气液系统移动界面传质现象研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了了解气液界面传质过程特性、探讨传质理论,以便更好指导工业生产,本文通过实验研究了气液两相在流动条件下跨界面传质过程中液相近界面的浓度分布、流体流动现象,以及两者对界面传质的影响规律。
     本文首先采用实时激光全息干涉系统对气液并流条件下,传质过程中液相内传质现象和规律进行了定性观测,并对传质达到稳态时的近界面浓度场进行了定量测量。实验发现,气液传质过程中广泛存在着界面湍动和周期性脉冲爆发两种不稳定性现象。文中对每种扰动现象的成因进行了分析,并研究了脉冲爆发现象的规律性、主要控制因素及其对气液传质的贡献。稳态时的定量测量结果给出了不同条件下近界面的浓度分布,得到了在传质方向上浓度分布呈指数下降规律。并测定了浓度边界层厚度、膜厚度随气、液雷诺数的变化情况。添补了两相流动传质体系中近界面浓度场信息方面的欠缺。文中还进一步根据定量实验数据,由双膜理论分析,建立了一个预测不同气、液雷诺数下传质系数的简捷方法,并利用其他物系的实验结果及前人的数据对提出的方法进行了验证,其结果与相似流动条件下的实验数据吻合较好,证实了这一半经验关联式的可靠性。
     其次,为研究传质过程中流体力学因素的影响,文中采用了激光多普勒测速系统对液相流场的瞬时动力学特征进行了测量。实验结果表明,气液界面上脉动速度并非是各向同性的。实验模拟装置内的时均速度可分成为层流底层、湍动主体和气液近界面三个区域,近界面区出现了最大时均速度现象。实验分别得到了每个区域内无因次速度的回归函数。文中进一步研究了流场速度的自相关函数、谱函数、特征尺度等统计性质,分别获得了存在和不存在脉冲爆发时的流场结构特性,并由漩涡池模型得到了两种情况下流场所产生的局部传质系数。结果表明脉冲爆发区域到达界面时的传质系数要明显增高,应给予充分考虑。
     最后,将上述实验得到的近界面浓度分布和速度分布加以耦合,对气液两相流动吸收过程中的液相传质系数进行了研究。建立了基于微元衡算获得液相传质系数的基本实验方法,并按照此方法求得了不同操作条件下较为准确的传质系数。然后,充分考虑流动传质过程中的脉冲爆发现象,从单涡传质模型入手建立了由流体力学特性求算液相传质系数的理论模型,并通过实验验证和与已有经典传质理论的计算结果进行比较的方法,印证了模型的良好可用性。
Better understanding of the interfacial mass transfer behaviors under following condition of gas-liquid systems, and further developing the corresponding mass transfer theory are of great importance for real production practice in chemical industry. In this thesis, experiments were conducted to investigate the concentration distribution and hydrodynamics character in the vicinity of the interface, and corresponding mechanism of their influences on the interfacial mass transfer.
     Firstly,the real-time laser holographic interferometry was applied to observe qualitatively the evolutions of concentrations distributions and to messure quantitively the liquid phase concentrations distribution in the vicinity of the interface during the mass transfer process under the conditions of cocurrent gas-liquid flow. A series of optical qualitative experiments showed the existence of phenomena of near-interface turbulence and periodic burst. The formation mechanisms of these two instable phenomena were analyzed, and the dynamic behavior, controlling factors and the influence of the burst on mass transfer were also studied. In a steady-state for the mass transfer process, with the optical measurement, the two dimensional concentration distributions inside the liquid phase and in the vicinity of the free interface were obtained via the interpretation of interference fringes. The steady-state results gained under different conditions demonstrated a sharp exponent increase in concentration with approaching to the interface. The influence of the Reynolds numbers of both gas and liquid phases on the concentration boundary layer thickness and fathomable near-surface concentration were also observed. This quantitative research padded the information shotages about concentration field near a moving interface during mass transfer. In addition, according to above experimental data and film theory, a shortcut method was proposed to estimate the interfacial mass transfer rate, in which Sherwood number representing the mass transfer coefficient was correlated as a function of the Reynolds numbersn of both phases. This method was also verified with experimental data found in the literature and conducted for other system.
     Secondly, experiments were conducted using Laser Doppler Anemometer (LDA) to investigate instantaneous hydrodynamic behaviors of the channel flow in the experiments. Instantaneous velocity measurements indicated that the fluctuation velocity near the interface is not isotropy as usually expected. The time averaging velocity distribution can be divided into three regions: laminar sub-layer, turbulent bulk flow and as well as the interfacial vicinity. In the interfacial vicinity, a dip phenomenon, which means that the position with the maximal velocity is lower than the interface, was found. Then, the statistical characters, such as correlation function, spectrum function and character scales, which define the flowing structure were obtained. Consequently, the mass transfer coefficients contributed by the flowing structure were calculated from the eddy pool model. The results showed that the mass transfer rate would be very much enhanced by the burst arriving up to the interface. Therefore the burst phenomena should be considered seriously as an influencial factor for mass transfer.
     Finally, the above data of concentration and velocity fields near the free interface of the same operating condition are coupled to study mass transfer in a gas-liquid flowing system. A mass balance based approach was used for estimating liquid mass transfer coefficients, and average mass transfer coefficients in the liquid phase were obtained for different flowing conditions. The results were compared to those calculated with other models. Then, considering the burst effect, which enhances significantly the mass transfer, a correction was made on a single eddy model and the new model was proposed to predict effectively the interfacial mass transfer rate. The proposed model was verified with our LDA experimental results, at the same time was compared with balance model and film model. The results demonstrated that the proposed model can give good prediction of mass transfer with periodical burst.
引文
[1] Graham, T., On the Diffusion of Liquids. Philosophical Transaction of the Royal Society of London, 1850, 140:1–13.
    [2] Fick, A. E., On liquid diffusion. Philosophical Magazine, 1855, 10(4):30–39.
    [3] Nernst, W., Theorie der Reaktionsgeschwindigkeit in heterogenen Systemen. Z. Phys. Chem., 1904, 47: 52–55.
    [4] Whitman, W. G., The two-film theory of gas absorption. Chem. Met. & Eng., 1923, 29(4):146–148.
    [5] Lewis, W.K.; Whitman, W. G., Principles of gas absorption. Ind. Eng. Chem., 1924, 16(3):1215–1220.
    [6] Higble, R., The rate of absorption of a pure gas into a still liquid during short periods of exposure. Am. Inst.Chem. Eng., 1935, 31(2): 365–388.
    [7] Lamont, J. C.; Scott, D. S., An eddy-cell model of mass transfer in surface of a turbulent liquid. AIChE Journal, 1970, 16(4): 513–519.
    [8] Danckwerts, P. V., Significance of liquid-film coefficients in gas absorption. Ind. Eng. Chem., 1951, 43(6): 1460–1467.
    [9] Danckwerts, P. V., Gas absorption accompanied by chemical reaction. AIChE Journal, 1955, 1(3): 456–463.
