, M. Star-Shaped, Dendrimeric and Polymeric Triarylamines as Photoconductors and Hole Transport Materials for Electro-Optical Applications. Macromol. Mater. Eng.2002, 287,442-461.
    [40]Mortimer, R. J.; Dyer, A. L.; Reynolds, J. R. Electrochromic Organic and Polymeric Materials for Display Applications. Displays.2006,27,2-18.
    [41]Groenendaal, B. L.; Jonas, F.; Freitag, D.; Pielartzik, H.; Reynolds, J. R. Poly(3,4-Ethylenedioxythiophene) and Its Derivatives:Past, Present, and Future. Adv. Mater.2000,12,481-494.
    [42]Ma, C.; Zheng, J. M.; Yang, S. W.; Zhu, D.; Bin, Y. Z.; Xu, C. Y. Electrochromic Kinetics of Nanostructured Poly(3,4-(2,2-Dimethylpropylenedioxy)Thiophene) Film on Plastic Substrate. Org. Electron.2011,12,980-987.
    [43]Ma, C.; Taya, M.; Xu, C. Y. Flexible Electrochromic Device Based on Poly (3,4-(2,2-Dimethylpropylenedioxy)Thiophene). Electrochim. Acta.2008,54,598-605.
    [44]Yang, S. W.; Zheng, J. M.; Li, M.; Xu, C. Y. A Novel Photoelectrochromic Device Based on Poly(3,4-(2,2-Dimethylpropylenedioxy)Thiophene) Thin Film and Dye-Sensitized Solar Cell. Sol. Energy Mater. Sol. Cells.2012,97,186-190.
    [1]Beaujuge, P. M.; Reynolds, J. R. Color Control in Pi-Conjugated Organic Polymers for Use in Electrochromic Devices. Chem. Rev.2010,110,268-320.
    [2]Haghi, A. K. Conducting Polymers. J. Balk. Tribol. Assoc.2009,15,141-155.
    [3]Das, T. K.; Prusty, S. Review on Conducting Polymers and Their Applications. Polym.-Plast. Technol. Eng.2012,51,1487-1500.
    [4]Jagur-Grodzinski, J. Electronically Conductive Polymers. Polym. Adv. Technol.2002,13, 615-625.
    [5]Lin, W. P.; Liu, S. J.; Gong, T.; Zhao, Q.; Huang, W. Polymer-Based Resistive Memory Materials and Devices. Adv. Mater.2014,26,570-606.
    [6]Liu, Y.; Zhang, F.; Zou, L. B.; Jian, J. Y.; Bao, X. P. Recent Progress in Receptor Compounds Based on Carbazole Derivatives for Anion Recognition and Sensing. Chin. J. Org. Chem.2013,33,2485-2495.
    [7]Sun, M. M.; Zhou, M. L.; Liang, L. Y.; Wang, W.; Wang, W.; Ling, Q. D. Research Progress in Conjugated Polymer Prepared by Direct (Hetero) Arylation Polycondensation. Chin. J. Org. Chem.2013,33,2504-2514.
    [8]Jhuo, H. J.; Yeh, P. N.; Liao, S. H.; Li, Y. L.; Cheng, Y. S.; Chen, S. A. Review on the Recent Progress in Low Band Gap Conjugated Polymers for Bulk Hetero-Junction Polymer Solar Cells. J. Chin. Chem. Soc.2014,61,115-126.
    [9]Wang, H. Y.; Xu, Y. Z.; Yu, X. H.; Xing, R. B.; Liu, J. G.; Han, Y. C. Structure and Morphology Control in Thin Films of Conjugated Polymers for an Improved Charge Transport. Polymers.2013,5,1272-1324.
    [10]Roncali, J. Molecular Engineering of the Band Gap of Pi-Conjugated Systems:Facing Technological Applications. Macromol. Rapid Commun.2007,28,1761-1775.
    [11]Shirota, Y. Organic Materials for Electronic and Optoelectronic Devices. J. Mater. Chem. 2000,10,1-25.
    [12]Kreuer, K. D. Proton Conductivity:Materials and Applications. Chem. Mat.1996,8, 610-641.
    [13]Shi, L.; Chew, M. Y. L. A Review on Sustainable Design of Renewable Energy Systems. Renew. Sust. Energ. Rev.2012,16,192-207.
    [14]Thakur, V. K.; Ding, G. Q.; Ma, J.; Lee, P. S.; Lu, X. H. Hybrid Materials and Polymer Electrolytes for Electrochromic Device Applications. Adv. Mater.2012,24,4071-4096.
    [15]Gomez-Romero, P. Hybrid Organic-Inorganic Materials-in Search of Synergic Activity. Adv. Mater.2001,13,163-174.
    [16]Remhof, A.; Borgschulte, A. Thin-Film Metal Hydrides. ChemPhysChem.2008,9, 2440-2455.
    [17]Scharber, M. C.; Muhlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. J. Design Rules for Donors in Bulk-Heterojunction Solar Cells—Towards 10% Energy-Conversion Efficiency. Adv. Mater.2006,18,789-794.