    [10] Toor, H. L.; Marchello, J. M., Film-penetration model for mass and heat transfer. AIChE Journal, 1958, 4(1): 97–104.
    [11] Perlmutter, D. D., Surface-renewal models in mass transfer. Chem. Eng. Sci., 1961, 16(4): 287–296.
    [12] Hanratty, T. J., Turbulent exchange of mass and momentum with a boundary. AIChE Journal, 1956, 2(3), 359–363.
    [13] Marchello, J. M.; Toor, H. L., A mixing model for transfer near a boundary. I&EC Fudamentals, 1963, 2 (1): 8–12.
    [14] Dobbin, W. E., BOD and oxygen relationships in streams. J. San. Engng. Div. Proc. A. S. C. E., 1964, 90(3): 53–78.
    [15] 沈自求,徐微勤,丁洁,相际传质(一)—一个修正的表面膜更新修正模型.化工学报,1980, 31(4): 319–331.
    [16] Harriott, P., A random eddy modification of the penetration theory. Chem. Eng. Sci., 1962, 17(3): 149–154.
    [17] Thomas, L.C.; Cingo, P.J.; Chung, B.T.F., The surface rejuvenation model for turbulent convective transport-an exact solution. Chem. Eng. Sci., 1975,30 (10): 1239–1242.
    [18] Thomas, L.C., The surface rejuvenation model of wall turbulence: Inner laws for u+ and Ti. Int. J. Heat Mass Transfer, 1980, 23(8):1099–1104.
    [19] Atmane, M.A.; Asher, W.E.; Jessup, A.T., On the use of the active infrared technique to infer heat and gas transfer velocities at the air-water free surface. Journal of Geophysical Research-Oceans, 2004,109 (C8): 15.
    [20] Ruckenstein, E., A note concerning turbulent exchange of heat or mass with a boundary. Chem. Eng. Sci., 1958, 7(4): 265–268.
    [21] Ruckenstein, E., Some remarks on renewal models. Chem. Eng. Sci., 1963, 18(4): 233–241.
    [22] Koppel, L. B., Patel, R. D., Holmes, J. T., Statistical models for surface renewal in heat and mass transfer : partⅠ. Dependence pf average transport coefficients on age distribution. AIChE Journal, 1966, 12(5): 941–946.
    [23] Nijsing, R., Predictions on momentum, heat and mass transfer in turbulent channel flow with the aid of a boundary layer growth-breakdown model. Warmeund Stoffiibertragung, 1969, 2(1):65–86.
    [24] Pinczewski, W.V.; Sideman, S., A model for mass (heat) transfer in turbulent tube flow. Moderate and high Schmidt (Prandtl) numbers. Chem. Eng. Sci., 1974, 29(9): 1969–1976.
    [25] Hart, J., Single-phase and two-phase pipe flow, PhD thesis. University of Amsterdam, The Netherlands, 1988.
    [26] Ruckenstein, E., A generalized penetration theory for unsteady convective mass transfer. Chem. Eng. Sci., 1968, 23: 363–371.
    [27] Beek, W. I.; Kramers, H., Mass transfer with a change in interfacial area. Chem. Eng. Sci., 1962, 16: 909.
    [28] Rose, P. M., Kintner, R.C., Mass transfer from large oscillating drops. AIChE Journal, 1966, 12(5): 530–534.
    [29] Vignes, A., Concentration dependence of the binary diffusion coeffcient.Ind Eng Chem Fundam, 1966, 5(2):281–283.
    [30] Kubaczka, A.; Bandrowski, J., Solutions of a system of multicomponent mass transport equation for mixtures of real fluids. Chem. Eng. Sci., 1991, 46(2): 539–556.
    [31] Krishna, R., Ternary mass transfer in a wetted-wall column significance of diffusional interactions. I. Stefan diffusion. Transactions of the Institution of Chemical Engineers, 1981, 59(1): 35–43.
    [32] Jinfu Wang; Horst Langenann, Unsteady two-film model for mass transfer. Chem. Eng. Technol., 1994, 17(4): 280–284.
    [33] Jinfu Wang; Horst Langenann, Unsteady two-film model for mass transfer accompanied by chemical reaction. Chem. Eng. Sci., 1994, 49(20):3457–3463.
    [34] Bin Zhao; Jinfu Wang; Weiguo Yang; Yong Jin, Gas–liquid mass transfer in slurry bubble systems I. Mathematical modeling based on a single bubble mechanism. Chemical Engineering Journal, 2003, 96(1-3): 23–27.
    [35] 刘德华,胡华,丁富新,袁乃驹,双膜传质模型在应用中的某些问题及修正方法. 石油学报,1994, 10(4): 86–91.
    [36] Sun, Z.F.; Fahmy, M., Onset of rayleigh-Benard-Marangoni convection in gas-liquid mass transfer with two-phase flow: Theory. Industrial and Engineering Chemistry Research, 2006, 45(9): 3293–3302.
    [37] 沙勇,传质导致的 Rayleigh-Bénard-Marangoni 对流研究. Ph D thesis, 天津大学,天津,2002.
    [38] Kishinevskii, M.K.; Serebryanskii. V.T., J. Appl. Chem., U.S.S.R, 1956, 29: 29.
    [39] Levich. V. G, Physicochemical Hydrodynamics, Prentice Hall Englewood Cliffs, 1962.70–81.
    [40] Davies, J.T.; Driscoll, J.P., Eddies at free surfaces, simulated by pulses of water. Ind. Eng. Chem., 1974, 13(2): 105–109.
    [41] Lee, G.Y.; Gill, W.N., A note on velocity and eddy viscosity distributions in turbulent shear flows with the free surfaces. Chem. Eng. Sci., 1977, 32(8): 967–979.
    [42] King, C. J., Turbulent liquid phase mass transfer at a free gas-liquid interface. I&EC Fundamentals, 1966, 5(1): 1–8.
    [43] Tennekes., H, J., Immtev, I., A first course in turbulence, the MIT Press, 1972.
    [44] Henze, J.O., Turbulence. McGraw-Hill, New York, 1969.
    [45] Byers,C.H.; King, C. J., Gas-liquid mass transfer with a tangentially movinginterface: partⅠ. Theory. AIChE Journal, 1967, 13(4): 625–636.
    [46] Byers,C.H.; King, C. J., Gas-liquid mass transfer with a tangentially moving interface: partⅡ. Experinental studies, AIChE Journal, 1967, 13(4):637–643.
    [47] Bin, A.K., Mass transfer into a turbulent liquid film. Int. J. Heat Mass Transfer, 1983, 26(7): 981–991.
    [48] Kafarov,V.V., International symposium on distillation, institution of chemical Engineers(London),1960, 153.
    [49] Mill, A.F.; Chung, D.K., Heat transfer across turbulent falling films. Int. J. Heat Mass Transfer, 1973, 16(3): 694–696.
    [50] Kitaigorodskii, S.A.; Donelan, M.A., Wind-wave effects on gas transfer. In Gas Tranfer at Air-Water Surfaces (Edited by Brutsaert, W., Jirka, G.H.), 1984, 147–178.
    [51] Sun, Z.M.; Liu, B.T.; Yuan, X.G.; Liu, C.J. and Yu, K.T. New turbulent model for computational mass transfer and its application to a commercial-scale distillation column. Ind. Eng. Chem. Res., 2005, 44 (12): 4427–4434.
    [52] Fortescue, G. E.; J. R. A. Pearson, On gas absorption into a turbulent liquid. Chem. Eng. Sci., 1967, 22(9): 1163–1176.
    [53] Lamont. J. C; D. C. Scott, An eddy cell model of mass transfer into the surface of a turbulent liquid. AIChE Journal, 1970, 16(4): 513–519.
    [54] Banerjee, S.; Rhodes, E.; Scott, D.S., Mass transfer to falling wavy liquid films in turbulent flow. Ind. Eng. Chem. Fundamentals., 1968, 7(1): 22–29.
    [55] Deacon, E.L., Gas transfer to and across an air water interface. Tellus, 1977, 29(4): 363–374.
    [56] Lamont. J. C , Ph. D. Thesis Univ. of British Columbia(Ang), 1966.
    [57] Prasher B. D., Gas absorption into a turbulent liquid. Chem. Eng. Sci., 1973, 28(5):1230–1232.
    [58] Lee, Y. H.; Luk, S., Characterization of concentration boundary layer in oxygen absorption. Ind Eng Chem Fundam, 1982, 21(4): 428–434.
    [59] Luk, S.; Lee,Y.H., Mass transfer in eddies close to air-water interface, AIChE Journal, 1986, 32(9):1546–1554.
    [60] Brumfield, L K., M Sc Thesis, Prudue University, 1971.
    [61] Komori, S.; Ueda, H., Turbulence structure and transport mechanism at the free surface in an open channel flow. Int. J. Heat Mass Transfer, 1982, 25(4): 513–521.
    [62] Komori, S.; Murakami,Y.; Ueda, H., The relationship between surface-renewal and bursting motions in an open-channel flow. Journal of Fluid Mechanics, 1989, 203(7): 103–123.
    [63] Komori, S.; Nagaosa, R.; Murakami,Y., Mass transfer into a turblent liquid across the zero–shear gas-liquid interface, AIChE Journal, 1990, 36(6): 957–960.
    [64] Komori, S.; Nagaosa, R.; Murakami,Y., Turbulence structure and mass transfer across a sheared air-water interface in wind-driven turbulence. Journal of Fluid Mechanics, 1993, 249(4): 161–183.
    [65] Rashidi, M.; Banejee, S., Turbulence structure in free surface channel flows. Physics of Fluids, 1988, 31(9): 2491–2503.
    [66] Rashidi, M.; Banejee, S., The effect of boundary conditions and shear rate on streal formation and breakdown in turbulent channel flows. Phscics Fluids, 1990, 42(10): 1827–1838.
    [67] Rashidi, M.; Banejee, S., Streak formation and breakdown near boundaries in turbulent open channel flow. J. Fluids Engng, 1990, 112(2): 164–170.
    [68] Rashidi, M.; Hetsroni, G.; Banejee, S., Mechanisms of heat and mass transport at gas-liquid interfaces, Int. J Heat Mass Transfer, 1991, 34(7): 1799–1810.
    [69] Davies, J. T.; Lozano, F. J., Turbulence characteristics and mass transfer at air-water surface. AIChE Journal, 1979, 25(3): 405–415.
    [70] Banerjee, S.; Lakehal, D.; Fulgosi, M., Surface divergence models for scalar exchange between turbulent streams. International Journal of multiphase flow, 2004, 30 (7-8): 963–977.
    [71] 罗和安,胡蓉蓉,刘平乐,王良芥,自由界面气液传质系数的旋涡作用模型. 化工学报,2002, 53(11): 1164–1168.
    [72] Brumfield, L. K.; R. N. Houze; Theofanous, T. G., Turbulent Mass Transfer at Free, Gas-Liquid Interfaces, with Application to Film Flows. Int. J. Heat Mass Transf, 1975, 18(9): 1077–1081.
    [73] Theofanous, T.G., Conceptual models of gas exchange, In Gas Transfer at Water Surface (Edited by W. Brutsaert and G.H. Jirka), Reidel / North Holland, 1984, 271–281.
    [74] Cohen,Y., Mass transfer across a sheared, wavy air-water interface. Int. J. Heat Mass Transfer, 1983, 26(9): 1289–1297.
    [75] Petty, C. A., A statistical-theory for mass-transfer near interface. Chem. Eng.Sci., 1975, 30(4): 413–418.
    [76] Sirkar, K.K.; Hanratty, T. J., Relation of turbulent mass transfer to a wall at high Schmidt numbers to the velocity field. J. Fluid Mech., 1970, 44(3): 589–603.
    [77] Campbell, J.A.; Hanratty, T. J., Mass transfer between a turbulent fluid and a solid boundary: linear theory. AIChE Journal, 1982, 28(6): 988–993.
    [78] McCready, M. J; Hanratty,T. J., Effect of air shear on gas absorption by a liquid film. AIChE Journal, 1985, 31(12): 2066–2074.
    [79] McCready, M. J; Vassiliadou, E.; Hanratty,T. J., Computer simulation of turbulent mass transfer at a mobile interface. AIChE Journal, 1986, 32(7): 1108–1115.
    [80] McCready, M. J.; Hanratty,T. J., Concentration fluctuations close to a sheared gas-liquid interface. AIChE Journal, 1984, 30(5): 816–817.
    [81] Back, D.D.; McCready, M. J., Theoretical study of interfacial transport in gas-liquid flows, AIChE Journal, 1988, 34(11): 1789–1802.
    [82] McCready, M. J.; Chang, H.C., Formation of large disturbances on sheared and falling liquid films, Chem. Eng. Comm., 1996, 141-142: 347–358.
    [83] Jahne, B.; Munnich, K.O.; Bosinger, B.; Dutzi, A., Huber; W., Libner, P., On the Parameters Influencing air-water gas exchange, J. Geophy. Res., 1987, 92(C2): 1937–1949.
    [84] Duke, S.R.; Wolff, L.M.; Hanratty, T.J., Slopes of small-scale wind waves and their relation to mass transfer rates, Experiments in Fluids, 1995, 19(4): 280–292.
    [85] Zhang, X.; Cox, C.S., Measuring the two dimensional structure of a wavy water surface optically: A surface gradient detector, Experiments in Fluids, 1994, 17(4): 225–237.
    [86] Zhang Xin., Surface image velocimetry for measuring short wind wave kinematics, Experiments in Fluids, 2003, 35(6): 653–665.
    [87] Saylor, J.R.; Handler, R.A., Gas transport across an air-water interface populated with capillary waves, Phys. Fluids, 1997, 9(9): 2529–2541.