    [18]Sun, Y.; Takacs, C. J.; Cowan, S. R.; Seo, J. H.; Gong, X.; Roy, A.; Heeger, A. J. Efficient, Air-Stable Bulk Heterojunction Polymer Solar Cells Using Moo(X) as the Anode Interfacial Layer. Adv Mater.2011,23,2226-2230.
    [19]Wang, D. H.; Kim do, Y.; Choi, K. W.; Seo, J. H.; Im, S. H.; Park, J. H.; Park, O. O.; Heeger, A. J. Enhancement of Donor-Acceptor Polymer Bulk Heterojunction Solar Cell Power Conversion Efficiencies by Addition of Au Nanoparticles. Angewandte Chemie.2011,50, 5519-5523.
    [20]Shirota, Y.; Kageyama, H. Charge Carrier Transporting Molecular Materials and Their Applications in Devices. Chem. Rev.2007,107,953-1010.
    [21]Huo, L.; Ye, L.; Wu, Y.; Li, Z.; Guo, X.; Zhang, M.; Zhang, S.; Hou, J. Conjugated and Nonconjugated Substitution Effect on Photovoltaic Properties of Benzodifuran-Based Photovoltaic Polymers. Macromolecules.2012,45,6923-6929.
    [22]Krebs, F. C. Fabrication and Processing of Polymer Solar Cells:A Review of Printing and Coating Techniques. Sol. Energy Mater. Sol. Cells.2009,93,394-412.
    [23]Bundgaard, E.; Krebs, F. Low Band Gap Polymers for Organic Photovoltaics. Sol. Energy Mater. Sol. Cells.2007,91,954-985.
    [24]Mortimer, R. J.; Dyer, A. L.; Reynolds, J. R. Electrochromic Organic and Polymeric Materials for Display Applications. Displays.2006,27,2-18.
    [25]Ma, C.; Taya, M.; Xu, C. Smart Sunglasses Based on Electrochromic Polymers. Polym. Eng. Sci.2008,48,2224-2228.
    [26]Schmidbauer, S.; Hohenleutner, A.; Konig, B. Chemical Degradation in Organic Light-Emitting Devices:Mechanisms and Implications for the Design of New Materials. Adv. Mater.2013,25,2114-2129.
    [27]Yao, Y.; Liang, Y.; Shrotriya, V.; Xiao, S.; Yu, L.; Yang, Y. Plastic near-Infrared Photodetectors Utilizing Low Band Gap Polymer. Adv. Mater.2007,19,3979-3983.
    [28]Shi, Q.; Chen, W.-Q.; Xiang, J.; Duan, X.-M.; Zhan, X. A Low-Bandgap Conjugated Polymer Based on Squaraine with Strong Two-Photon Absorption. Macromolecules.2011, 44,3759-3765.
    [29]Fan, H.; Zhang, Z.; Li, Y.; Zhan, X. Copolymers of Fluorene and Thiophene with Conjugated Side Chain for Polymer Solar Cells:Effect of Pendant Acceptors. Journal of Polymer Science Part A:Polymer Chemistry.2011,49,1462-1470.
    [30]Deng, D.; Yang, Y.; Zhang, J.; He, C.; Zhang, M.; Zhang, Z.-G; Zhang, Z.; Li, Y. Triphenylamine-Containing Linear D-a-D Molecules with Benzothiadiazole as Acceptor Unit for Bulk-Heterojunction Organic Solar Cells. Org. Electron.2011,12,614-622.
    [31]Sommer, M.; Huettner, S.; Thelakkat, M. Donor-Acceptor Block Copolymers for Photovoltaic Applications. J. Mater. Chem.2010,20,10788.
    [32]Icli, M.; Pamuk, M.; Algi, F.; Onal, A. M.; Cihaner, A. Donor-Acceptor Polymer Electrochromes with Tunable Colors and Performance. Chem. Mat.2010,22,4034-4044.
    [33]Beaujuge, P. M.; Amb, C. M.; Reynolds, J. R. Spectral Engineering in Pi-Conjugated Polymers with Intramolecular Donor-Acceptor Interactions. Accounts Chem. Res.2010,43, 1396-1407.
    [34]Fei, H.; Kung-Shih, C.; Hin-Lap, Y.; K., H. S.; Orb, A.; Yong, Z.; Jingdong, L.; K.-Y, J. A. Development of New Conjugated Polymers with Donor-Π-Bridge-Acceptor Side Chains for High Performance Solar Cells. Journal of the American Chemical Society.2009,131, 13886-13887.
    [35]Zhu, W.; Wu, Y.; Wang, S.; Li, W.; Li, X.; Chen, J.; Wang, Z.-s.; Tian, H. Organic D-a-П-a Solar Cell Sensitizers with Improved Stability and Spectral Response. Adv. Funct. Mater. 2011,21,756-763.