    [88] Gulliver, J.S.; A. Tamburrino, Turbulent surface deformation and their relation to mass transfer in an open-channel flow, Air-Water Gas Transfer, B. Janhne and E.C. Monahan eds, Springer-Verlag. Delft, 1995, 589.
    [89] Tamburrino, A., free-surface turbulence and mass transfer in a channel flow,AIChE Journal, 2002, 48(12): 2732–2742.
    [90] Law, C.N.S.; Khoo, B.C., Transport across a turbulent air-water interface, AIChE Journal, 2002, 48(9): 1856–1868.
    [91] 苗容生,两相流气泡界面附近湍动场和浓度场的激光测量及局部传质理论研究,Ph D thesis, 天津大学,天津,1990.
    [92] Emmert,R.E.; R.L.Pigford, A studyof gas absorption in falling liquid films. Chemical Engineering Progress. Chen.Eng.Progr., 1954, 50 (2): 87–93.
    [93] Ma Youguang; Cheng Hong;Yu Guocong, Measurement of concentration fields near the interface of a rising bubble by holographic interference technique, Chinese J. of Chem. Eng., 1999, 7(4): 363–367.
    [94] Ma Youguang, Feng Huisheng, Xu Shichang ,Yu Guocong, the Mechanism of interfacial mass transfer in gas absorption process, Chinese J. of Chem. Eng., 2003,11(2): 227–230.
    [95] 余立新, 刘茂井, 膜蒸馏的研究现状及发展方向. 化工进展, 1991, 10(3): 1–5.
    [96] Miller, C. A., Interfacial Phenomena Equilibrium and Dynamic fects. New York: Marcel Dekker Inc, 1985
    [97] Slattery, J. C., Interfacial Transport Phenomena. New York: Springer-Verlag, 1990
    [98] Krishna, R.; Wesselingh, J. A., Maxwell-Stefan approach to mass transfer. Chem. Eng. Sci., 1997, 52 (6): 861–911.
    [99] Rapaport DC. The Art of Molecular Dynamics Simulation Cambridge University Press, UK, 1995
    [100] 吕家桢, 陆小华等, 化学工程中的分子动力学模拟. 化工学报, 1998, 44(增刊): 64–70.
    [101] 朱宪,蒋楚生,路璩华等.乳状液虞分离 Zn2 的界面传质阻力及传质模型. 高校化学工程学报,1996, 10(1): 31–35.
    [102] 张东翔,谭世语,黄会清, 传质体系界面过程研究进展. 重庆大学学报, 2002, 24(2): 137–142.
    [103] Lianchuei Chen, Yuhlang Lee, Adsoption behavior of Surfactants and mass transfer in single-drop extraction, AIChE Journal, 2000, 46(1): 160–167.
    [104] Tarasov, V.V., Interphase phenomena and extraction kinetics of inorganic material, Moscow: Mendelevey Chemical Technology Institute, 1980.
    [105] 罗耀明,张秋香,陈晓祥, 液液传质界面扰动现象的全息实时记录.高校化学工程学报,1995, 9(2): 149–154.
    [106] 官志远,刘铮,丁富新,袁乃驹。界面相及其特性、表征与应用. 化工学报,1999, 50(3): 356–361.
    [107] 成弘,周明,分散相细小粒子对气-液侍质的增强作用. 化学工程,1998, 26(6): 6-10.
    [108] Slavtchev, S.; Legros, J. C., Marangoni instability of a layer of binary liquid in the presence of nonlinear Soret effect. Int. J. Heat and Mass Transfer, 1999, 42(15): 3007-3011.
    [109] Krishna, R.; Wesselingh, J. A., Maxwell-Stefan approach to mass transfer. Chem. Eng. Sci., 1997, 52 (6): 861–911.
    [110] Guzun-Stoica, A.; M. Kurzeluk; O. Floarea, Experimental study of Marangoni effect in a liquid-liquid system. Chem. Eng. Sci., 2000, 55(18): 3813–3816.
    [111] Liang-Huei Chen; Yuh-Lang Lee, Adsorption behavior of surfactants and mass transfer in single-drop extraction. AIChE Journal, 2000, 46(1): 160–168.
    [112] Mao Z. S.; Chen J. Y., Numerical simulation of the Marangoni effect on mass transfer to single slowly moving drops in the liquid–liquid system. Chem. Eng. Sci., 2004, 59(8-9): 1815–1828.
    [113] Slavtchev, S.; Mendes, M. A., Marangoni instability in binary liquid–liquid systems. International Journal of Heat and Mass Transfer, 2004, 44(14-16): 3269–3278.
    [114] Hozawa, M.; N. Komatsu; N. Imaishi; K. Fujinawa, Interfacial turbulence during the physical absorption of carbon dioxide into non-aqueous solvents. J. Chem. Engng. of Japan, 1984, 17(2): 173–179.
    [115] Imaishi, N., M. Hozawa, K. Fujinawa and Y. Suzuki, Theoretical study of interfacial turbulence in gas-liquid mass transfer, applying Brian’s linear-stability analysis and using numerical analysis of unsteady Marangoni convection, Int. Chem. Eng. 1983, 23(3):466–476.
    [116] Lu, H. H., Yang, Y. M.; Maa, J. R., On the induction criterion of the Marangoni convection at the gas/liquid interface on absorption, Ind. Eng. Chem. Res., 1997, 36(2): 474–482.
    [117] Sun I F, Yu K J, Wang S Y et al, Absorption and Desorption of Carbon Dioxide into and from Organic Solvents: Effects of Rayleigh and Marangoni Instability. Industrial & Engineering Chemistry Research, 2002, 41(7): 1905–1913.
    [118] Okhotsimskii, A.; M. Hozawa, Schlieren visualization of natural convection inbinary gas-liquid systems, Chem. Engng. Sci, 1998, 53(14): 2547–2573.
    [119] Hozawa, M.; M. Inoue; J. Sato; T. Tsukada; N. Imaishi, Marangoni convection during steam absorption into aqueous LiBr solution with surfactant, J. Chem. Eng. Jpn. 1991, 24(2): 209–214.
    [120] Clark, M. W.; King ,C. J., Evaporation rates of volatile liquids in a laminar flow system. I. Pure liquids. AIChE Journal, 1970, 16(1): 64–69.
    [121] Brian, P. L. T.; J. E. Vivian; D. C. Matiatos, Interfacial turbulence during the absorption of carbon dioxide into monoethanolamine. AIChE Journal, 1967, 13(1): 28–36.
    [122] Brian, P. L. T.; Vivian, J. E.; Mayr, S. T., Cellular convection in desorbing surface tension-lowing solution from water. Ind. Eng. Chem. Fundam., 1971, 10(1): 75–83.
    [123] Brian, P. L. T., Effect of Gibbs adsorption on Marangoni instability. AIChE Journal., 1971, 17(4): 765–772.
    [124] Tan, K. K.; Thorpe, R.B., The onset of convection induced by buoyancy during gas diffusion in deep fluids, Chem. Eng. Sci., 1999, 54(19):4179–4187.
    [125] Daiguji, H.; Hihara, E.; Saito, T., Mechanism of absorption enhancement by surfactant, Int. J. Heat Mass Transfer, 1997, 40 (8): 1743–1752.
    [126] Ermakov, A. A, Rabinovich, L. M, and Slinko, M. G, Mass exchange in liquid extraction processes with self-organized interfacial convection, Doklady Chemical Technology: Proceedings of the Academy of Sciences of the USSR, Chemical Technology Section (English Translation of Doklady Akademii Nauk SSSR), 1988, 301(3): 100–103.
    [127] Rabinovich, L. M, and Slinko, M. G, The Problem of mass transfer intensification and mathematical models of interfacial self-organization at liquid-liquid extraction, ISEC-88 Conference Papers, 1988, 2: 91–96.
    [128] Slinko, M. G, Dilman, V. V, and Rabinovich, L. M, Interface transfer in the presence of surface convective structures in liquid phase. Theoretical Foundations of Chemical Engineering (English Translation of Teoreticheskie Osnovy Khim Theor Osnovi Khim Technol), 1983, 17(1): 7–11.
    [129] Longuet-Higgins M.S.,The propagation of short surface waves on longer gravity waves. J Fluid Mech, 1987, 177(4): 293–306.
    [130] Phillips, O.M., Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. J Fluid Mech, 1985, 156(7): 505–531.
    [131] Lake, B.M.; Yuen, H.C., A new model for nonlinear wind waves. Part 1: Physical model and experimental evidence. J Fluid Mech, 1978, 88(1): 33–62.
    [132] Ramamonjiarisoa, A.; Giovanangeli, J.P., Observations de la vitesse de propagation des vagues engendre’es par le vent au large. CR Acad Sci Paris B, 1978, 287: 133–136.
    [133] Jepsen, J.C.; Crosser, O.K.; Perry, R.H., The effect of wave induced turbulence on the rate of absorption of gases in falling liquid films. AIChE Journal, 1966, 12 (1): 186–192.
    [134] Sisoev, G.M. ; Matar, O.K. ; Lawrence, C.J., Absorption of gas into a wavyf alling film. Chemical Engineering Science. 2005, 60 (3): 827–838.
    [135] Won, Y.S. ; Mills, A.F., Correlation of the effects of viscosity and surface tension on gas absorption rates into freely falling turbulent liquid films. International Journal of Heat Mass Transfer , 1982. 25 (2): 223–229.
    [136] Kholpanov, L.P., Shkadov, V.Ya, Hydrodynamics and Heat and Mass Transfer at Interfaces, Nauka, Moscow. 1990.
    [137] Muenz, K. ; Marchello, J.M., Surface motion and gas absorption. A.I.Ch.E. Journal, 1966.12 (2): 249–253.
    [138] Goren, S.L. ; Mani, R.V.S., Mass transfer through horizontal liquid films in wavy motion. A.I.Ch.E. Journal, 1968,14 (1): 57–61.
    [139] M. Sangalli.; Th. Prokopiou, M. J. McCready; H. C. Chang, Observed transitions in two-phase stratified gas-liquid flow, Chem. Eng. Sci., 1992, 47(13): 3289–3296.
    [140] Lorencez, C.; Nasr-Esfahany, M.; Kawaji, M., Turbulence Structure and Prediction of Interfacial Heat and Mass Transfer in Wavy-Stratified Flow. AIChE Journal., 1997, 43(6): 1426–1435.
    [141] Shkadov, V.Ya.; Sisoev, G.M., Wavy falling liquid films: theory and computation instead of physical experiment. In: Chang, H.-C. (Ed.), IUTAM Symposium on Nonlinear Waves in Multi-Phase Flow. Kluwer, Dordrecht, 2000, pp. 1–10.
    [142] Yoshimura, P. N.; Nosoko, T.; Nagata, T., Enhancement of Mass Transfer into a Falling Laminar Liquid Film by Two-Dimensional Surface Waves Some Experimental Observations and Modeling. Chem. Eng. Sci., 1996, 51(8): 1231–1240.
    [143] Nakagawa, H.; Nezu, I., Prediction of the contributions to the Reynolds stressfrom bursting events in open-channel flows, Journal of Fluid Mechanics, 1977, 80 (4): 99–128.
    [144] Nezu, I.; Rodi, W., Open-channel flow measurements with a laser Doppler anemometers. J Hydraul Engng, 1986, 112(5): 335–355.
    [145] Kline S.J., Reynolds W.C., Schraub F.A., Runstadler P.W., The structure of turbulent boundary layers, J. Fluid Mech. 1967, 30(4): 741–773.
    [146] Nakagawa H., Nezu I., Structure of space–time correlations of bursting phenomena in an open-channel flow, J. Fluid Mech., 1981, 104(3): 1–43.
    [147] Komori, S.; Ueda, H., The large-scale coherent structure in the intermittent region of the self-preserving round free jet. Journal of Fluid Mechanics, 1985, 152 (3): 337–359.
    [148] Rashidi M., Burst-interface interactions in free surface turbulent flows. Phys. Fluids, 1997, 9(11): 3485–3501.
    [149] Kaspersen, J.H.; Krogstad, P.A., Wavelet-based method for burst detection. Fluid dynamics research, 2001, 28 (3): 223–236.
    [150] Kumar, S.; Gupta, R.; Banerjee, S., Experimental investigation of the characteristics of free-surface turbulence in channel flow. Physics of Fluids, 1998, 10 (2): 437–456.
    [151] Pan, Y.; Banerjee, S., A numerical study of free-surface turbulence in channel flow. Physics of Fluids, 1995, 7 (7): 1649–1664.
    [152] Tardu, S.F.; Feng, M.Q.; Binder, G., Quantitative analysis of flow visualizations in an unsteady channel flow. Experiments in Fluids, 1994, 17 (3): 158–170.
    [153] Komori, S., Nagaosa, R.; Murakami, Y.; Chiba, S.; Ishii, K.; Kuwahara, K., Direct numerical simulation of three-dimensional open-channel flow with zero-shear gas-liquid interface. Physics of Fluids A (Fluid Dynamics), 1993, 5 (1): 115–125.
    [154] Nagaosa, R., Direct numerical simulation of vortex structures and turbulent scalar transfer across a free surface in a fully developed turbulence. Physics of Fluids, 1999, 11 (6): 1581–1595.
    [155] Nagaosa, R.; Handler, R.A., Statistical analysis of coherent vortices near a free surface in a fully developed turbulence. Physics of Fluids, 2003, 15 (2): 375–394.
    [156] Zou LY; Liu NS; Lu XY, An investigation of pulsating turbulent open channelflow by large eddy simulation. Computers & Fluids, 2006, 35 (1): 74–102.