    [36]Zhang, L.; He, C.; Chen, J.; Yuan, P.; Huang, L.; Zhang, C.; Cai, W.; Liu, Z.; Cao, Y Bulk-Heterojunction Solar Cells with Benzotriazole-Based Copolymers as Electron Donors: Largely Improved Photovoltaic Parameters by Using Pfn/Al Bilayer Cathode. Macromolecules.2010,43,9771-9778.
    [37]Hou, J. H.; Park, M. H.; Zhang, S. Q.; Yao, Y.; Chen, L. M.; Li, J. H.; Yang, Y Bandgap and Molecular Energy Level Control. Of Conjugated Polymer Photovoltaic Materials Based on Benzo 1,2-B:4,5-B' Dithiophene. Macromolecules.2008,41,6012-6018.
    [38]Wang, M.; Hu, X. W.; Liu, L. Q.; Duan, C. H.; Liu, P.; Ying, L.; Huang, F.; Cao, Y. Design and Synthesis of Copolymers of Indacenodithiophene and Naphtho 1,2-C:5,6-C Bis(1,2,5-Thiadiazole) for Polymer Solar Cells. Macromolecules.2013,46,3950-3958.
    [39]Cao, Y.; Lei, T.; Yuan, J. S.; Wang, J. Y.; Pei, J. Dithiazolyl-Benzothiadiazole-Containing Polymer Acceptors:Synthesis, Characterization, and All-Polymer Solar Cells. Polym. Chem. 2013,4,5228-5236.
    [40]Qin, H. M.; Li, L. S.; Liang, T. X.; Peng, X. B.; Peng, J. B.; Cao, Y Donoracceptor (Donor) Polymers with Differently Conjugated Side Groups at the Acceptor Units for Photovoltaics. Journal of Polymer Science Part a-Polymer Chemistry.2013,51,1565-1572.
    [41]Li, Y. H.; Wu, H.; Lam, C. S.; Chen, Z.; Wu, H. B.; Wong, W. Y.; Cao, Y. Highly Efficient Blue and All-Phosphorescent White Polymer Light-Emitting Devices Based on Polyfluorene Host. Org. Electron.2013,14,1909-1915.
    [42]Dong, Y.; Hu, X. W.; Duan, C. H.; Liu, P.; Liu, S. J.; Lan, L. Y.; Chen, D. C.; Ying, L.; Su, S. J.; Gong, X.; Huang, F.; Cao, Y. A Series of New Medium-Bandgap Conjugated Polymers Based on Naphtho 1,2-C:5,6-C Bis(2-Octyl-1,2,3 Triazole) for High-Performance Polymer Solar Cells. Adv. Mater.2013,25,3683-3688.
    [43]Mercier, L. G.; Aich, B. R.; Najari, A.; Beaupre, S.; Berrouard, P.; Pron, A.; Robitaille, A.; Tao, Y.; Leclerc, M. Direct Heteroarylation of Beta-Protected Dithienosilole and Dithienogermole Monomers with Thieno 3,4-C Pyrrole-4,6-Dione and Furo 3,4-C Pyrrole-4,6-Dione. Polym. Chem.2013,4,5252-5260.
    [44]Lu, K.; Fang, J.; Yu, Z.; Yan, H.; Zhu, X. W; Zhang, Y. J.; He, C.; Wei, Z. X. Improving the Performance of Polymer Solar Cells by Altering Polymer Side Chains and Optimizing Film Morphologies. Org. Electron.2012,13,3234-3243.
    [45]Piliego, C.; Holcombe, T. W.; Douglas, J. D.; Woo, C. H.; Beaujuge, P. M.; Frechet, J. M. J. Synthetic Control of Structural Order in N-Alkylthieno 3,4-C Pyrrole-4,6-Dione-Based Polymers for Efficient Solar Cells. J. Am. Chem. Soc.2010,132,7595-+.
    [46]Liang, Y.; Xu, Z.; Xia, J.; Tsai, S. T.; Wu, Y.; Li, G.; Ray, C.; Yu, L. For the Bright Future-Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%. Adv Mater.2010,22, E135-138.
    [47]Su, T. H.; Fan, C. H.; Ou-Yang, Y. H.; Hsu, L. C.; Cheng, C. H. Highly Efficient Deep-Red Organic Electrophosphorescent Devices with Excellent Operational Stability Using Bis(Indoloquinoxalinyl) Derivatives as the Host Materials. J. Mater. Chem. C.2013,1, 5084-5092.
    [48]Sonmez, G. Polymeric Electrochromics. Chem Commun (Camb).2005,5251-5259.
    [49]Shuttle, C. G.; Treat, N. D.; Douglas, J. D.; Frechet, J. M. J.; Chabinyc, M. L. Deep Energetic Trap States in Organic Photovoltaic Devices. Adv. Energy Mater.2012,2, 111-119.
    [50]Yuan, J. Y; Zhai, Z. C.; Dong, H. L.; Li, J.; Jiang, Z. Q.; Li, Y Y; Ma, W. L. Efficient Polymer Solar Cells with a High Open Circuit Voltage of 1 Volt. Adv. Funct. Mater.2013, 23,885-892.