    [157] Magnaudet, J.; Calmet, I., Turbulent mass transfer through a flat shear-free surface. Journal of fluid mechanics, 2006, 553(4): 155–185.
    [158] Calmet, I.; Magnaudet, J., High-Schmidt number mass transfer through turbulent gas-liquid interfaces. International Journal of heat and fluid flow, 1998, 19 (5): 522–532.
    [159] Beck, M. S.; Green, R. G.; Thorn, R., Non-intrusive measurement of solids mass flow in pneumatic conveying. Journal of Physics E: Scientific Instruments, 1987, 20(7): 835–840.
    [160] Hiby, J.W.; Braun, D.; Eickel, K.H., Eine Fluoreszenzmethode zur Untersuchung des Stoffübergangs bei der Gasabsorption im Rieselfilm. Chemie Ing Techn, 1967, 39: 297–301.
    [161] Hiby, J.W., Eine Fluoreszenzmethode zur Untersuchung des Transportmechanismus bei der Gasabsorption im Rieselfilm. Warme und Stoffubertr, 1968, 1: 106–116.
    [162] Braun, D.; Echstein, H.; Hiby, J.W., Messung der Oberflachemges chwindigkeit von Rieselfilmen. Chem Ing Techn, 1971, 43: 324–329.
    [163] Fahlenkamp, H., Zum Mechanismus des Stofftransports im laminar-welligen Rieselfilm, PhDthesis, Technical University Aachen, Germany, 1979
    [164] Hiby, J.W., The chemical indicator: a tool for the investigation of concentration fields in liquids. Ann NY Acad Sci, 1983, 404: 348–349.
    [165] Petermann, J.; Broecker, H.C.; Sinn, H., A spectroscopic method for investigating the adsorption of gases in fluid films. Ger. Chem. Eng., 1978, 1(5): 312–317.
    [166] 王立新,潮沙坑动中的排放特性与数字图象处理技术的应用. 清华大学博士论文,1990.
    [167] 黄勤生,石油向下扩散购实验研究及数字图象处理技术的应用. 成都科技大学颁士论文, l994.
    [168] Lee, Y.H.; Luk, S., Characterization of concentration boundary layer in oxygen absorption, Ind. Eng. Chem. Fundarn., 1982, 21(4): 428–434.
    [169] Chu, R.C.; Jirka, G.H. Turbulent gas-flux measurements below the air-water interface of grid-stirred tank .Gas Transfer at Water Surfaces (ed. J Gulliver et al.) A.S.C.E., New York, NY, 1991
    [170] Rasmussen, K.; Lewandowski, Z., The accuracy of oxygen flux measurementsusing microelectrodes, Water Research, 1998, 32 (12): 3747–3755.
    [171] Begorre, H.J.; Meghebbar, A.; Herbeuval, J.P., The use of advanced microelectrodes for simultaneous measuring of local velocity and concentration inside liquid flows, Advanced Information Processing in Automatic Control. Selected Papers from the IFAC/IMACS/IFORS Symposium (AIPAC '89), 1990: 431–434.
    [172] Epshtein, I.M.; Khamidullina, N.M., Measurement of the oxygen diffusion coefficient in conducting media with uncontrolled oxygen concentration using an open-tip solid microelectrode, Soviet Electrochemistry (English Translation of Elektro-Khimiia), 1988, 24 (5): 603–606.
    [173] O'Hare, D.; Winlove, C.P.; Parker, K.H., Electrochemical method for direct measurement of oxygen concentration and diffusivity in the intervertebral disc. Electrochemical characterization and tissue-sensor interactions, Journal of Biomedical Engineering, 1991, 13 (4): 304–312.
    [174] 赵云,施明恒,王家,一种改进的电加热取样探头. 燃烧科学与技水,2002,8(1): 31–33.
    [175] 张季熊, 蒋明刚. 一种测量浓度的光纤传感系统. 仪器与仪表, 2001, 10: 9–11.
    [176] Koochesfahani, M.M.; Dimotakis, P.E., Mixing and chemical reactions in a turbulent liquid mixing layer. Journal of Fluid Mechanics, 1986, 170 (9): 83–112.
    [177] Pankow, J.F.; Asher, W.E.; List, E.J., Carbon dioxide transfer at the gas-water interface as a function of system turbulence. Gas transfer at water surfaces (Brutsaert W; Jirka GH, editor), 1984, pp.110–113, D. Reidel, Hingham, MA
    [178] Asher, W.E.; Pankow, J. F., The interaction of mechanically generated turbulence and interfacial films with a liquid phase controlled gas-liquid transport process, Tellus Series B (Chemical and Physical Meteorology), 1986, 38B (5): 305–318.
    [179] Asher, W.; Pankow, J. F., Direct observation of concentration fluctuations close to a gas-liquid interface. Chem. Eng. Sci., 1989, 44 (6): 1451–1455.
    [180] Wolff, L.M.; Hanratty, T.J., Instantaneous concentration profiles of oxygen accompanying absorption in a stratified flow. Experiments in Fluids, 1994, 16 (6): 385–392.
    [181] Jahne, B.; Libner, P.; Fischer, R.; Billen, T.; Plate, E.J., Investigating thetransfer process across the free aqueous viscous boundary layer by the controlled flux method. Tellus, Series B (Chemical and Physical Meteorology), 1989, 41 (2): 177–195.
    [182] Jahne, B., From mean fluxes to a detailed experimental investigation of the gas transfer process. Air-Water Mass Transfer, (Wilhelms SC, Gulliver JS,editors, pp.210–218, ASCE, New York, 1991
    [183] Jahne, B.; HauBecker, H., Air-water gas exchange. Annual Review of Fluid Mechanics, 1998, 30: 443–468.
    [184] Munsterer, T.; Jahne, B., LIF measurements of concentration profile in the aqueous mass boundary layer. Experiments in Fluids, 1998, 25(3):190–196.
    [185] Philip, T.; Woodrow, Jr.; Steve, R. Duke, Laser-Induced Fluorescence Studies of Oxygen Transfer Across Unsheared Flat and Wavy Air-Water Interfaces. Ind. Eng. Chem. Res., 2001, 40(8): 1985–1995.
    [186] Roy, S.; Duke, S.R., Visualization of oxygen concentration fields and measurement of concentration gradients at bubble surfaces in surfactant-contaminated water. Experiments in Fluids, 2004, 36(4): 654–662.
    [187] Moghaddas, J.S.; Tragardh, C.; Kovacs, T.; Ostergren, K., A new method for measuring concentration of a fluorescent tracer in bubbly gas-liquid flows, Experiments in fluids, 2002, 32 (6): 728–729.
    [188] Bork, O.; Schlueter, M.; Raebiger, N., The impact of local phenomena on mass transfer in gas-liquid systems. Canadian Journal of Chemical Engineering, 2005, 83 (4): 658–666.
    [189] Prasad, R.R.; Sreenivasan, K.R., The measurement and interpretation of fractal dimensions of the scalar interface in turbulent flows. Physics of Fluids A (Fluid Dynamics), 1990, 2 (5): 792–807.
    [190] 黄真理, 李玉梁, 余常昭, 宋传琳. LIF 技术测量浓度场的影响因素分析. 实验力学, 1994, 9(3): 232–240.
    [191] Orell, A.; Westwater, J. W., Spontaneous interfacial cellular convection accompanying mass transfer: Ethylene Glycol-Acetic acid-Ethyl acetate, AIChE J., 1962, 8(3): 350–356.
    [192] Imaishi, N.; Fujinawa, K., An optical study of interfacial turbulence accompanying chemical absorption. Int. Chem. Eng., 1980, 20(2): 226–232.
    [193] Agble, D.; Mendes-Tatsis, M.A., The effect of surfactants on interfacial mass transfer in binary liquid–liquid systems. International Journal of Heat andMass Transfer, 2000b, 43(6): 1025–1034.
    [194] Kleine, S., van Enckevort WJP; Derix, J., A dark field-type Schlieren microscope for quantitative, in situ mapping of solute concentration profiles around growing crystals. Journal of Crystal Growth, 1997, 179(1-2): 240–248.
    [195] Ueda, M.; Kagawa, K.; Yamada, K.; Yamaguchi, C.; Harada, Y., Flow visualization of Benard convection using holographic interferometry. Applied Optics, 1982, 21(18): 3269–3272.
    [196] 雷华, 鲁阳, 潘勤敏, 周晓勤, 谢芳宁, 高分子体系中扩散过程的可视化研究. 高校化学工程学报, 2004, 18(1): 1–6.
    [197] 蒋桂忠, 章立新, 蔡祖恢, 李美玲, 界面湍流下溴化锂水溶液膜流吸收强化的研究. 上海交通大学学报, 2002, 36 (10): 1445–1470.
    [198] Yamane, T.; Yoshida, M.; Miyashita, H., Concentration measurement using laser holography under two-layered double-diffusive convection. Kagaku Kogaku Ronbunshu, 2002, 28(1): 49–54.
    [199] Fernandez-Torres MJ, Ruiz-Bevia F, Fernandez-Sempere J, Lopez-Leiva M,Visualization of the UF polarized layer by holographic interferometry. AIChE Journal, 1998, 44 (8): 1765–1776.
    [200] Pertler, M.; H?berl, M.; Rommel, W.; Blass, E., Mass transfer across liquid-phase boundaries. Chemical Engineering and Processing, 1995, 34(3): 269–277.
    [201] Agble, D.; Mendes-Tatsis, M. A., The prediction of Marangoni convection in binary liquid-liquid systems with added surfactants. International Journal of Heat and Mass Transfer, 2001, 44(7): 439–449.
    [202] Dil’man, V. V., Kulov, N. N., Lotkhov, V. A., On the difference in rates absorption and desorption of gases. Teor. Osn khim Tekhnol, 1998, 32(4): 377–386.
    [203] Kutepov, A. M.; Pokusasey, B. G.; Kazenin, D. A.; Karlov, S. P.; Vyaz’min, A. V., Interfacial mass transfer in the liquid-gas system: An optical study. Theoretical Foundations of Chemical Engineering, 2001, 35(3): 213–216.
    [204] Baranski J, Bich E, Vogel E, et al. Determination of binary diffusion coefficient of gases using holographic interferometry in a Loschmidt cell. International Journal of Thermophysics, 2003, 24 (5): 1207–1220.
    [205] Ma Y.G.; Cheng H.; Yu K.T., Measurement of concentration fields near the interface of a rising bubble by holographic interference technique. Chinese J.of Chem. Eng., 1999, 7(4): 363–367.
    [206] 盛森芝,徐月亭,袁辉靖,近十年来流动测量技术的发展. 力学与实践,2002, (24): 1–14.
    [207] Kimura, I.; Kohno, Y., Measurement of three-dimensional flow velocity vectors using tracer images visualized by a color spectrum, American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED, Experimental and Numerical Flow Visualization, 1991, 128: 33–40.
    [208] Vazquez, G..; Antorrena, G..; Bermudez, A.; Chenlo, F.; Otero, D., Interfacial velocity between two liquid phases in laminar flow through a rectangular channel. International Chemical Engineering, 1990, 30 (1): 117–123.
    [209] Shafiqul Islam, M.; Haga, K.; Kaminaga, M.; Hino, R.; Monde, M., Experimental analysis of turbulent flow structure in a fully developed rib-roughened rectangular channel with PIV. Experiments in Fluids, 2002, 33 (2): 296–306.
    [210] Li, F.-C., Kawaguchi, Y., Segawa, T., Suga, K., Simultaneous measurement of turbulent velocity field and surface wave amplitude in the initial stage of an open-channel flow by PIV. Experiments in Fluids, 2005, 39 (6): 945–953.
    [211] Ishigaki, T., Shiono, K., Rameshwaran, P., PIV and LDA measurements of secondary flow in a meandering channel for overbank flow. Journal of Visualization, 2002, 5(2): 153–159.
    [212] Parass, S.V.; Vlachos, N.A.; Karabelas, A.J., LDA measurements of local velocities inside the gas phase in horizontal stratified/atomization two-phase flow. International Journal of Multiphase Flow, 1998, 24 (4): 651–661.
    [213] Romano, G.P.; Antonia, R.A.; Zhou, T., Evaluation of LDA temporal and spatial velocity structure functions in a low Reynolds number turbulent channel flow, Experiments in Fluids, 1999, 27(4): 368–377.
    [214] Armenante, Piero M.; Luo, Changgen, Chou, Chun-Chiao, Fort, Ivan, Medek, Jaroslav, Velocity profiles in a closed, unbaffled vessel: comparison between experimental vessel: comparison between experimental LDV data and numerical CFD predictions, Chem. Eng. Sci., 1997, 52 (20): 3483–3492.
    [215] Mudde, R.F.; Groen, J.S., Van Den Akker H.E.A, Application of LDA to bubbly flows. Nuclear Engineering and Design, 1998, 184 (2-3): 329–338.
    [216] Becker, S.; De Bie H., Sweeney J, Dynamic flow behavior in bubble columns. Chem. Eng. Sci., 1999, 54 (21): 4929–4935.
    [217] 夏振炎,姜楠,湍射流的三维 LDV 测量. 流体力学实验与测量, 2002, 16(2): 72–77.
    [218] Ming zhong Li, Graeme White, Derek Wilkinson, LDA Measurements and CFD modeling of a stirred vessel with a retreat curve impeller. Ind. Eng. Chem. Res., 2004, 43(20): 6534–6547.
    [219] 刘新华,高士秋,李静海, 循环流化床中颗粒团聚物性质的 PDPA 测量,化工学报,2004, 4(55): 555–562.
    [220] Zhou, Haosheng, Lu, Jidong, Lin, Liang, Turbulence structure of the solid phase in Transition region of a circulating fluidized bed. Chem. Eng. Sci., 2000, 55 (4): 839–847.
    [221] Charles, M. V., Holographic interferometry, New York, Wiley, 1979.
    [222] Grossman, Gershon, Analysis of diffusion thermo-effects in film absorption. Heat Transfer, Proceedings of the International Heat Transfer Conference, 1986, 4: 1977–1982.
    [223] David R. Lide. CRC Handbook of Chemistry and Physics, National Institute of Standards and Technology, New York, 2004
    [224] Harvey, E.A.; Smith, W., The absorption of carbon dioxide by a quiescent liquid. Chem. Eng. Sci., 1959, 10: 274–280.
    [225] Corino E.R.; Brodkey R.S., A visual investigation of the wall region in turbulent flow, J. Fluid Mech. 1969, 37(1): 1–30.
    [226] Andrei Okhotsimskiit; Mitsunori Hozawa, Schlieren visualization of natural convection in binary gas-liquid systems. Chem. Eng. Sci., 1998, 53(14): 2547–2573.
    [227] Yu liming; Zeng Aiwu;Yu Guocong, The effect of velocity fluctuation on mass transfer in falling film flow, Industrial & Engineering Chemistry Research, 2006,45(3): 1201–1210.
    [228] Sonke Brocker,A new viscous sublayer influx (VSI) concept for near-wall turbulent momentum, heat and mass transfer. Rev. Gen. Therm., 1998, 37: 353–370.
    [229] Caussade, B.; Masbernat, L.; Tsacoyannis, Y., Absorption in co-current gas-liquid in turbulent stratified channel flow. AIChE Symposium Series, 1979, 2: 911–920.
    [230] Lam, K.; Banerjee S., On the condition of streak formation in a bounded turbulent flow. Phys. Fluids A, 1992, 4(2): 306–320.
    [231] 汪晓红, 气-液界面传质机理的实验和理论研究. M thesis, 天津大学, 天津, 1997.
    [232] Pao, Y.P., Temperature and density jumps in kinetic theory of gases and vapors. The Physics of Fluids, 1971, 14 (306): 1340-1356.
    [233] Kjelstrup, S., de Koeijer, G.M., Transport equations for distillation of ethanol and water from the entropy production rate. Chem. Eng. Sci., 2003, 58(6): 1147–1161.
    [234] Cipolla Jr., J.W.; Lang, J.W.; Loyalka, S.K., Temperature and partial pressure jumps during evaporation and condensation of a multicomponent mixture. In: Beeker, M., Fiebig, M. (Eds.), Rare5ed Gas Dynamics, Vol. II. DFVLR-Press, Portz-Wahn, 1974, pp. F.4.1– 4.10.
    [235] Vasquez, G.; Antorrena, G.; Navaza, J. M.; Santos, V., Rodriguez, T., Adsorption of CO2 in aqueous solutions of various viscosities in the presence of induced turbulence. International Chemical Engineering, 1993, 33(4): 649–655.
    [236] Caussade, B.; George, J.; Masbernat, L., Experimental study and parametrization of interfacial gas absorption. AIChE Journal, 1990, 36(2): 265–274.
    [237] Gostick, J.; Doan, H. D.; Lohi, A.; Pritzkev, M. D., Investigation of Local mass Transfer in a Packed Bed of Pall Rings Using a Limiting Current Technique. Ind. Eng. Chem. Res., 2003, 42(15): 3626–3634.
    [238] Krupiczka, R.; Rotkegel, A., An experimental study of diffusional cross-effect in multicomponent mass transfer. Chem. Eng. Sci., 1997, 52(6): 1007–1017.
    [239] Beek, W. J.; Muttzall, K. M. K.; Van Heuven, J. W., Transport phenomena, New York, Wiley, 2003, 261.
    [240] Chen, Y. M.; Sun, C.Y., Experimental study on the heat and mass transfer of a combined absorber-evaporator exchanger. International Journal of Heat and Mass Transfer, 1997, 40(4): 961–971.
    [241] Yih, S. M.; Chen, K. Y., Gas absorption into wavy and turbulent falling liquid films in a wetted-wall. Chem. Eng. Commun., 1982, 17(16): 123–136.
    [242] Hunt, J.C.R., Turbulence structure and turbulent diffusion near a gas-liquid interface. In Gas Transfer at Water Surfaces (ed.W.Brutsaert&G.H.Jirka), 1984, 67–82.
    [243] Keulegan, G.H., Laws of turbulent flow in open channels. Journal of Researchof the National Bureau of Standards, RP1151, 1938, 21: 707–741.
    [244] Reichardt, V. H., Vollstandige Darstellung der turbulenten Ges chwindigkeits- verteilung in glatten Leitungen. Z. Angew. Math. Mech., 1951, 31(7): 187–208.
    [245] Notter, R.H.; Sleicher, C.A., The limiting form of the eddy diffusivity close to a wall. AIChE Journal, 1969, 15(6): 936–939.
    [246] Lin, C. S.; Moulton, R.W.; Putnam, G. L., Ind. Eng. Chem., 1953, 45 (3): 636–644.
    [247] Hanna, O.T.; Sandall, O.C., Developed turbulent transport in ducts for large Prandtl or Schmidt numbers. AIChE Journal, 1972, 18(3): 527–533.
    [248] 崔尔杰;洪金森,流动显示技术及其在流体力学研究中的应用. 空气动力学学报, 1991, 9(2): 190–199.
    [249] Drain, L.E., 激光多普勒技术(王仕康等译), 北京: 清华大学出版社,1985.
    [250] Vanoni, V.A., Velocity distribution in open channels. Civ. Engrg., ASCE, 1941, 2(6): 356–357.
    [251] Nezu, I.; Nakagawa, H., Turbulence in open-channel flows, Balkema, Rotterdam, The Netherlands, 1993.
    [252] Sarma, Kandula V. N.; Lakshminarayana, P.; Rao, N. S. Lakshmana, Velocity distribution in smooth rectangular open channels. Journal of Hydraulic Engineering, 1983, 109 (2): 270–289.
    [253] Syamala, P., Velocity, shear and friction factor studies in smooth rectangular channels of small aspect ratios for supercritical flows. PhD thesis, Indian Institute of Science, Bangalore, India. 1988
    [254] Yang, Shu-Qing; Tan, Soon-Keat; Lim, Siow-Yong, Velocity distribution and dip-phenomenon in smooth uniform open channel flows. Journal of Hydraulic Engineering, 2004, 130 (12): 1179–1186.
    [255] Wang, X.; Wang, Z.Y.; Yu, M.; Li, D., Velocity profile of sediment suspensions and comparison of log-law and wake-law. Journal of Hydraulic Research, 2001, 39(2): 211–217.
    [256] Sarma, Kandula V.N.; Prasad, Boyina V. Ramaria; Sarma, Avvari Krishna, Detailed study of binary law for open channels. Journal of Hydraulic Engineering, 2000, 126(3): 210–214.
    [257] 应怀僬,波形和频率分析与随机数据处理,中国铁道出版社,1985.